Primary Mediastinal B-Cell Lymphoma and [18F]FDG PET/CT: What We Learned and What Is New
Abstract
:1. Introduction
Treatment Options for PMLBCL
2. [18F]FDG PET/CT in PMLBCL
2.1. Diagnosis
2.2. Staging
2.3. Early Treatment Response Assessment—iPET
2.4. End-of-Treatment Response Assessment—EoT PET
Year | Authors | N. Patients | Therapy | PET Parameters and Findings |
---|---|---|---|---|
2014 | Martelli et al. [41] | 125 | Rituximab and anthracycline-containing chemoimmunotherapy | DS. Performed using liver uptake as the cut-off for PET positivity (from DS 3 to 4), better discrimination is found between high and low risk of failure, with 5-year PFS of 99% versus 68% (p = 0.001) and 5-year OS of 100% versus 83% (p = 0.001). |
2021 | Casadei et al. [71] | 151 | MACOP-B regimen with or without Rituximab | Visual analysis. Patients with a negative PET scan after MACOP-B had complete response and did not undergo RT. |
2016 | Pinnix et al. [72] | 97 | R-CHOP, or R-HCVAD, or R-EPOCH with or without RT | DS and SUVmax. Patients with DS 4–5 and SUVmax > 5.4 after immunochemotherapy were at high risk of progression or relapse. |
2015 | Zinzani et al. [73] | 74 | R-MACOP-B | Visual analysis. A PET-guided RT approach leads to reducing the use of RT. |
2019 | Chan et al. [30] | 124 | DA-EPOCH-R, R-CHOP | Visual analysis. PET provides information to evaluate the value of chemo- and RT. |
2008 | De Sanctis et al. [70] | 92 | MACOP-B | Visual analysis. PET may be effective in therapy response assessment |
2022 | Karakatsanis et al. [74] | 339 | R-CHOP-14, R-CHOP-21 | DS. RT was limited to PET-positive patients with DS 3–5. The use of RT for DS 1–2 patients was at the discretion of the treating physician. |
2023 | Held et al. [76] | 131 PMBCL patients (UNFOLDER trial) | R-CHOP-21, R-CHOP-14, RT for bulky disease ≥7.5 cm or extralymphatic involvement (82 patients) | Visual analysis. RT should be applied to poor responders that showed partial response with residual lesion at EoT PET (DS 4–5). |
2021 | Vassilakopoulos et al. [75] | 332 | R-CHOP | DS. In case of PET-negative patients, RT should be avoided. Salvage therapy in responding patients with positive PET should be avoided in absence of progression or multifocal disease. |
2021 | Morgenstern et al. [77] | 56 | DA-EPOCH-R R-CHOP/R-ICE | DS. PET provides information to evaluate the value of chemo- and RT. |
2016 | Goldschmidt et al. [78] | 47 | R-CHOP-RICE | DS. EoT DS ≤ 3 predicts favorable outcomes. |
2014 | Shemmari et al. [31] | 20 | R-CHOP | Visual analysis. Salvage chemotherapy and BEAM autologous marrow transplant was performed after R-CHOP in PET-positive subjects. Better OS and PFS was demonstrated in patients who had undergone PET scan compared to those receiving RT on the bases of CT imaging. |
2011 | Tai et al. [32] | 19 | R-CHOP | Visual analysis. RT planning and stage migration based on PET improved survival outcome. |
2015 | Yang et al. [33] | 28 | Rituximab | Visual analysis. PET results impact on the choice of post-induction treatment. Patients with PET-evaluation were more likely to receive RT alone (28.6% vs. 0%). |
2015 | Cheah et al. [34] | 28 | R-CHOP, CHOP-Q14, DA-EPOCH-R | SUVmax. PET has excellent NPV but limited PPV due to the high frequency of positive scans. A negative PET is an excellent predictor of outcome. Residual metabolically active masses after treatment should be biopsied to confirm viable lymphoma prior to salvage therapy. |
2013 | Filippi et al. [80] | 37 | Rituximab-based chemotherapy | DS. Almost 50% of PMBCL patients demonstrate residual disease at EoT PET. DS 5 patients are at high risk of progression and death, and they might be candidates for intensified programs. |
2016 | Filippi et al. [83] | 51 | R-CHOP and R-CHOP-like chemotherapy | DS. Metabolic response after chemo-immunotherapy proved to be a strong prognostic factor for PFS after radiotherapy. The use of PET for patient risk stratification allowed us to identify a subgroup of patients at high risk of progression/relapse after radiotherapy. |
2017 | Ceriani et al. [84] | 88 | R-CHOP, R-CHOP-like, R-VACOP-B, R-MACOP-B | DS and Lugano classification. PET can identify patients at higher risk of progression after RT. The prognostic value of the Lugano classification criteria was confirmed in the response assessment after RT. Patients who achieved a complete metabolic response (DS ≤ 3) all remain progression-free at 5 years. Patients with DS 4 also had excellent outcomes, suggesting that they do not necessarily require additional therapy, since the residual FDG uptake may not reflect persistent lymphoma. |
2015 | Nagle et al. [85] | 27 | R-CHOP | Visual analysis. Negative iPET and EoT PET identified patients who achieve long-term remission. Both positive iPET and EoT PET need to be better defined. |
2018 | Pinnix et al. [24] | 65 | DA-R-EPOCH | MTV, TLG, and DS. A model combining baseline TLG and EoT DS identified patients at increased risk of progression. |
2016 | Vassilakopoulos et al. [86] | 106 | R-CHOP | DS, Lugano classification, and SUVmax. Based on PET/CT results, no salvage chemotherapy and ASCT in subjects who respond to R-CHOPOmission of RT in a considerable amount of PET-negative subjects. |
2021 | Vassilakopoulos et al. [87] | 182 | R-CHOP | DS. The decision to start further salvage chemotherapy in the absence of progression of disease in conventional imaging should not be triggered by the persistence of positive PET/CT with DS < 5 after consolidative RT, should not trigger the initiation of further salvage chemotherapy in the absence of conventionally defined progression disease RT. |
2020 | Zhou et al. [43] | 166 | R-HCVAD, R-EPOCH, R-CHOP | SUVmax. EoT PET SUVmax has correlations with survival outcome. |
2012 | Vassilakopoulos et al. [88] | 76 | MACOP-B, R-CHOP | Visual analysis. RT can be safely omitted in selected patients based on a negative EoT PET. |
2022 | Velasques et al. [90] | 93 | DA-EPOCH-R, R-CHOP/R-CHOEP | Lugano criteria. PET may be an alternative to prevent patients from the long-term deleterious effects associated with RT. |
2013 | Dunleavy et al. [91] | 69 | DA-EPOCH, DA-EPOCH-R | SUVmax. PET alone is not accurate for tumor response assessment, since it showed a poor PPV = 17%. The shrinkage of residual mediastinal mass continued for 6 months, suggesting that inflammatory cells might account for FDG uptake. |
2018 | Shah et al. [92] | 132 | R-CHOP, DA-EPOCH-R | PET may serve as a disease assessment tool to determine the need for EoT RT. |
2017 | Giulino-Roth et al. [93] | 156 | DA-R-EPOCH | DS. Negative EoT PET was associated with improved EFS (95.4% vs. 54.9%, p < 0001). Patients with a positive EoT PET scan have an inferior outcome. |
2018 | Melani et al. [101] | 93 | DA-R-EPOCH | DS. Serial PET imaging distinguished EoT PET-positive patients without treatment failure, thereby reducing unnecessary RT by 80%. |
2021 | Jain et al. [94] | 43 | R-EPOCH | DS. The patients with single-site residual disease on EoT PET underwent localized RT. |
2017 | Broccoli et al. [95] | 98 | MACOP-B, R-MACOP-B | DS. RT was spared in those patients with a negative PET corroborative of a complete response. |
2009 | Zinzani et al. [96] | 45 | R-MACOP-B, R-VACOP-B | SUVmax. Seven patients who had PR and presented with an ambiguous PET pattern turned out to be associated with false positives later on. |
2020 | Hayden et al. [97] | 113 | R-CHOP | DS. The use of a PET-adapted approach reduces RT in the majority of patients. |
2022 | Romejko-Jarosinska et al. [98] | 124 | GMALL/B-ALL/NHL protocol | DS. EoT PET was predictive for outcome: 5-year OS and PFS were 96% and 94% in negative subjects, and 70% and 70% in positive subjects (p = 0.004 for OS, p = 0.01 for PFS). |
2022 | Dourthe et al. [99] | 42 | Rituximab-Lymphomes Malins B-based chemotherapy | Visual analysis. PET provides information to evaluate the value of chemo- and RT. |
2018 | Vardhana et al. [100] | 60 | Platinum-based chemotherapy, ICE chemotherapy, with or without Rituximab | Visual analysis. PET provides information to evaluate the value of chemo- and RT. |
2019 | Zinzani et al. [102] | 30 | Nivolumab, brentuximab vedotin | SUVmax and DS. DS 1–3 was associated with complete response. |
2024 | Yousefirizi et al. [103] | 50 | R-CHOP | Metabolic heterogeneity and radiomic analysis. Delta PET/CT radiomic features showed the most predictive performance, especially in specific sub-regions closer to the center of the tumor, outperforming both baseline and EoT features only and the use of PET features alone in predicting progression/relapse. |
3. PMLBCL: What Is New?
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martelli, M.; Ferreri, A.; Di Rocco, A.; Ansuinelli, M.; Johnson, P.W.M. Primary Mediastinal Large B-Cell Lymphoma. Crit. Rev. Oncol. Hematol. 2017, 113, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Swerdlow, S.H.; Campo, E.; Pileri, S.A.; Lee Harris, N.; Stein, H.; Siebert, R.; Advani, R.; Ghielmini, M.; Salles, G.A.; Zelenetz, A.D.; et al. The 2016 Revision of the World Health Organization Classification of Lymphoid Neoplasms. Blood 2016, 127, 2375. [Google Scholar] [CrossRef] [PubMed]
- Martelli, M.; Ferreri, A.J.M.; Johnson, P. Primary Mediastinal Large B-Cell Lymphoma. Crit. Rev. Oncol. Hematol. 2008, 68, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.P.; Wang, K.F.; Xia, Y.; Bi, X.W.; Sun, P.; Wang, Y.; Li, Z.; Jiang, W.Q. Racial Patterns of Patients with Primary Mediastinal Large B-Cell Lymphoma: SEER Analysis. Medicine 2016, 95, e4054. [Google Scholar] [CrossRef]
- Smedby, K.E.; Hjalgrim, H. Epidemiology and Etiology of Mantle Cell Lymphoma and Other Non-Hodgkin Lymphoma Subtypes. Semin. Cancer Biol. 2011, 21, 293–298. [Google Scholar] [CrossRef]
- Armitage, J.O.; Gascoyne, R.D.; Lunning, M.A.; Cavalli, F. Non-Hodgkin Lymphoma. Lancet 2017, 390, 298–310. [Google Scholar] [CrossRef]
- Dabrowska-Iwanicka, A.; Walewski, J.A. Primary Mediastinal Large B-Cell Lymphoma. Curr. Hematol. Malig. Rep. 2014, 9, 273. [Google Scholar] [CrossRef]
- Pileri, S.A.; Gaidano, G.; Zinzani, P.L.; Falini, B.; Gaulard, P.; Zucca, E.; Pieri, F.; Berra, E.; Sabattini, E.; Ascani, S.; et al. Primary Mediastinal B-Cell Lymphoma: High Frequency of BCL-6 Mutations and Consistent Expression of the Transcription Factors OCT-2, BOB.1, and PU.1 in the Absence of Immunoglobulins. Am. J. Pathol. 2003, 162, 243. [Google Scholar] [CrossRef]
- Mottok, A.; Wright, G.; Rosenwald, A.; Ott, G.; Ramsower, C.; Campo, E.; Braziel, R.M.; Delabie, J.; Weisenburger, D.D.; Song, J.Y.; et al. Molecular Classification of Primary Mediastinal Large B-Cell Lymphoma Using Routinely Available Tissue Specimens. Blood 2018, 132, 2401–2405. [Google Scholar] [CrossRef]
- Giulino-Roth, L. How I Treat Primary Mediastinal B-Cell Lymphoma. Blood 2018, 132, 782–790. [Google Scholar] [CrossRef]
- Lees, C.; Keane, C.; Gandhi, M.K.; Gunawardana, J. Biology and Therapy of Primary Mediastinal B-Cell Lymphoma: Current Status and Future Directions. Br. J. Haematol. 2019, 185, 25–41. [Google Scholar] [CrossRef]
- Savage, K.J.; Monti, S.; Kutok, J.L.; Cattoretti, G.; Neuberg, D.; De Leval, L.; Kurtin, P.; Dal Cin, P.; Ladd, C.; Feuerhake, F.; et al. The Molecular Signature of Mediastinal Large B-Cell Lymphoma Differs from That of Other Diffuse Large B-Cell Lymphomas and Shares Features with Classical Hodgkin Lymphoma. Blood 2003, 102, 3871–3879. [Google Scholar] [CrossRef]
- Rosenwald, A.; Wright, G.; Leroy, K.; Yu, X.; Gaulard, P.; Gascoyne, R.D.; Chan, W.C.; Zhao, T.; Haioun, C.; Greiner, T.C.; et al. Molecular Diagnosis of Primary Mediastinal B Cell Lymphoma Identifies a Clinically Favorable Subgroup of Diffuse Large B Cell Lymphoma Related to Hodgkin Lymphoma. J. Exp. Med. 2003, 198, 851. [Google Scholar] [CrossRef] [PubMed]
- Abou-Elella, A.A.; Weisenburger, D.D.; Vose, J.M.; Kollath, J.P.; Lynch, J.C.; Bast, M.A.; Bierman, P.J.; Greiner, T.C.; Chan, W.C.; Armitage, J.O. Primary Mediastinal Large B-Cell Lymphoma: A Clinicopathologic Study of 43 Patients from the Nebraska Lymphoma Study Group. J. Clin. Oncol. 1999, 17, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, S.G.; Diamantopoulos, P.; Levidou, G.; Angelopoulou, M.K.; Economopoulou, P.; Efthimiou, A.; Constantinou, N.; Katsigiannis, A.; Korkolopoulou, P.; Pappa, V.; et al. Isolated Central Nervous System Relapses in Primary Mediastinal Large B-Cell Lymphoma after CHOP-like Chemotherapy with or without Rituximab. Hematol. Oncol. 2013, 31, 10–17. [Google Scholar] [CrossRef]
- Elia, S.; Cecere, C.; Giampaglia, F.; Ferrante, G. Mediastinoscopy vs. Anterior Mediastinotomy in the Diagnosis of Mediastinal Lymphoma: A Randomized Trial. Eur. J. Cardio-Thorac. Surg. 1992, 6, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Edge, S.B.; Compton, C.C. The American Joint Committee on Cancer: The 7th Edition of the AJCC Cancer Staging Manual and the Future of TNM. Ann. Surg. Oncol. 2010, 17, 1471–1474. [Google Scholar] [CrossRef]
- Pfau, D.; Smith, D.A.; Beck, R.; Gilani, K.A.; Gupta, A.; Caimi, P.; Ramaiya, N.H. Primary Mediastinal Large B-Cell Lymphoma: A Review for Radiologists. Am. J. Roentgenol. 2019, 213, W194–W210. [Google Scholar] [CrossRef]
- Hutchings, M.; Barrington, S. FDG-PET for the Early Treatment Monitoring, for Final Response and Follow-up Evaluation in Lymphoma. Clin. Transl. Imaging 2015, 3, 271–281. [Google Scholar] [CrossRef]
- Barrington, S.F.; Kluge, R. FDG PET for Therapy Monitoring in Hodgkin and Non-Hodgkin Lymphomas. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 97. [Google Scholar] [CrossRef]
- Younes, A.; Hilden, P.; Coiffier, B.; Hagenbeek, A.; Salles, G.; Wilson, W.; Seymour, J.F.; Kelly, K.; Gribben, J.; Pfreunschuh, M.; et al. International Working Group Consensus Response Evaluation Criteria in Lymphoma (RECIL 2017). Ann. Oncol. 2017, 28, 1436–1447. [Google Scholar] [CrossRef] [PubMed]
- Barrington, S.F.; Mikhaeel, N.G.; Kostakoglu, L.; Meignan, M.; Hutchings, M.; Müeller, S.P.; Schwartz, L.H.; Zucca, E.; Fisher, R.I.; Trotman, J.; et al. Role of Imaging in the Staging and Response Assessment of Lymphoma: Consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J. Clin. Oncol. 2014, 32, 3048. [Google Scholar] [CrossRef]
- Van Heertum, R.L.; Scarimbolo, R.; Wolodzko, J.G.; Klencke, B.; Messmann, R.; Tunc, F.; Sokol, L.; Agarwal, R.; Strafaci, J.A.; O’Neal, M. Lugano 2014 Criteria for Assessing FDG-PET/CT in Lymphoma: An Operational Approach for Clinical Trials. Drug Des. Devel Ther. 2017, 11, 1719. [Google Scholar] [CrossRef] [PubMed]
- Pinnix, C.C.; Ng, A.K.; Dabaja, B.S.; Milgrom, S.A.; Gunther, J.R.; David Fuller, C.; Smith, G.L.; Yehia, Z.A.; Qiao, W.; Wogan, C.F.; et al. Positron Emission Tomography-Computed Tomography Predictors of Progression after DA-R-EPOCH for PMBCL. Blood Adv. 2018, 2, 1334–1343. [Google Scholar] [CrossRef] [PubMed]
- Meignan, M.; Mondor, G.H. Quantitative FDG-PET: A New Biomarker in PMBCL. Blood 2015, 126, 924–926. [Google Scholar] [CrossRef]
- Rieger, M.; Österborg, A.; Pettengell, R.; White, D.; Gill, D.; Walewski, J.; Kuhnt, E.; Loeffler, M.; Pfreundschuh, M.; Ho, A.D. Primary Mediastinal B-Cell Lymphoma Treated with CHOP-like Chemotherapy with or without Rituximab: Results of the Mabthera International Trial Group Study. Ann. Oncol. 2011, 22, 664–670. [Google Scholar] [CrossRef]
- Todeschini, G.; Secchi, S.; Morra, E.; Vitolo, U.; Orlandi, E.; Pasini, F.; Gallo, E.; Ambrosetti, A.; Tecchio, C.; Tarella, C.; et al. Primary Mediastinal Large B-Cell Lymphoma (PMLBCL): Long-Term Results from a Retrospective Multicentre Italian Experience in 138 Patients Treated with CHOP or MACOP-B/VACOP-B. Br. J. Cancer 2004, 90, 372. [Google Scholar] [CrossRef]
- Savage, K.J.; Al-Rajhi, N.; Voss, N.; Paltiel, C.; Klasa, R.; Gascoyne, R.D.; Connors, J.M. Favorable Outcome of Primary Mediastinal Large B-Cell Lymphoma in a Single Institution: The British Columbia Experience. Ann. Oncol. 2006, 17, 123–130. [Google Scholar] [CrossRef]
- Giri, S.; Bhatt, V.R.; Pathak, R.; Bociek, R.G.; Vose, J.M.; Armitage, J.O. Role of Radiation Therapy in Primary Mediastinal Large B-Cell Lymphoma in Rituximab Era: A US Population-Based Analysis. Am. J. Hematol. 2015, 90, 1052–1054. [Google Scholar] [CrossRef]
- Chan, E.H.L.; Koh, L.P.; Lee, J.; De Mel, S.; Jeyasekharan, A.; Liu, X.; Tang, T.; Lim, S.T.; Tao, M.; Quek, R.; et al. Real World Experience of R-CHOP with or without Consolidative Radiotherapy vs DA-EPOCH-R in the First-Line Treatment of Primary Mediastinal B-Cell Lymphoma. Cancer Med. 2019, 8, 4626–4632. [Google Scholar] [CrossRef]
- Al Shemmari, S.; Sankaranarayanan, S.P.; Krishnan, Y. Primary Mediastinal Large B-Cell Lymphoma: Clinical Features, Prognostic Factors and Survival with RCHOP in Arab Patients in the PET Scan Era. Lung India 2014, 31, 228–231. [Google Scholar] [CrossRef]
- Tai, W.M.; Quah, D.; Peng Yap, S.; Huey Tan, S.; Tang, T.; Tay, K.W.; Koo, Y.X.; Tao, M.; Quek, R.; Lim, S.T. Primary Mediastinal Large B-Cell Lymphoma: Optimal Therapy and Prognostic Factors in 41 Consecutive Asian Patients. Leuk. Lymphoma 2011, 52, 604–612. [Google Scholar] [CrossRef]
- Yang, S.H.; Hsiao, L.T.; Chiou, T.J.; Yang, C.F.; Yu, Y.B.; Liu, C.Y.; Gau, J.P.; Liu, J.H.; Chen, P.M.; Tzeng, C.H. Rituximab Induction Therapy, Survival Benefits, and the Increasing Selection of Radiotherapy as the Postinduction Treatment in Patients with Primary Mediastinal Large B-Cell Lymphoma. J. Chin. Med. Assoc. 2015, 78, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Cheah, C.Y.; Hofman, M.S.; Seymour, J.F.; Ritchie, D.S.; Dickinson, M.; Wirth, A.; Prince, H.M.; Wolf, M.; Januszcewicz, E.H.; Carney, D.A.; et al. The Utility and Limitations of (18)F-Fluorodeoxyglucose Positron Emission Tomography with Computed Tomography in Patients with Primary Mediastinal B-Cell Lymphoma: Single Institution Experience and Literature Review. Leuk. Lymphoma 2015, 56, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Li, X.; Wang, J.; Fu, Q.; Liu, J.; Ma, W.; Xu, W.; Chen, W. Value of metabolic parameters in distinguishing primary mediastinal lymphomas from thymic epithelial tumors. Cancer Biol. Med. 2020, 17, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Wang, L.; Lei, B.; Ruan, M.; Chang, C.; Zhou, M.; Liu, L.; Xie, W.; Wang, Y. The combination of maximum standardized uptake value and clinical parameters for improving the accuracy in distinguishing primary mediastinal lymphomas from thymic epithelial tumors. Quant. Imaging Med. Surg. 2024, 14, 1944–1956. [Google Scholar] [CrossRef]
- Alkhawtani, R.H.M.; Noordzij, W.; Glaudemans, A.W.J.M.; van Rijn, R.S.; van der Galiën, H.T.; Balink, H.; Nijland, M.; Adams, H.J.A.; Huls, G.; van Meerten, T.; et al. Lactate dehydrogenase levels and 18F-FDG PET/CT metrics differentiate between mediastinal Hodgkin’s lymphoma and primary mediastinal B-cell lymphoma. Nucl. Med. Commun. 2018, 39, 572–578. [Google Scholar] [CrossRef]
- Abenavoli, E.M.; Barbetti, M.; Linguanti, F.; Mungai, F.; Nassi, L.; Puccini, B.; Romano, I.; Sordi, B.; Santi, R.; Passeri, A.; et al. Characterization of Mediastinal Bulky Lymphomas with FDG-PET-Based Radiomics and Machine Learning Techniques. Cancers 2023, 15, 1931. [Google Scholar] [CrossRef]
- Chen, H.; Pan, T.; He, Y.; Zeng, R.; Li, Y.; Yi, L.; Zang, H.; Chen, S.; Duan, Q.; Xiao, L.; et al. Primary Mediastinal B-Cell Lymphoma: Novel Precision Therapies and Future Directions. Front. Oncol. 2021, 11, 654854. [Google Scholar] [CrossRef]
- Ceriani, L.; Martelli, M.; Zinzani, P.L.; Ferreri, A.J.M.; Botto, B.; Stelitano, C.; Gotti, M.; Cabras, M.G.; Rigacci, L.; Gargantini, L.; et al. Utility of Baseline 18FDG-PET/CT Functional Parameters in Defining Prognosis of Primary Mediastinal (Thymic) Large B-Cell Lymphoma. Blood 2015, 126, 950–956. [Google Scholar] [CrossRef]
- Martelli, M.; Ceriani, L.; Zucca, E.; Luigi Zinzani, P.; Ferreri, A.J.; Vitolo, U.; Stelitano, C.; Brusamolino, E.; Giuseppina Cabras, M.; Rigacci, L.; et al. [18 F]Fluorodeoxyglucose Positron Emission Tomography Predicts Survival After Chemoimmunotherapy for Primary Mediastinal Large B-Cell Lymphoma: Results of the International Extranodal Lymphoma Study Group IELSG-26 Study. J. Clin. Oncol. 2014, 32, 1769–1775. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, J.; Liu, L.; Wang, Z.; Yu, B.; Xia, Z.; Zhang, Q.; Ji, D.; Liu, X.; Lv, F.; et al. Prognostic Significance of Clinical Characteristics and 18Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography Quantitative Parameters in Patients with Primary Mediastinal B-Cell Lymphoma. J. Int. Med. Res. 2022, 50, 03000605211063027. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Xu-Monette, Z.Y.; Xiao, L.; Strati, P.; Hagemeister, F.B.; He, Y.; Chen, H.; Li, Y.; Manyam, G.C.; Li, Y.; et al. Prognostic Factors, Therapeutic Approaches, and Distinct Immunobiologic Features in Patients with Primary Mediastinal Large B-Cell Lymphoma on Long-Term Follow-Up. Blood Cancer J. 2020, 10, 49. [Google Scholar] [CrossRef] [PubMed]
- Ceriani, L.; Martelli, M.; Conconi, A.; Zinzani, P.L.; Ferreri, A.J.M.; Botto, B.; Stelitano, C.; Gotti, M.; Cabras, M.G.; Rigacci, L.; et al. Prognostic Models for Primary Mediastinal (Thymic) B-Cell Lymphoma Derived from 18-FDG PET/CT Quantitative Parameters in the International Extranodal Lymphoma Study Group (IELSG) 26 Study. Br. J. Haematol. 2017, 178, 588–591. [Google Scholar] [CrossRef]
- Ceriani, L.; Milan, L.; Martelli, M.; Ferreri, A.J.M.; Cascione, L.; Zinzani, P.L.; Di Rocco, A.; Conconi, A.; Stathis, A.; Cavalli, F.; et al. Metabolic Heterogeneity on Baseline 18FDG-PET/CT Scan Is a Predictor of Outcome in Primary Mediastinal B-Cell Lymphoma. Blood 2018, 132, 179–186. [Google Scholar] [CrossRef]
- Tixier, F.; Le Rest, C.C.; Hatt, M.; Albarghach, N.; Pradier, O.; Metges, J.P.; Corcos, L.; Visvikis, D. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J. Nucl. Med. 2011, 52, 369–378. [Google Scholar] [CrossRef]
- Chicklore, S.; Goh, V.; Siddique, M.; Roy, A.; Marsden, P.K.; Cook, G.J. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 133–140. [Google Scholar] [CrossRef]
- El Naqa, I.; Grigsby, P.; Apte, A.; Kidd, E.; Donnelly, E.; Khullar, D.; Chaudhari, S.; Yang, D.; Schmitt, M.; Laforest, R.; et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recognit. 2009, 42, 1162–1171. [Google Scholar] [CrossRef]
- van Velden, F.H.; Cheebsumon, P.; Yaqub, M.; Smit, E.F.; Hoekstra, O.S.; Lammertsma, A.A.; Boellaard, R. Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung cancer PET studies. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 1636–1647. [Google Scholar] [CrossRef] [PubMed]
- Ceriani, L.; Milan, L.; Johnson, P.W.M.; Martelli, M.; Presilla, S.; Giovanella, L.; Zucca, E. Baseline PET Features to Predict Prognosis in Primary Mediastinal B Cell Lymphoma: A Comparative Analysis of Different Methods for Measuring Baseline Metabolic Tumour Volume. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1334–1344. [Google Scholar] [CrossRef]
- Cerci, J.J.; Pracchia, L.F.; Linardi, C.C.G.; Pitella, F.A.; Delbeke, D.; Izaki, M.; Trindade, E.; Soares, J.; Buccheri, V.; Meneghetti, J.C. 18F-FDG PET after 2 Cycles of ABVD Predicts Event-Free Survival in Early and Advanced Hodgkin Lymphoma. J. Nucl. Med. 2010, 51, 1337–1343. [Google Scholar] [CrossRef] [PubMed]
- Zinzani, P.L.; Rigacci, L.; Stefoni, V.; Broccoli, A.; Puccini, B.; Castagnoli, A.; Vaggelli, L.; Zanoni, L.; Argnani, L.; Baccarani, M.; et al. Early Interim 18F-FDG PET in Hodgkin’s Lymphoma: Evaluation on 304 Patients. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 4–12. [Google Scholar] [CrossRef]
- Hutchings, M.; Kostakoglu, L.; Zaucha, J.M.; Malkowski, B.; Biggi, A.; Danielewicz, I.; Loft, A.; Specht, L.; Lamonica, D.; Czuczman, M.S.; et al. In Vivo Treatment Sensitivity Testing with Positron Emission Tomography/Computed Tomography after One Cycle of Chemotherapy for Hodgkin Lymphoma. J. Clin. Oncol. 2014, 32, 2705–2711. [Google Scholar] [CrossRef] [PubMed]
- Nanni, C.; Kobe, C.; Baeßler, B.; Baues, C.; Boellaard, R.; Borchmann, P.; Buck, A.; Buvat, I.; Chapuy, B.; Cheson, B.D.; et al. European Association of Nuclear Medicine (EANM) Focus 4 Consensus Recommendations: Molecular Imaging and Therapy in Haematological Tumours. Lancet Haematol. 2023, 10, e367–e381. [Google Scholar] [CrossRef]
- Dührsen, U.; Müller, S.; Hertenstein, B.; Thomssen, H.; Kotzerke, J.; Mesters, R.; Berdel, W.E.; Franzius, C.; Kroschinsky, F.; Weckesser, M.; et al. Positron Emission Tomography-Guided Therapy of Aggressive Non-Hodgkin Lymphomas (PETAL): A Multicenter, Randomized Phase III Trial. J. Clin. Oncol. 2018, 36, 2024–2034. [Google Scholar] [CrossRef] [PubMed]
- González-Barca, E.; Canales, M.; Cortés, M.; Vidal, M.J.; Salar, A.; Oriol, A.; Bargay, J.; Bello, J.L.; Sánchez, J.J.; Tomás, J.F.; et al. Predictive Value of Interim 18F-FDG-PET/CT for Event-Free Survival in Patients with Diffuse Large B-Cell Lymphoma Homogenously Treated in a Phase II Trial with Six Cycles of R-CHOP-14 plus Pegfilgrastim as First-Line Treatment. Nucl. Med. Commun. 2013, 34, 946–952. [Google Scholar] [CrossRef]
- Mamot, C.; Klingbiel, D.; Hitz, F.; Renner, C.; Pabst, T.; Driessen, C.; Mey, U.; Pless, M.; Bargetzi, M.; Krasniqi, F.; et al. Final Results of a Prospective Evaluation of the Predictive Value of Interim Positron Emission Tomography in Patients with Diffuse Large B-Cell Lymphoma Treated with R-CHOP-14 (SAKK 38/07). J. Clin. Oncol. 2015, 33, 2523–2529. [Google Scholar] [CrossRef]
- Itti, E.; Lin, C.; Dupuis, J.; Paone, G.; Capacchione, D.; Rahmouni, A.; Haioun, C.; Meignan, M. Prognostic Value of Interim 18F-FDG PET in Patients with Diffuse Large B-Cell Lymphoma: SUV-Based Assessment at 4 Cycles of Chemotherapy. J. Nucl. Med. 2009, 50, 527–533. [Google Scholar] [CrossRef]
- Zanoni, L.; Mattana, F.; Calabrò, D.; Paccagnella, A.; Broccoli, A.; Nanni, C.; Fanti, S. Overview and Recent Advances in PET/CT Imaging in Lymphoma and Multiple Myeloma. Eur. J. Radiol. 2021, 141, 109793. [Google Scholar] [CrossRef]
- Adams, H.J.A.; Kwee, T.C. Controversies on the Prognostic Value of Interim FDG-PET in Advanced-Stage Hodgkin Lymphoma. Eur. J. Haematol. 2016, 97, 491–498. [Google Scholar] [CrossRef]
- Adams, H.J.A.; Kwee, T.C. Proportion of False-Positive Lesions at Interim and End-of-Treatment FDG-PET in Lymphoma as Determined by Histology: Systematic Review and Meta-Analysis. Eur. J. Radiol. 2016, 85, 1963–1970. [Google Scholar] [CrossRef] [PubMed]
- Lazarovici, J.; Terroir, M.; Arfi-Rouche, J.; Michot, J.M.; Mussot, S.; Florea, V.; Ghigna, M.R.; Dartigues, P.; Petrovanu, C.; Danu, A.; et al. Poor Predictive Value of Positive Interim FDG-PET/CT in Primary Mediastinal Large B-Cell Lymphoma. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 2018–2024. [Google Scholar] [CrossRef] [PubMed]
- Avigdor, A.; Sirotkin, T.; Kedmi, M.; Ribakovsy, E.; Berkowicz, M.; Davidovitz, Y.; Kneller, A.; Merkel, D.; Volchek, Y.; Davidson, T.; et al. The Impact of R-VACOP-B and Interim FDG-PET/CT on Outcome in Primary Mediastinal Large B Cell Lymphoma. Ann. Hematol. 2014, 93, 1297–1304. [Google Scholar] [CrossRef]
- Qin, W.; Jiang, X.; You, J.; Guo, R.; Shi, Q.; Dong, L.; Shen, R.; Cheng, S.; Xu, P.; Qian, Y.; et al. Deauville Score Evaluation of Interim PET/CT in Primary Mediastinal Large B-Cell Lymphoma. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3347–3350. [Google Scholar] [CrossRef]
- Adams, H.J.A.; Kwee, T.C. Proportion of False-Positive Follow-up FDG-PET Scans in Lymphoma: Systematic Review and Meta-Analysis. Crit. Rev. Oncol. Hematol. 2019, 141, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Avril, N. GLUT1 Expression in Tissue and 18F-FDG Uptake. J. Nucl. Med. 2004, 45, 930–932. [Google Scholar]
- Han, H.S.; Escalón, M.P.; Hsiao, B.; Serafini, A.; Lossos, I.S. High Incidence of False-Positive PET Scans in Patients with Aggressive Non-Hodgkin’s Lymphoma Treated with Rituximab-Containing Regimens. Ann. Oncol. 2009, 20, 309. [Google Scholar] [CrossRef]
- Burggraaff, C.N.; de Jong, A.; Hoekstra, O.S.; Hoetjes, N.J.; Nievelstein, R.A.J.; Jansma, E.P.; Heymans, M.W.; de Vet, H.C.W.; Zijlstra, J.M. Predictive Value of Interim Positron Emission Tomography in Diffuse Large B-Cell Lymphoma: A Systematic Review and Meta-Analysis. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 65–79. [Google Scholar] [CrossRef]
- Zinzani, P.L.; Tani, M.; Trisolini, R.; Fanti, S.; Stefoni, V.; Alifano, M.; Castellucci, P.; Musuraca, G.; Dalpiaz, G.; Alinari, L.; et al. Histological Verification of Positive Positron Emission Tomography Findings in the Follow-up of Patients with Mediastinal Lymphoma. Haematologica 2007, 92, 771–777. [Google Scholar] [CrossRef]
- De Sanctis, V.; Finolezzi, E.; Osti, M.F.; Grapulin, L.; Alfò, M.; Pescarmona, E.; Berardi, F.; Natalino, F.; Moleti, M.L.; Di Rocco, A.; et al. MACOP-B and involved-field radiotherapy is an effective and safe therapy for primary mediastinal large B cell lymphoma. Int. J. Radiat. Oncol. Biol. Phys. 2008, 72, 1154–1160. [Google Scholar] [CrossRef]
- Casadei, B.; Argnani, L.; Morigi, A.; Lolli, G.; Broccoli, A.; Pellegrini, C.; Nanni, L.; Stefoni, V.; Coppola, P.E.; Carella, M.; et al. Treatment and Outcomes of Primary Mediastinal B Cell Lymphoma: A Three-Decade Monocentric Experience with 151 Patients. Ann. Hematol. 2021, 100, 2261. [Google Scholar] [CrossRef]
- Pinnix, C.C.; Dabaja, B.; Ahmed, M.A.; Chuang, H.H.; Costelloe, C.; Wogan, C.F.; Reed, V.; Romaguera, J.E.; Neelapu, S.; Oki, Y.; et al. Single Institutional Experience in the Treatment of Primary Mediastinal B Cell Lymphoma Treated with Immunochemotherapy in the Setting of Response Assessment by 18Fluorodeoxyglucose Positron Emission Tomography. Int. J. Radiat. Oncol. Biol. Phys. 2015, 92, 113. [Google Scholar] [CrossRef]
- Zinzani, P.L.; Broccoli, A.; Casadei, B.; Stefoni, V.; Pellegrini, C.; Gandolfi, L.; Maglie, R.; Argnani, L.; Pileri, S.; Fanti, S. The Role of Rituximab and Positron Emission Tomography in the Treatment of Primary Mediastinal Large B-Cell Lymphoma: Experience on 74 Patients. Hematol. Oncol. 2015, 33, 145–150. [Google Scholar] [CrossRef]
- Karakatsanis, S.J.; Bouzani, M.; Symeonidis, A.; Angelopoulou, M.K.; Papageorgiou, S.G.; Michail, M.; Gainaru, G.; Kourti, G.; Sachanas, S.; Kalpadakis, C.; et al. Real-Life Experience With Rituximab-CHOP Every 21 or 14 Days in Primary Mediastinal Large B-Cell Lymphoma. In Vivo 2022, 36, 1302. [Google Scholar] [CrossRef]
- Vassilakopoulos, T.P.; Michail, M.; Papageorgiou, S.; Kourti, G.; Angelopoulou, M.K.; Panitsas, F.; Sachanas, S.; Kalpadakis, C.; Katodritou, E.; Leonidopoulou, T.; et al. Identification of Very Low-Risk Subgroups of Patients with Primary Mediastinal Large B-Cell Lymphoma Treated with R-CHOP. Oncologist 2021, 26, 597–609. [Google Scholar] [CrossRef]
- Held, G.; Thurner, L.; Poeschel, V.; Ott, G.; Schmidt, C.; Christofyllakis, K.; Viardot, A.; Borchmann, P.; Engel-Riedel, W.; Frickhofen, N.; et al. Radiation and Dose-densification of R-CHOP in Primary Mediastinal B-cell Lymphoma: Subgroup Analysis of the UNFOLDER Trial. Hemasphere 2023, 7, e917. [Google Scholar] [CrossRef]
- Morgenstern, Y.; Aumann, S.; Goldschmidt, N.; Gatt, M.E.; Nachmias, B.; Horowitz, N.A. Dose-Adjusted EPOCH-R Is Not Superior to Sequential R-CHOP/R-ICE as a Frontline Treatment for Newly Diagnosed Primary Mediastinal B-Cell Lymphoma: Results of a Bi-Center Retrospective Study. Cancer Med. 2021, 10, 8866–8875. [Google Scholar] [CrossRef]
- Goldschmidt, N.; Kleinstern, G.; Orevi, M.; Paltiel, O.; Ben-Yehuda, D.; Gural, A.; Libster, D.; Lavie, D.; Gatt, M.E. Favorable Outcome of Primary Mediastinal Large B-Cell Lymphoma Patients Treated with Sequential RCHOP-RICE Regimen without Radiotherapy. Cancer Chemother. Pharmacol. 2016, 77, 1053–1060. [Google Scholar] [CrossRef]
- Juweid, M.E.; Stroobants, S.; Hoekstra, O.S.; Mottaghy, F.M.; Dietlein, M.; Guermazi, A.; Wiseman, G.A.; Kostakoglu, L.; Scheidhauer, K.; Buck, A.; et al. Use of Positron Emission Tomography for Response Assessment of Lymphoma: Consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J. Clin. Oncol. 2007, 25, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Filippi, A.R.; Piva, C.; Giunta, F.; Bellò, M.; Chiappella, A.; Caracciolo, D.; Zotta, M.; Douroukas, A.; Ragona, R.; Vitolo, U.; et al. Radiation Therapy in Primary Mediastinal B-Cell Lymphoma with Positron Emission Tomography Positivity after Rituximab Chemotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2013, 87, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Meignan, M.; Barrington, S.; Itti, E.; Gallamini, A.; Haioun, C.; Polliack, A. Report on the 4th International Workshop on Positron Emission Tomography in Lymphoma Held in Menton, France, 3–5 October 2012. Leuk. Lymphoma 2014, 55, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Cheson, B.D.; Fisher, R.I.; Barrington, S.F.; Cavalli, F.; Schwartz, L.H.; Zucca, E.; Lister, T.A. Recommendations for Initial Evaluation, Staging, and Response Assessment of Hodgkin and Non-Hodgkin Lymphoma: The Lugano Classification. J. Clin. Oncol. 2014, 32, 3059–3067. [Google Scholar] [CrossRef] [PubMed]
- Filippi, A.R.; Piva, C.; Levis, M.; Chiappella, A.; Caracciolo, D.; Bellò, M.; Bisi, G.; Vitolo, U.; Ricardi, U. Prognostic Role of Pre-Radiation Therapy (18)F-Fluorodeoxyglucose Positron Emission Tomography for Primary Mediastinal B-Cell Lymphomas Treated with R-CHOP or R-CHOP-Like Chemotherapy Plus Radiation. Int. J. Radiat. Oncol. Biol. Phys. 2016, 95, 1239–1243. [Google Scholar] [CrossRef]
- Ceriani, L.; Martelli, M.; Gospodarowicz, M.K.; Ricardi, U.; Ferreri, A.J.M.; Chiappella, A.; Stelitano, C.; Balzarotti, M.; Cabrera, M.E.; Cunningham, D.; et al. Positron Emission Tomography/Computed Tomography Assessment After Immunochemotherapy and Irradiation Using the Lugano Classification Criteria in the IELSG-26 Study of Primary Mediastinal B-Cell Lymphoma. Int. J. Radiat. Oncol. Biol. Phys. 2017, 97, 42–49. [Google Scholar] [CrossRef]
- Nagle, S.J.; Chong, E.A.; Chekol, S.; Shah, N.N.; Nasta, S.D.; Glatstein, E.; Plastaras, J.P.; Torigian, D.A.; Schuster, S.J.; Svoboda, J. The Role of FDG-PET Imaging as a Prognostic Marker of Outcome in Primary Mediastinal B-Cell Lymphoma. Cancer Med. 2015, 4, 7–15. [Google Scholar] [CrossRef]
- Vassilakopoulos, T.P.; Pangalis, G.A.; Chatziioannou, S.; Papageorgiou, S.; Angelopoulou, M.K.; Galani, Z.; Kourti, G.; Prassopoulos, V.; Leonidopoulou, T.; Terpos, E.; et al. PET/CT in Primary Mediastinal Large B-Cell Lymphoma Responding to Rituximab-CHOP: An Analysis of 106 Patients Regarding Prognostic Significance and Implications for Subsequent Radiotherapy. Leukemia 2016, 30, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Vassilakopoulos, T.P.; Papageorgiou, S.G.; Angelopoulou, M.K.; Chatziioannou, S.; Prassopoulos, V.; Karakatsanis, S.; Arapaki, M.; Mellios, Z.; Sachanas, S.; Kalpadakis, C.; et al. Positron Emission Tomography after Response to Rituximab-CHOP in Primary Mediastinal Large B-Cell Lymphoma: Impact on Outcomes and Radiotherapy Strategies. Ann. Hematol. 2021, 100, 2279–2292. [Google Scholar] [CrossRef]
- Vassilakopoulos, T.P.; Pangalis, G.A.; Katsigiannis, A.; Papageorgiou, S.G.; Constantinou, N.; Terpos, E.; Zorbala, A.; Vrakidou, E.; Repoussis, P.; Poziopoulos, C.; et al. Rituximab, Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone with or without Radiotherapy in Primary Mediastinal Large B-Cell Lymphoma: The Emerging Standard of Care. Oncologist 2012, 17, 239–249. [Google Scholar] [CrossRef]
- Martelli, M.; Ceriani, L.; Ciccone, G.; Ricardi, U.; Kriachok, I.; Botto, B.; Balzarotti, M.; Tucci, A.; Usai, S.V.; Zilioli, V.R.; et al. Omission of Radiotherapy in Primary Mediastinal B-Cell Lymphoma: IELSG37 Trial Results. J. Clin. Oncol. 2024, 42, 4071–4083. [Google Scholar] [CrossRef]
- Velasques, R.D.; Da Silva, W.F.; Bellesso, M.; Rocha, V.; Pereira, J. Less Intensive Regimens May Still Be Suitable for the Initial Treatment of Primary Mediastinal B-Cell Lymphoma in Resource-Limited Settings. J. Oncol. 2022, 2022, 2099456. [Google Scholar] [CrossRef]
- Dunleavy, K.; Pittaluga, S.; Maeda, L.S.; Advani, R.; Chen, C.C.; Hessler, J.; Steinberg, S.M.; Grant, C.; Wright, G.; Varma, G.; et al. Dose-Adjusted EPOCH-Rituximab Therapy in Primary Mediastinal B-Cell Lymphoma. N. Engl. J. Med. 2013, 368, 1408–1416. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.N.; Szabo, A.; Huntington, S.F.; Epperla, N.; Reddy, N.; Ganguly, S.; Vose, J.; Obiozor, C.; Faruqi, F.; Kovach, A.E.; et al. R-CHOP versus Dose-Adjusted R-EPOCH in Frontline Management of Primary Mediastinal B-Cell Lymphoma: A Multi-Centre Analysis. Br. J. Haematol. 2018, 180, 534–544. [Google Scholar] [CrossRef]
- Giulino-Roth, L.; O’Donohue, T.; Chen, Z.; Bartlett, N.L.; LaCasce, A.; Martin-Doyle, W.; Barth, M.J.; Davies, K.; Blum, K.A.; Christian, B.; et al. Outcomes of adults and children with primary mediastinal B-cell lymphoma treated with dose-adjusted EPOCH-R. Br. J. Haematol. 2017, 179, 739–747. [Google Scholar] [CrossRef]
- Jain, H.; Kapoor, A.; Sengar, M.; Chanana, R.; Menon, H.; Sridhar, E.; Laskar, S.; Agarwal, A.; Shastri, J.; Khanna, N.; et al. Outcomes of Patients with Primary Mediastinal B-Cell Lymphoma Treated with Dose Adjusted R-EPOCH Regimen: A Single Centre Experience. Indian. J. Hematol. Blood Transfus. 2021, 37, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Broccoli, A.; Casadei, B.; Stefoni, V.; Pellegrini, C.; Quirini, F.; Tonialini, L.; Morigi, A.; Marangon, M.; Argnani, L.; Zinzani, P.L. The treatment of primary mediastinal large B-cell lymphoma: A two decades monocentric experience with 98 patients. BMC Cancer 2017, 17, 276. [Google Scholar] [CrossRef] [PubMed]
- Zinzani, P.L.; Stefoni, V.; Finolezzi, E.; Brusamolino, E.; Cabras, M.G.; Chiappella, A.; Salvi, F.; Rossi, A.; Broccoli, A.; Martelli, M. Rituximab combined with MACOP-B or VACOP-B and radiation therapy in primary mediastinal large B-cell lymphoma: A retrospective study. Clin. Lymphoma Myeloma 2009, 9, 381–385. [Google Scholar] [CrossRef]
- Hayden, A.R.; Tonseth, P.; Lee, D.G.; Villa, D.; Gerrie, A.S.; Scott, D.W.; Freeman, C.L.; Slack, G.W.; Farinha, P.; Skinnider, B. Outcome of primary mediastinal large B-cell lymphoma using R-CHOP: Impact of a PET-adapted approach. Blood 2020, 136, 2803–2811. [Google Scholar] [CrossRef]
- Romejko-Jarosinska, J.; Ostrowska, B.; Dabrowska-Iwanicka, A.; Domanska-Czyz, K.; Rymkiewicz, G.; Paszkiewicz-Kozik, E.; Konecki, R.; Borawska, A.; Druzd-Sitek, A.; Lampka, E.; et al. High efficacy of intensive immunochemotherapy for primary mediastinal B-cell lymphoma with prolonged follow up. Sci. Rep. 2022, 12, 10551. [Google Scholar] [CrossRef]
- Dourthe, M.E.; Phulpin, A.; Auperin, A.; Bosq, J.; Couec, M.L.; Dartigues, P.; Ducassou, S.; Garnier, N.; Haouy, S.; Leblanc, T.; et al. Rituximab in addition to LMB-based chemotherapy regimen in children and adolescents with primary mediastinal large B-cell lymphoma: Results of the French LMB2001 prospective study. Haematologica 2022, 107, 2173–2182. [Google Scholar] [CrossRef]
- Vardhana, S.; Hamlin, P.A.; Yang, J.; Zelenetz, A.; Sauter, C.S.; Matasar, M.J.; Ni, A.; Yahalom, J.; Moskowitz, C.H. Outcomes of Relapsed and Refractory Primary Mediastinal (Thymic) Large B Cell Lymphoma Treated with Second-Line Therapy and Intent to Transplant. Biol. Blood Marrow Transplant. 2018, 24, 2133–2138. [Google Scholar] [CrossRef]
- Melani, C.; Advani, R.; Roschewski, M.; Walters, K.M.; Chen, C.C.; Baratto, L.; Ahlman, M.A.; Miljkovic, M.D.; Steinberg, S.M.; Lam, J.; et al. End-of-treatment and serial PET imaging in primary mediastinal B-cell lymphoma following dose-adjusted EPOCH-R: A paradigm shift in clinical decision making. Haematologica 2018, 103, 1337–1344. [Google Scholar] [CrossRef] [PubMed]
- Zinzani, P.L.; Santoro, A.; Gritti, G.; Brice, P.; Barr, P.M.; Kuruvilla, J.; Cunningham, D.; Kline, J.; Johnson, N.A.; Mehta-Shah, N.; et al. Nivolumab Combined With Brentuximab Vedotin for Relapsed/Refractory Primary Mediastinal Large B-Cell Lymphoma: Efficacy and Safety From the Phase II CheckMate 436 Study. J. Clin. Oncol. 2019, 37, 3081–3089. [Google Scholar] [CrossRef] [PubMed]
- Yousefirizi, F.; Gowdy, C.; Klyuzhin, I.S.; Sabouri, M.; Tonseth, P.; Hayden, A.R.; Wilson, D.; Sehn, L.H.; Scott, D.W.; Steidl, C.; et al. Evaluating Outcome Prediction via Baseline, End-of-Treatment, and Delta Radiomics on PET-CT Images of Primary Mediastinal Large B-Cell Lymphoma. Cancers 2024, 16, 1090. [Google Scholar] [CrossRef]
- Kochenderfer, J.N.; Dudley, M.E.; Kassim, S.H.; Somerville, R.P.; Carpenter, R.O.; Stetler-Stevenson, M.; Yang, J.C.; Phan, G.Q.; Hughes, M.S.; Sherry, R.M.; et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 540–549. [Google Scholar] [CrossRef]
- Crombie, J.L.; Nastoupil, L.J.; Redd, R.; Tang, K.; Shouse, G.; Herrera, A.F.; Chow, V.A.; Shadman, M.; Castaneda Puglianini, O.; Saucier, A.; et al. Real-world outcomes of axicabtagene ciloleucel in adult patients with primary mediastinal B-cell lymphoma. Blood Adv. 2021, 5, 3563–3567. [Google Scholar] [CrossRef] [PubMed]
- Chiappella, A.; Casadei, B.; Chiusolo, P.; Di Rocco, A.; Ljevar, S.; Magni, M.; Angelillo, P.; Barbui, A.M.; Cutini, I.; Dodero, A.; et al. Axicabtagene ciloleucel treatment is more effective in primary mediastinal large B-cell lymphomas than in diffuse large B-cell lymphomas: The Italian CART-SIE study. Leukemia 2024, 38, 1107–1114. [Google Scholar] [CrossRef]
- Schubert, M.L.; Bethge, W.A.; Ayuk, F.A.; von Bonin, M.; Vucinic, V.; Wagner-Drouet, E.M.; Subklewe, M.; Baldus, C.D.; Glass, B.; Marks, R.; et al. Outcomes of axicabtagene ciloleucel in PMBCL compare favorably with those in DLBCL: A GLA/DRST registry study. Blood Adv. 2023, 7, 6191–6195. [Google Scholar] [CrossRef]
- Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin, Y.; et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N. Engl. J. Med. 2017, 377, 2531–2544. [Google Scholar] [CrossRef]
- Abramson, J.S.; Palomba, M.L.; Gordon, L.I.; Lunning, M.A.; Wang, M.; Arnason, J.; Mehta, A.; Purev, E.; Maloney, D.G.; Andreadis, C.; et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): A multicentre seamless design study. Lancet Lond Engl. 2020, 396, 839–852. [Google Scholar] [CrossRef]
- Abramson, J.S.; Solomon, S.R.; Arnason, J.; Johnston, P.B.; Glass, B.; Bachanova, V.; Ibrahimi, S.; Mielke, S.; Mutsaers, P.; Hernandez-Ilizaliturri, F.; et al. Lisocabtagene maraleucel as second-line therapy for large B-cell lymphoma: Primary analysis of the phase 3 TRANSFORM study. Blood 2023, 141, 1675–1684. [Google Scholar] [CrossRef]
- Locke, F.L.; Miklos, D.B.; Jacobson, C.A.; Perales, M.A.; Kersten, M.J.; Oluwole, O.O.; Ghobadi, A.; Rapoport, A.P.; McGuirk, J.; Pagel, J.M.; et al. Axicabtagene Ciloleucel as Second-Line Therapy for Large B-Cell Lymphoma. N. Engl. J. Med. 2022, 386, 640–654. [Google Scholar] [CrossRef] [PubMed]
- Armand, P.; Rodig, S.; Melnichenko, V.; Thieblemont, C.; Bouabdallah, K.; Tumyan, G.; Özcan, M.; Portino, S.; Fogliatto, L.; Caballero, M.D.; et al. Pembrolizumab in Relapsed or Refractory Primary Mediastinal Large B-Cell Lymphoma. J. Clin. Oncol. 2019, 37, 3291–3299. [Google Scholar] [CrossRef] [PubMed]
- Zinzani, P.L.; Ribrag, V.; Moskowitz, C.H.; Michot, J.M.; Kuruvilla, J.; Balakumaran, A.; Zhang, Y.; Chlosta, S.; Shipp, M.A.; Armand, P. Safety and tolerability of pembrolizumab in patients with relapsed/refractory primary mediastinal large B-cell lymphoma. Blood. 2017, 130, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Westin, J.R.; Oluwole, O.O.; Kersten, M.J.; Miklos, D.B.; Perales, M.A.; Ghobadi, A.; Rapoport, A.P.; Sureda, A.; Jacobson, C.A.; Farooq, U.; et al. Survival with Axicabtagene Ciloleucel in Large B-Cell Lymphoma. N. Engl. J. Med. 2023, 389, 148–157. [Google Scholar] [CrossRef]
- Kim, S.J.; Yoon, D.H.; Kang, H.J.; Hong, J.Y.; Lee, H.S.; Oh, S.Y.; Shin, H.J.; Kong, J.H.; Yi, J.H.; Sakamoto, K.; et al. Ruxolitinib shows activity against Hodgkin lymphoma but not primary mediastinal large B-cell lymphoma. BMC Cancer 2019, 19, 1080. [Google Scholar] [CrossRef]
- Dickinson, M.J.; Carlo-Stella, C.; Morschhauser, F.; Bachy, E.; Corradini, P.; Iacoboni, G.; Khan, C.; Wróbel, T.; Offner, F.; Trněný, M.; et al. Glofitamab for Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2022, 387, 2220–2231. [Google Scholar] [CrossRef]
- Thieblemont, C.; Phillips, T.; Ghesquieres, H.; Cheah, C.Y.; Clausen, M.R.; Cunningham, D.; Do, Y.R.; Feldman, T.; Gasiorowski, R.; Jurczak, W.; et al. Epcoritamab, a Novel, Subcutaneous CD3xCD20 Bispecific T-Cell–Engaging Antibody, in Relapsed or Refractory Large B-Cell Lymphoma: Dose Expansion in a Phase I/II Trial. J. Clin. Oncol. 2023, 41, 2238–2247. [Google Scholar] [CrossRef]
- International Non-Hodgkin’s Lymphoma Prognostic Factors Project. A predictive model for aggressive non-Hodgkin’s lymphoma. N. Engl. J. Med. 1993, 329, 987–994. [Google Scholar] [CrossRef]
- Albano, D.; Dondi, F.; Mazzoletti, A.; Bellini, P.; Giubbini, R.; Bertagna, F. Prognostic Impact of Pretreatment 2-[18F]-FDG PET/CT Parameters in Primary Gastric DLBCL. Medicina 2021, 57, 498. [Google Scholar] [CrossRef]
- Albano, D.; Pasinetti, N.; Dondi, F.; Giubbini, R.; Tucci, A.; Bertagna, F. Prognostic Role of Pre-Treatment Metabolic Parameters and Sarcopenia Derived by 2-[18F]-FDG PET/CT in Elderly Mantle Cell Lymphoma. J. Clin. Med. 2022, 11, 1210. [Google Scholar] [CrossRef]
- Cheson, B.D. Staging and response assessment in lymphomas: The new Lugano classification. Chin. Clin. Oncol. 2015, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Miceli, A.; Jonghi-Lavarini, L.; Santo, G.; Cassarino, G.; Linguanti, F.; Gazzilli, M.; Cimino, A.; Buschiazzo, A.; Sorbello, S.; Abenavoli, E.; et al. [18F]FDG PET/CT criteria for treatment response assessment: EORTC and beyond. Clin. Transl. Imaging 2023, 11, 421–437. [Google Scholar] [CrossRef]
- Pang, D.; Jiang, X.; Huang, L.; Teng, Y.; Liu, S.; Chen, F.; Wei, X.; Guo, H.; Li, W. Ctdna Monitoring in Predicting Relapse of Primary Mediastinal BCell Lymphoma. Blood 2020, 136 (Suppl. S1), 36. [Google Scholar] [CrossRef]
- Jmenez-Ubieto, A.; Poza, M.; Martín-Muñoz, A.; Dorado, S.; Heredia, Y.; Sarandeses, P.; Bárcena, C.; Rufian, L.; Canales, M.; Juarez, A.; et al. Potential Utility of Circulating Tumor DNA Monitoring in Primary Mediastinal B-Cell Lymphoma Treated with R-DA-EPOCH. Blood 2021, 138 (Suppl. S1), 4491. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Z.; Zhu, S.; Li, Z.; Yang, H.; Sun, P.; Zhu, M.; Zhao, X.; Shen, L.; Ou, Q.; et al. Circulating tumor DNA assisting lymphoma genetic feature profiling and identification. Ann. Hematol. 2024, 103, 4135–4144. [Google Scholar] [CrossRef]
- Bhalla, D.; Jana, M.; Kandasamy, D. Diagnostic accuracy of whole-body magnetic resonance imaging versus positron emission tomography-computed tomography for the staging of pediatric lymphoma: A systematic review and meta-analysis. Pediatr. Radiol. 2023, 53, 2683–2691. [Google Scholar] [CrossRef]
- Albano, D.; Dondi, F.; Bertagna, F.; Treglia, G. The Role of [68Ga]Ga-Pentixafor PET/CT or PET/MRI in Lymphoma: A Systematic Review. Cancers 2022, 14, 3814. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Year | Authors | N. Patients | PET Parameters and Findings |
---|---|---|---|
2020 | Zhu et al. [35] | 136 (65 TET and 71 PMBCL) | Patients with lymphoma were younger and had higher SUVmean, SUVmax, TLG, and MTV values than patients with TETs. |
2024 | Yan et al. [36] | 304 (60 with lymphoma, 244 with TET) | Lymphoma was significantly associated with younger patient age, higher LDH level, larger tumor size, and higher SUVmax compared to TETs (p < 0.001). |
2018 | Alkhawtani et al. [37] | 56 (42 with mediastinal HL and 14 with PMBCL) | Lesion-to-liver SUVmax ratio and lesion-to-liver SUVpeak ratio were significantly higher (p < 0.001) in PMBCL than in HL. Larger tumor size and more frequent necrosis may help discriminate PMLBCL from HL (p = 0.001). |
2023 | Abenavoli et al. [38] | 117 patients (80 HL, 29 PMBCL, 8 GZL) | SUVmax, SUVmean, SUVpeak, MTV, TLG, and texture analysis were measured or performed. SUVmax and TLG were significantly higher in PMBCL, intermediate in GZL, and lowest in HL. MTV was significantly higher in PMBCL and GZL compared to HL. Higher values of heterogeneity and entropy were detected in PMBCL. Zone-Length Non-Uniformity showed higher values in PMBCL. |
Year | Authors | N. Patients | Therapy | PET Parameters and Findings |
---|---|---|---|---|
2015 | Ceriani et al. [40] | 103 PMBCL patients (IELSG-26 study) | R-CHOP or R-CHOP-like RE-VACOP-B or R-MACOP-B; consolidation mediastinal RT (93 patients) | SUVmax, TLG, and MTV were included. Elevated MTV and TLG were significantly associated with worse PFS and OS, but not SUVmax. |
2021 | Liu et al. [42] | 26 PMBCL patients | DA-EPOCH (11 patients) and Radiotherapy (17 patients) | SUVmax, SUVmean, MTV, TLG. MTV ≥ 500, and TGL ≥ 2500 were correlated with worse PFS (p = 0.002 and p = 0.023, respectively). |
2020 | Zhou et al. [43] | 166 PMBCL patients | R-CHOP, R-EPOCH, R-HCVAD, RT (85 patients), SCT (31 patients) | SUVmax > 11.6 was associated with poor prognosis. |
2018 | Pinnix et al. [24] | 65 PMBCL patients | DA-R-EPOCH | SUVmax, SUVmean, MTV, TLG. MTV, and TLG were powerful prognosticators in predicting progression. |
2018 | Ceriani et al. [45] | 103 PMBCL patients (IELSG-26 study) | R-CHOP, R-CHOP-like, R-VACOP-B, R-MACOP-B, RT (93 patients) | SUVmean, SUVmax, MTV, TLG, and MH. MH and other parameters did not show any significant relationship. The AUC cut-off of 0.45 was optimal to discriminate patients with disease progression. PFS was longer for patients with low MH (p < 0.0001). Elevated MH and elevated TLG were independent prognosticators for PFS, so they were combined in a prognostic model for PFS: patients with both high TLG and high MH had poorer outcomes (p < 0.001). |
2019 | Ceriani et al. [50] | 103 PMBCL patients (IELSG-26 study) | Not applicable | Comparison was made between methods for MTV segmentation by applying three thresholds (FT25%, FT41%, and FT2.5) and a region growing (RG) algorithm. FT25% provided the most accurate estimation of the actual volume. Patients with low MTV had significantly longer PFS and OS, regardless of the method used. The four methods predicted disease progression with similar NPV (95–98%), but the highest PPV (45%) was for FT25%, which provided the best model to identify patients with the worst outcome. |
Year | Authors | N. Patients | Timing iPET | Therapy | PET Parameters and Findings |
---|---|---|---|---|---|
2014 | Avigdor et al. [63] | 92 PMBCL patients, of which 30 had iPET | iPET: before starting the seventh cycle of R-VACOP-B or after the third cycle of R-CHOP21 | R-VACOP-B, R-CHOP21 | Visual analysis. Mid-PET uptake was used to identify different PFSs; however, they had relatively low PPVs. |
2017 | Lazarovici et al. [62] | 36 PMBCL patients | iPET: after the fourth cycle of immunochemotherapy | Anti-CD20 monoclonal antibody with CHOP or CHOP-like chemotherapy, dose-dense ACVBP, ASCT (nine patients), RT (seven patients) | Visual analysis, DS, and SUVmax were performed or measured. iPET false positive results were found in 94.1% of cases with a PPV of 16.6%, regardless of using visual analysis, SUVmax, or DS |
2021 | Qin et al. [64] | 49 PMBCL patients | iPET: 3 weeks after three cycles | R-CHOP (22 patients), DA-EPOCH-R (27 patients), RT (14 patients) | For DS, iPET was useful in identifying PMBCL patients with poor clinical outcomes, based on the high PPV of interim DS 5, which should be a candidate for further treatment. |
2015 | Cheah et al. [34] | 28 PMBCL patients, of which 23 ha iPET | iPET: 8 patients after two cycles, 13 patients after three cycles, and 2 patients after four cycles of chemotherapy | R-CHOP, DA-EPOCH-R, Hyper-CVAD ± R, RT s | Visual analysis and DS (DS ≥ 4 considered positive) were used. High NPV (87–88%) of iPET was detected, while positive iPET was not predictive of inferior PFS, confirming the low PPV for relapse (12.5–15%). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nappi, A.G.; Dondi, F.; Lazzarato, A.; Jonghi-Lavarini, L.; Gorica, J.; La Torre, F.; Santo, G.; Miceli, A. Primary Mediastinal B-Cell Lymphoma and [18F]FDG PET/CT: What We Learned and What Is New. Hematol. Rep. 2025, 17, 23. https://doi.org/10.3390/hematolrep17030023
Nappi AG, Dondi F, Lazzarato A, Jonghi-Lavarini L, Gorica J, La Torre F, Santo G, Miceli A. Primary Mediastinal B-Cell Lymphoma and [18F]FDG PET/CT: What We Learned and What Is New. Hematology Reports. 2025; 17(3):23. https://doi.org/10.3390/hematolrep17030023
Chicago/Turabian StyleNappi, Anna Giulia, Francesco Dondi, Achille Lazzarato, Lorenzo Jonghi-Lavarini, Joana Gorica, Flavia La Torre, Giulia Santo, and Alberto Miceli. 2025. "Primary Mediastinal B-Cell Lymphoma and [18F]FDG PET/CT: What We Learned and What Is New" Hematology Reports 17, no. 3: 23. https://doi.org/10.3390/hematolrep17030023
APA StyleNappi, A. G., Dondi, F., Lazzarato, A., Jonghi-Lavarini, L., Gorica, J., La Torre, F., Santo, G., & Miceli, A. (2025). Primary Mediastinal B-Cell Lymphoma and [18F]FDG PET/CT: What We Learned and What Is New. Hematology Reports, 17(3), 23. https://doi.org/10.3390/hematolrep17030023