Incorporation of a Comorbidity Index in Treatment Decisions for Elderly AML Patients Can Lead to Better Disease Management—A Single-Center Experience
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, C.C. Genetic Abnormalities and Challenges in the treatment of acute myeloid leukemia. Genes Cancer 2011, 2, 95–107. [Google Scholar] [CrossRef] [PubMed]
- de Leeuw, D.C.; Ossenkoppele, G.J.; Janssen, J.J. Older Patients with Acute Myeloid Leukemia Deserve Individualized Treatment. Curr. Oncol. Rep. 2022, 24, 1387–1400. [Google Scholar] [CrossRef] [PubMed]
- Cortes, J.E.; Mehta, P. Determination of fitness and therapeutic options in older patients with acute myeloid leukemia. Am. J. Hematol. 2021, 96, 493–507. [Google Scholar] [CrossRef] [PubMed]
- Colita, A.; Colita, A.; Berbec, N.M.; Angelescu, S.; Lupu, A.R. Particular Clinical and Therapeutical Aspects in Acute Myeloid Leukemia in Eldrely Patients. Maedica 2011, 6, 287–289. [Google Scholar] [PubMed]
- Oran, B.; Weisdorf, D.J. Survival for older patients with acute myeloid leukemia: A population-based study. Haematologica 2012, 97, 1916–1924. [Google Scholar] [CrossRef] [PubMed]
- Venditti, A.; Cairoli, R.; Caira, M.; Finsinger, P.; Finocchiaro, F.; Neri, B.; De Benedittis, D.; Rossi, G.; Ferrara, F. Assessing eligibility for treatment in acute myeloid leukemia in 2023. Expert Rev. Hematol. 2023, 16, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Mayer, K.; Serries, M.; Hahn-Ast, C.; Bisht, S.; Brossart, P.; Feldmann, G. Treatment of acute myeloid leukaemia in older patients—Scope of intensive therapy?—A retrospective analysis. Hematology 2023, 28, 2212536. [Google Scholar] [CrossRef] [PubMed]
- Lazarevici, V.L. Acute myeloid leukaemia in patients we judge as being older and/or unfit. J. Intern. Med. 2021, 290, 279–293. [Google Scholar] [CrossRef] [PubMed]
- Stubbins, R.J.; Francis, A.; Kuchenbauer, F.; Sanford, D. Management of Acute Myeloid Leukemia: A Review for General Practitioners in Oncology. Curr. Oncol. 2022, 29, 6245–6259. [Google Scholar] [CrossRef] [PubMed]
- Popa, C.A.; Andreescu, N.I.; Arghirescu, T.S.; Petrescu, C.A.M.; Jincă, C.M.; Huţ, E.F.; Drăgoi, R.G.; Puenea, G.; Popa, D. Classic and molecular cytogenetic findings in leukemia patients from the Western part of Romania. Rom. J. Morphol. Embryol. Rev. Roum. Morphol. Embryol. 2024, 65, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Guyatt, G.H.; Teich, T.; Dawdy, J.L.; Shahid, S.; Altman, J.K.; Stone, R.M.; Sekeres, M.A.; Mukherjee, S.; LeBlanc, T.W.; et al. Intensive versus less-intensive antileukemic therapy in older adults with acute myeloid leukemia: A systematic review. PLoS ONE 2021, 16, e0249087. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Shukla, M.; Abdul-Hay, M. Acute Myeloid Leukemia Treatment in the Elderly: A Comprehensive Review of the Present and Future. Acta Haematol. 2023, 146, 431–457. [Google Scholar] [CrossRef] [PubMed]
- Oshikawa, G.; Sasaki, K. Optimizing Treatment Options for Newly Diagnosed Acute Myeloid Leukemia in Older Patients with Comorbidities. Cancers 2023, 15, 2399. [Google Scholar] [CrossRef] [PubMed]
- Negotei, C.; Colita, A.; Mitu, I.; Lupu, A.R.; Lapadat, M.E.; Popovici, C.E.; Crainicu, M.; Stanca, O.; Berbec, N.M. A Review of FLT3 Kinase Inhibitors in AML. J. Clin. Med. 2023, 12, 6429. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef] [PubMed]
Variable | Number of Patients | Percentage (%) | Chi-Square Test of Proportion | |||
---|---|---|---|---|---|---|
χ2 | A | p | ||||
Age (years) | 65–74 | 43 | 93.5 | 34.78 | 1 | <0.001 |
>75 | 3 | 6.5 | ||||
Gender | Male | 24 | 52.2 | 0.09 | 1 | 0.768 |
Female | 22 | 47.8 | ||||
AML classification | De novo | 41 | 89.1 | 28.17 | 1 | <0.001 |
Secondary | 5 | 10.9 | ||||
Karyotype | Normal | 20 | 83.3 | 10.67 | 1 | <0.001 |
Abnormal | 4 | 16.7 | ||||
Risk stratification | Favorable | 20 | 83.3 | 27.00 | 2 | <0.001 |
Intermediate | 2 | 8.3 | ||||
Adverse | 2 | 8.3 | ||||
Molecular biology | Yes | 39 | 84.8 | 22.26 | 1 | <0.001 |
No | 7 | 15.2 | ||||
The presence of mutations | Yes | 14 | 35.9 | 3.10 | 1 | 0.078 |
No | 25 | 64.1 | ||||
Risk stratification | Favorable | 27 | 69.2 | 23.23 | 2 | <0.001 |
Intermediate | 8 | 20.5 | ||||
Adverse | 4 | 10.3 | ||||
ECOG | 0–1 | 45 | 97.8 | 42.09 | 1 | <0.001 |
2–4 | 1 | 2.2 | ||||
CCI | 2 | 0 | 0 | 19.57 | 1 | <0.001 |
3 | 0 | 0 | ||||
4 | 8 | 17.4 | ||||
>4 | 38 | 82.6 | ||||
HCT-CI | 0 | 7 | 15.2 | 12.26 | 3 | <0.010 |
1–2 | 12 | 26.1 | ||||
3–4 | 6 | 13.0 | ||||
>4 | 21 | 45.7 | ||||
Number of comorbidities | <3 | 16 | 34.8 | 4.26 | 1 | <0.050 |
>3 | 30 | 65.2 | ||||
LVEF | Normal | 46 | 100 | |||
Abnormal | 0 | 0 | ||||
Leukocyte (mmc) | <4000 | 11 | 23.9 | 19.09 | 2 | <0.001 |
4000–10,000 | 6 | 13.0 | ||||
>10,000 | 29 | 63.0 | ||||
Hemoglobin (g/dL) | <8 | 28 | 60.9 | 2.17 | 1 | 0.140 |
>8 | 18 | 39.1 | ||||
Platelets (mmc) | <20,000 | 10 | 21.7 | 7.48 | 2 | <0.050 |
<100,000 | 24 | 52.2 | ||||
>100,000 | 12 | 26.1 | ||||
Bone marrow blasts (%) | <50% | 13 | 28.3 | 8.70 | 1 | <0.010 |
>50% | 33 | 71.7 |
Variable | Number of Patients | Percentage (%) | Chi-Square Test of Proportion | |||
---|---|---|---|---|---|---|
χ2 | df | p | ||||
First line | Yes | 46 | 100 | -- | -- | -- |
CR | 25 | 54.3 | 11.20 | 2 | <0.010 | |
CRi | 0 | 0 | ||||
PR | 1 | 2.2 | ||||
No response | 13 | 28.3 | ||||
Death | 7 | 15.2 | ||||
Second line | Yes | 32 | 69.6 | 7.04 | 1 | <0.010 |
CR | 9 | 30.0 | 1.36 | 2 | 0.507 | |
CRi | 1 | 3.3 | ||||
PR | 1 | 3.3 | ||||
No response | 12 | 40.0 | ||||
Death | 7 | 23.3 | ||||
Third line | Yes | 15 | 32.6 | 5.57 | 1 | <0.050 |
CR | 3 | 20 | 1.60 | 2 | 0.449 | |
Cri | 0 | 0 | ||||
PR | 0 | 0 | ||||
No response | 5 | 33.3 | ||||
Death | 7 | 46.7 | ||||
First disease relapse | 21/37 | 59.5 | 1.00 | 1 | 0.317 | |
<6 mo | 14 | 66.7 | 2.33 | 1 | 0.127 | |
6–12 mo | 7 | 33.3 | ||||
Second disease relapse | 8/32 | 25.0 | 9.53 | 1 | <0.010 | |
<6 mo | 5 | 62.5 | 0.50 | 1 | 0.480 | |
6–12 mo | 3 | 37.5 | ||||
Overall survival | <6 mo | 20 | 43.5 | 2.65 | 2 | 0.266 |
6–12 mo | 11 | 23.9 | ||||
>12 mo | 15 | 32.6 |
Variable | Number of Patients | Percentage (%) | Chi-Square Test of Proportion | |||
---|---|---|---|---|---|---|
χ2 | df | p | ||||
Complications | Cardiovascular | 26 | 56.5 | 0.78 | 1 | 0.376 |
Hematological | 46 | 100 | -- | -- | -- | |
Hemorrhagic | 28 | 60.9 | 2.17 | 1 | 0.140 | |
Thrombotic | 6 | 13.0 | 25.13 | 1 | <0.001 | |
Bacterial infections | 40 | 87.0 | 25.13 | 1 | <0.001 | |
Fungal infections | 2 | 4.3 | 38.35 | 1 | <0.001 | |
COVID infection | 13 | 28.3 | 8.70 | 1 | <0.010 | |
Current status | Deceased | 37 | 80.4 | 17.04 | 1 | <0.001 |
Alive | 9 | 19.6 | ||||
Lost from record | 0 | 0 | ||||
Cause of death | Cardiovascular | 5 | 13.9 | 14.00 | 4 | <0.010 |
Hemorrhagic | 11 | 30.6 | ||||
Thrombotic | 3 | 8.3 | ||||
Infectious | 14 | 38.9 | ||||
COVID | 3 | 8.3 | ||||
Death < 60 days | 9 | 19.6 | -- | -- | -- |
Median | Log-Rank (Mantel–Cox) | ||||||
---|---|---|---|---|---|---|---|
Estimate | Std. Error | 95% Confidence Interval | |||||
Lower Bound | Upper Bound | χ2 | df | p | |||
Overall | 8.00 | 1.80 | 4.47 | 11.53 | |||
RC Line 1 | |||||||
No | 4.00 | 2.29 | 0.0 | 8.49 | 9.89 | 1 | 0.002 |
Yes | 12.00 | 3.55 | 5.04 | 18.96 | |||
RC Line 1 duration | |||||||
<6 mo | 6.00 | 1.30 | 3.45 | 8.55 | 5.70 | 1 | 0.017 |
≥6 mo | 18.00 | 11.86 | 0.0 | 41.24 | |||
ECOG | |||||||
0–1 | 8.00 | 1.60 | 4.86 | 11.14 | 14.33 | 1 | 0.001 |
2–4 | 0.0 | ||||||
HCT-CI | |||||||
0–2 | 11.00 | 1.34 | 8.38 | 13.63 | 0.85 | 1 | 0.357 |
3– ≥4 | 6.00 | 1.28 | 3.50 | 8.50 | |||
CCI | |||||||
4 | 8.00 | 3.01 | 2.11 | 13.89 | 0.04 | 1 | 0.851 |
≥4 | 7.00 | 2.60 | 2.00 | 12.03 | |||
AML classification | |||||||
De novo | 9.00 | 2.53 | 4.04 | 13.96 | 0.48 | 1 | 0.487 |
Secondary | 6.00 | 2.19 | 1.71 | 10.29 | |||
Risk stratification for cytogenetic test | |||||||
Favorable | 11.00 | 5.14 | 0.92 | 21.08 | 1.60 | 1 | 0.205 |
Intermediate–adverse | 4.00 | ||||||
Risk stratification for molecular biology test | |||||||
Favorable | 12.000 | 4.267 | 3.637 | 20.363 | 8.32 | 1 | 0.004 |
Intermediate–adverse | 6.000 | 1.248 | 3.554 | 8.446 | |||
Bone marrow blasts (%) | |||||||
<50% | 7.00 | 2.27 | 2.56 | 11.44 | 0.53 | 1 | 0.465 |
≥50% | 8.00 | 1.91 | 4.25 | 11.75 |
Omnibus Test of Model | B | SE | Wald | df | Sig. | Exp(B) | 95.0% CI for Exp(B) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
χ2 | df | p | Lower | Upper | |||||||
CR after first line of treatment | 5.26 | 1 | 0.022 | −1.22 | 0.56 | 4.81 | 1 | 0.028 | 0.30 | 0.10 | 0.88 |
HCT-CI (0–2) | |||||||||||
Risk stratification for cytogenetics (intermediate–adverse) | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- |
Risk stratification for molecular biology (intermediate–adverse) | 4.14 | 1 | 0.042 | 1.50 | 0.74 | 4.14 | 1 | 0.042 | 4.46 | 1.06 | 18.88 |
HCT-CI (3–≥4) | |||||||||||
Risk stratification for cytogenetics (intermediate–adverse) | 0.28 | 1 | 0.595 | 0.35 | 0.65 | 0.29 | 1 | 0.590 | 1.42 | 0.40 | 5.07 |
Risk stratification for molecular biology (intermediate–adverse) | 2.52 | 1 | 0.112 | 0.78 | 0.48 | 2.65 | 1 | 0.104 | 2.18 | 0.85 | 5.55 |
CCI (≥4) | |||||||||||
Risk stratification for cytogenetics (intermediate–adverse) | 1.24 | 1 | 0.265 | 0.72 | 0.62 | 1.36 | 1 | 0.243 | 2.05 | 0.61 | 6.86 |
Risk stratification for molecular biology (intermediate–adverse) | 5.36 | 1 | 0.021 | 1.00 | 0.42 | 5.63 | 1 | 0.018 | 2.73 | 1.19 | 6.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negotei, C.; Mitu, I.; Angelescu, S.; Gradinaru, F.; Mambet, C.; Stanca, O.; Lapadat, M.-E.; Barta, C.; Halcu, G.; Saguna, C.; et al. Incorporation of a Comorbidity Index in Treatment Decisions for Elderly AML Patients Can Lead to Better Disease Management—A Single-Center Experience. Hematol. Rep. 2024, 16, 781-794. https://doi.org/10.3390/hematolrep16040074
Negotei C, Mitu I, Angelescu S, Gradinaru F, Mambet C, Stanca O, Lapadat M-E, Barta C, Halcu G, Saguna C, et al. Incorporation of a Comorbidity Index in Treatment Decisions for Elderly AML Patients Can Lead to Better Disease Management—A Single-Center Experience. Hematology Reports. 2024; 16(4):781-794. https://doi.org/10.3390/hematolrep16040074
Chicago/Turabian StyleNegotei, Cristina, Iuliana Mitu, Silvana Angelescu, Florentina Gradinaru, Cristina Mambet, Oana Stanca, Mihai-Emilian Lapadat, Cristian Barta, Georgian Halcu, Carmen Saguna, and et al. 2024. "Incorporation of a Comorbidity Index in Treatment Decisions for Elderly AML Patients Can Lead to Better Disease Management—A Single-Center Experience" Hematology Reports 16, no. 4: 781-794. https://doi.org/10.3390/hematolrep16040074
APA StyleNegotei, C., Mitu, I., Angelescu, S., Gradinaru, F., Mambet, C., Stanca, O., Lapadat, M.-E., Barta, C., Halcu, G., Saguna, C., Arghir, A., Papuc, M. S., Turbatu, A., Berbec, N. M., & Colita, A. (2024). Incorporation of a Comorbidity Index in Treatment Decisions for Elderly AML Patients Can Lead to Better Disease Management—A Single-Center Experience. Hematology Reports, 16(4), 781-794. https://doi.org/10.3390/hematolrep16040074