Effects of Sirolimus Treatment on Fetal Hemoglobin Production and Response to SARS-CoV-2 Vaccination: A Case Report Study
Abstract
:1. Introduction
2. Case Presentation
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weatherall, D.J. Phenotype-genotype relationships in monogenic disease: Lessons from the thalassaemias. Nat. Rev. Genet. 2001, 2, 245–255. [Google Scholar] [CrossRef]
- Galanello, R.; Origa, R. Β-thalassemia. Orphanet J. Rare Dis. 2010, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Origa, R. β-Thalassemia. Genet. Med. 2017, 19, 609–619. [Google Scholar] [CrossRef] [Green Version]
- Sripichai, O.; Fucharoen, S. Fetal hemoglobin regulation in β-thalassemia: Heterogeneity, modifiers and therapeutic approaches. Expert. Rev. Hematol. 2016, 9, 1129–1137. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, X.; Yu, L.; Cai, R.; Ma, X.; Zheng, C.; Zhou, Y.; Liu, Q.; Wei, X.; Lin, L.; et al. KLF1 mutations are relatively more common in a thalassemia endemic region and ameliorate the severity of β-thalassemia. Blood 2014, 124, 803–811. [Google Scholar] [CrossRef] [Green Version]
- Musallam, K.M.; Sankaran, V.G.; Cappellini, M.D.; Duca, L.; Nathan, D.G.; Taher, A.T. Fetal hemoglobin levels and morbidity in untransfused patients with β-thalassemia intermedia. Blood 2012, 119, 364–367. [Google Scholar] [CrossRef] [Green Version]
- Nuinoon, M.; Makarasara, W.; Mushiroda, T.; Setianingsih, I.; Wahidiyat, P.A.; Sripichai, O.; Kumasaka, N.; Takahashi, A.; Svasti, S.; Munkongdee, T.; et al. A genome-wide association identified the common genetic variants influence disease severity in β0-thalassemia/hemoglobin E. Hum. Genet. 2010, 127, 303–314. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Zuccato, C.; Cosenza, L.C.; Borgatti, M.; Lampronti, I.; Finotti, A.; Gambari, R. A Rational Approach to Drug Repositioning in β-thalassemia: Induction of Fetal Hemoglobin by Established Drugs. Wellcome Open Res. 2022, 7, 150. [Google Scholar] [CrossRef]
- Sehgal, S.N. Sirolimus: Its discovery, biological properties, and mechanism of action. Transplant. Proc. 2003, 35 (Suppl. 3), 7S–14S. [Google Scholar] [CrossRef]
- Kahan, B.D. Sirolimus: A new agent for clinical renal transplantation. Transplant. Proc. 1997, 29, 48–50. [Google Scholar] [CrossRef]
- Mao, B.; Zhang, Q.; Ma, L.; Zhao, D.S.; Zhao, P.; Yan, P. Overview of Research into mTOR Inhibitors. Molecules 2022, 27, 5295. [Google Scholar] [CrossRef]
- Fibach, E.; Bianchi, N.; Borgatti, M.; Zuccato, C.; Finotti, A.; Lampronti, I.; Prus, E.; Mischiati, C.; Gambari, R. Effects of rapamycin on accumulation of alpha-, β- and gamma-globin mRNAs in erythroid precursor cells from β-thalassaemia patients. Eur. J. Haematol. 2006, 77, 437–441. [Google Scholar] [CrossRef]
- Pecoraro, A.; Troia, A.; Calzolari, R.; Scazzone, C.; Rigano, P.; Martorana, A.; Sacco, M.; Maggio, A.; Marzo, R.D. Efficacy of Rapamycin as Inducer of Hb F in Primary Erythroid Cultures from Sickle Cell Disease and β-Thalassemia Patients. Hemoglobin 2015, 39, 225–229. [Google Scholar] [CrossRef]
- Khaibullina, A.; Almeida, L.E.; Wang, L.; Kamimura, S.; Wong, E.C.; Nouraie, M.; Maric, I.; Albani, S.; Finkel, J.; Quezado, Z.M.N. Rapamycin increases fetal hemoglobin and ameliorates the nociception phenotype in sickle cell mice. Blood Cells Mol. Dis. 2015, 55, 363–372. [Google Scholar] [CrossRef]
- Wang, J.; Tran, J.; Wang, H.; Guo, C.; Harro, D.; Campbell, A.D.; Eitzman, D.T. mTOR Inhibition improves anaemia and reduces organ damage in a murine model of sickle cell disease. Br. J. Haematol. 2016, 174, 461–469. [Google Scholar] [CrossRef] [Green Version]
- Lechauve, C.; Keith, J.; Khandros, E.; Fowler, S.; Mayberry, K.; Freiwan, A.; Thom, C.S.; Delbini, P.; Romero, E.B.; Zhang, J.; et al. The autophagy-activating kinase ULK1 mediates clearance of free α-globin in β-thalassemia. Sci. Transl. Med. 2019, 11, eaav4881. [Google Scholar] [CrossRef]
- Gaudre, N.; Cougoul, P.; Bartolucci, P.; Dörr, G.; Bura-Riviere, A.; Kamar, N.; Del Bello, A. Improved Fetal Hemoglobin With mTOR Inhibitor-Based Immunosuppression in a Kidney Transplant Recipient with Sickle Cell Disease. Am. J. Transplant. 2017, 17, 2212–2214. [Google Scholar] [CrossRef] [Green Version]
- Al-Khatti, A.A.; Alkhunaizi, A.M. Additive effect of sirolimus and hydroxycarbamide on fetal haemoglobin level in kidney transplant patients with sickle cell disease. Br. J. Haematol. 2019, 185, 959–961. [Google Scholar] [CrossRef] [Green Version]
- Zuccato, C.; Cosenza, L.C.; Zurlo, M.; Gasparello, J.; Papi, C.; D’Aversa, E.; Breveglieri, G.; Lampronti, I.; Finotti, A.; Borgatti, M.; et al. Expression of γ-globin genes in β-thalassemia patients treated with sirolimus: Results from a pilot clinical trial (Sirthalaclin). Ther. Adv. Hematol. 2022, 13, 20406207221100648. [Google Scholar] [CrossRef]
- Sorrenti, V.; Benedetti, F.; Buriani, A.; Fortinguerra, S.; Caudullo, G.; Davinelli, S.; Zella, D.; Scapagnini, G. Immunomodulatory and Antiaging Mechanisms of Resveratrol, Rapamycin, and Metformin: Focus on mTOR and AMPK Signaling Networks. Pharmaceuticals 2022, 15, 912. [Google Scholar] [CrossRef]
- Jia, S.; Li, Y.; Fang, T. System dynamics analysis of COVID-19 prevention and control strategies. Environ. Sci. Pollut. Res. Int. 2022, 29, 3944–3957. [Google Scholar] [CrossRef]
- Karpiński, T.M.; Ożarowski, M.; Seremak-Mrozikiewicz, A.; Wolski, H.; Wlodkowic, D. The 2020 race towards SARS-CoV-2 specific vaccines. Theranostics 2021, 11, 1690–1702. [Google Scholar] [CrossRef]
- Netti, G.S.; Infante, B.; Troise, D.; Mercuri, S.; Panico, M.; Spadaccino, F.; Catalano, V.; Gigante, M.; Simone, S.; Pontrelli, P.; et al. mTOR inhibitors improve both humoral and cellular response to SARS-CoV-2 messenger RNA BNT16b2 vaccine in kidney transplant recipients. Am. J. Transplant. 2022, 22, 1475–1482. [Google Scholar] [CrossRef]
- Tunbridge, M.; Perkins, G.B.; Singer, J.; Salehi, T.; Ying, T.; Grubor-Bauk, B.; Barry, S.; Sim, B.; Hissaria, P.; Chadban, S.J.; et al. Rapamycin and inulin for booster vaccine response stimulation (RIVASTIM)-rapamycin: Study protocol for a randomised, controlled trial of immunosuppression modification with rapamycin to improve SARS-CoV-2 vaccine response in kidney transplant recipients. Trials 2022, 23, 780. [Google Scholar] [CrossRef]
- Zurlo, M.; Nicoli, F.; Borgatti, M.; Finotti, A.; Gambari, R. Possible effects of sirolimus treatment on the long-term efficacy of COVID-19 vaccination in patients with β-thalassemia: A theoretical perspective. Int. J. Mol. Med. 2022, 49, 33. [Google Scholar] [CrossRef]
- Vasquez, E.M. Sirolimus: A new agent for prevention of renal allograft rejection. Am. J. Health Syst. Pharm. 2000, 57, 437–448. [Google Scholar] [CrossRef]
- Schaffer, S.A.; Ross, H.J. Everolimus: Efficacy and safety in cardiac transplantation. Expert. Opin. Drug Saf. 2010, 9, 843–854. [Google Scholar] [CrossRef]
- Tang, C.Y.; Shen, A.; Wei, X.F.; Li, Q.D.; Liu, R.; Deng, H.J.; Wu, Y.Z.; Wu, Z.J. Everolimus in de novo liver transplant recipients: A systematic review. Hepatobiliary Pancreat. Dis. Int. 2015, 14, 461–469. [Google Scholar] [CrossRef]
- Ji, L.; Xie, W.; Zhang, Z. Efficacy and safety of sirolimus in patients with systemic lupus erythematosus: A systematic review and meta-analysis. Semin. Arthritis Rheum. 2020, 50, 1073–1080. [Google Scholar] [CrossRef]
- Li, H.; Ji, J.; Du, Y.; Huang, Y.; Gu, H.; Chen, M.; Wu, R.; Han, B. Sirolimus is effective for primary relapsed/refractory autoimmune cytopenia: A multicenter study. Exp. Hematol. 2020, 89, 87–95. [Google Scholar] [CrossRef]
- Wang, Q.; Luo, M.; Xiang, B.; Chen, S.; Ji, Y. The efficacy and safety of pharmacological treatments for lymphangioleiomyomatosis. Respir. Res. 2020, 21, 55. [Google Scholar] [CrossRef] [Green Version]
- Gamberini, M.R.; Prosdocimi, M.; Gambari, R. Sirolimus for Treatment of β-Thalassemia: From Pre-Clinical Studies to the Design of Clinical Trials. Health Educ. 2021, 4, 425–435. [Google Scholar]
- Kaeberlein, T.L.; Green, A.S.; Haddad, G.; Hudson, J.; Isman, A.; Nyquist, A.; Rosen, B.S.; Suh, Y.; Zalzala, S.; Zhang, X.; et al. Evaluation of off-label rapamycin use to promote healthspan in 333 adults. Geroscience 2023, 1–12. [Google Scholar] [CrossRef]
- Mazzola, A.; Todesco, E.; Drouin, S.; Hazan, F.; Marot, S.; Thabut, D.; Varnous, S.; Soulié, C.; Barrou, B.; Marcelin, A.G.; et al. Poor Antibody Response After Two Doses of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Vaccine in Transplant Recipients. Clin. Infect. Dis. 2022, 74, 1093–1096. [Google Scholar] [CrossRef]
- Lee, W.C.; Hung, H.C.; Lee, J.C.; Huang, C.G.; Huang, P.W.; Gu, P.W.; Wang, Y.C.; Cheng, C.H.; Wu, T.H.; Lee, C.F.; et al. Adjustment of Immunosuppressants to Facilitate Anti-COVID-19 Antibody Production after mRNA Vaccination in Liver Transplant Recipients. Viruses 2023, 15, 678. [Google Scholar] [CrossRef]
- Rahbar, M.; Kazemi, R.; Salehi, H.; Ghasemi, P.; Naghizageh, M.; Dehghani, S.; Gholamnejad, M.; Pishkuhi, M.A.; Aghamir, S.M.K. Evaluation of SARS-CoV-2 Serum Level in Patients Vaccinated with Sinopharm/BBIBP-CorV With Kidney Transplantation. Transplant. Proc. 2022, 54, 2663–2667. [Google Scholar] [CrossRef]
- Goldberg, Y.; Mandel, M.; Bar-On, Y.M.; Bodenheimer, O.; Freedman, L.; Haas, E.J.; Milo, R.; Alroy-Preis, S.; Ash, N.; Huppert, A. Waning Immunity After the BNT162b2 Vaccine in Israel. N. Engl. J. Med. 2021, 385, e85. [Google Scholar] [CrossRef]
- Chemaitelly, H.; Tang, P.; Hasan, M.R.; AlMukdad, S.; Yassine, H.M.; Benslimane, F.M.; Khatib, H.A.A.; Coyle, P.; Ayoub, H.H.; Kanaani, Z.A.; et al. Waning of BNT162b2 Vaccine Protection Against SARS-CoV-2 Infection in Qatar. N. Engl. J. Med. 2021, 385, e83. [Google Scholar] [CrossRef]
- Rosenberg, E.S.; Dorabawila, V.; Easton, D.; Bauer, U.E.; Kumar, J.; Hoen, R.; Hoefer, D.; Wu, M.; Lutterloh, E.; Conroy, M.B.; et al. COVID-19 Vaccine Effectiveness in New York State. N. Engl. J. Med. 2021, 386, 116–127. [Google Scholar] [CrossRef]
- Cheng, C.; Wang, Y.; Hu, D.; Zhou, W.; Liu, C.; Tian, X.; Zhang, H.; Xu, Y.-C.; Xu, K.-F. Humoral response to inactivated SARS-CoV-2 vaccines in patients on sirolimus alone. Sci. China Life Sci. 2022, 65, 2118–2120. [Google Scholar] [CrossRef]
- Banjongjit, A.; Phirom, S.; Phannajit, J.; Jantarabenjakul, W.; Paitoonpong, L.; Kittanamongkolchai, W.; Wattanatorn, S.; Prasithsirikul, W.; Eiam-Ong, S.; Avihingsanon, Y.; et al. Benefits of Switching Mycophenolic Acid to Sirolimus on Serological Response after a SARS-CoV-2 Booster Dose among Kidney Transplant Recipients: A Pilot Study. Vaccines 2022, 10, 1685. [Google Scholar] [CrossRef] [PubMed]
- De Boer, S.E.; Berger, S.P.; van Leer-Buter, C.C.; Kroesen, B.J.; van Baarle, D.; Sanders, J.F.; OPTIMIZE Study Group. Enhanced Humoral Immune Response After COVID-19 Vaccination in Elderly Kidney Transplant Recipients on Everolimus Versus Mycophenolate Mofetil-containing Immunosuppressive Regimens. Transplantation 2022, 106, 1615–1621. [Google Scholar] [CrossRef] [PubMed]
- Delaporta, P.; Terpos, E.; Solomou, E.E.; Gumeni, S.; Nitsa, E.; Apostolakou, F.; Kyriakopoulou, D.; Ntanasis-Stathopoulos, I.; Papassotiriou, I.; Trougakos, I.P.; et al. Immune response and adverse events after vaccination against SARS-CoV-2 in adult patients with transfusion-dependent thalassaemia. Br. J. Haematol. 2022, 197, 576–579. [Google Scholar] [CrossRef]
- Carsetti, R.; Agrati, C.; Pinto, V.M.; Gianesin, B.; Gamberini, R.; Fortini, M.; Barella, S.; Denotti, R.; Perrotta, S.; Casale, M.; et al. Premature aging of the immune system affects the response to SARS-CoV-2 mRNA vaccine in β-thalassemia: Role of an additional dose. Blood 2022, 140, 1735–1738. [Google Scholar] [CrossRef] [PubMed]
- Anastasi, E.; Marziali, M.; Preziosi, A.; Berardelli, E.; Losardo, A.A.; Ribersani, R.; Pugliese, P.; Farina, A.; Mancini, P.; Angeloni, A. Humoral immune response to Comirnaty (BNT162b2) SARS-Cov2 mRNA vaccine in Thalassemia Major patients. Microbes Infect. 2022, 24, 104976. [Google Scholar] [CrossRef]
- Zurlo, M.; Nicoli, F.; Proietto, D.; Dallan, B.; Zuccato, C.; Cosenza, L.C.; Gasparello, J.; Papi, C.; d’Aversa, E.; Borgatti, M.; et al. Effects of Sirolimus treatment on patients with β-Thalassemia: Lymphocyte immunophenotype and biological activity of memory CD4+ and CD8+ T cells. J. Cell. Mol. Med. 2023, 27, 353–364. [Google Scholar] [CrossRef]
Clinical parameters | Comments/ongoing therapies at the time of recruitment to the NCT04247750 trial |
A. General parameters | |
Genotype | Homozygous for the β039-Thalassemia mutation XmnI polymorphism: -/- |
Start of regular transfusion therapy | 12 December 1983; age 2.8 years |
Transfusion regime | In 2020, 38 units of red blood cells were infused. Mean pre-transfusional Hb: 9.4 g/dL; iron intake: 0.33 mg/kg/die |
Start of regular chelation therapy | 1 January 1984; age 2.9 years |
Chelation therapy | Various schemes were used, including chelating agents in monotherapy or in combination. Since 4 February 2021, alternate combination therapy with desferrioxamine sc (28 mg/kg 3/7) and deferasirox FC per os (20.2 mg/kg 4/7) is ongoing |
Iron overload | Severe hepatic and cardiac accumulation was found in 2008 by RM-T2; progressive improvement up to normalization of the deposits was obtained on 6 June 2021 (MRI-T2: cardiac T2 40 ms, LIC 2.19 mg/g liver dry tissue) Serum ferritin: high mean annual values (>2000 ng/mL) from 2008 to 2011; <500 ng/mL from 2019; on 16 March 2021: ferritin 428 ng/mL |
Splenectomy | 15 March 1996; age 15 years |
Adenotonsillectomy | 15 September 2008; age 17 years |
B. Clinical complications | |
Allergic Chronic Asthma (Since pediatric age; allergy developed against alternaria and grasses) | Beclomethasone 200 mcg plus formoterol 2 mcg (Foster®): 2 inhalations per day |
Piastrinosis (1996, after splenectomy) | Lysine acetylsalicylate (cardirene®)300 mg/day |
Osteoporosis (2003) | Aledronic acid (dralenos®) 70 mg/week |
Postpuberal hypogonatropic hypogonadism (2006) | Testosterone gel (tostrex®) 40 mg/day (4 pumps in a single dose) |
Dilated cardiopathy with ventricular dysfunction secondary to cardiac siderosis (2006) | Bisoprolol 1.25 mg/day, losartan 50 mg plus hydrochlorothiazide 12.5 mg/day |
Vitamin D deficiency (2012) | Cholecalciferol (dibase®) 1250 IU/day |
Growth Hormone deficiency (2014) | Somatotropin (humatrope®) 6 mg/day, 6 days/week |
Hyper calciuria (2016) | / |
Paravertebral ectopic erythropoyesis mass (2017; diameter 2 cm, stable at follow-up) | / |
SARS-CoV-2 infection | Never infected |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gamberini, M.R.; Zuccato, C.; Zurlo, M.; Cosenza, L.C.; Finotti, A.; Gambari, R. Effects of Sirolimus Treatment on Fetal Hemoglobin Production and Response to SARS-CoV-2 Vaccination: A Case Report Study. Hematol. Rep. 2023, 15, 432-439. https://doi.org/10.3390/hematolrep15030044
Gamberini MR, Zuccato C, Zurlo M, Cosenza LC, Finotti A, Gambari R. Effects of Sirolimus Treatment on Fetal Hemoglobin Production and Response to SARS-CoV-2 Vaccination: A Case Report Study. Hematology Reports. 2023; 15(3):432-439. https://doi.org/10.3390/hematolrep15030044
Chicago/Turabian StyleGamberini, Maria Rita, Cristina Zuccato, Matteo Zurlo, Lucia Carmela Cosenza, Alessia Finotti, and Roberto Gambari. 2023. "Effects of Sirolimus Treatment on Fetal Hemoglobin Production and Response to SARS-CoV-2 Vaccination: A Case Report Study" Hematology Reports 15, no. 3: 432-439. https://doi.org/10.3390/hematolrep15030044
APA StyleGamberini, M. R., Zuccato, C., Zurlo, M., Cosenza, L. C., Finotti, A., & Gambari, R. (2023). Effects of Sirolimus Treatment on Fetal Hemoglobin Production and Response to SARS-CoV-2 Vaccination: A Case Report Study. Hematology Reports, 15(3), 432-439. https://doi.org/10.3390/hematolrep15030044