Genetic Diversity and Pathogenicity of Phytophthora infestans Isolates on Four Solanum tuberosum (Potato) Cultivars in Nariño, Colombia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and P. infestans Isolation
2.2. Characterization of P. infestans
2.3. Initial Assessment of Pathogenicity on Detached Leaves
2.4. Location of the Second Experiment
2.5. Potato Cultivars
2.6. Plant Inoculation in the Greenhouse
2.7. Experimental Design
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Franco-Lara, L.; Varela-Correa, C.A.; Guerrero-Carranza, G.P.; Quintero-Vargas, J.C. Association of phytoplasmas with a new disease of potato crops in Cundinamarca, Colombia. Crop Prot. 2023, 163, 106123. [Google Scholar] [CrossRef]
- Huang, X.; You, Z.; Luo, Y.; Yang, C.; Ren, J.; Liu, Y.; Wei, G.; Dong, P.; Ren, M. Antifungal activity of chitosan against Phytophthora infestans, the pathogen of potato late blight. Int. J. Biol. Macromol. 2021, 166, 1365–1376. [Google Scholar] [CrossRef] [PubMed]
- Berhan, M. Review on epidemiology, sampling techniques, management strategies of late blight (Phytophthora infestans) of potato and its yield loss. Asian J. Adv. Res. 2021, 4, 199–207. [Google Scholar]
- Santa, J.D.; Berdugo-Cely, J.; Cely-Pardo, L.; Soto-Suárez, M.; Mosquera, T.; Galeano, M.; Galeano Mendoza, C.H. QTL. Analysis reveals quantitative resistant loci for Phytophthora infestans and tecia solanivora in tetraploid potato (Solanum tuberosum L.). PLoS ONE 2018, 13, e0199716. [Google Scholar] [CrossRef] [PubMed]
- Majeed, A.; Siyar, S.; Sami, S. Late blight of potato: From the great Irish potato famine to the genomic era—An overview. Hell. Plant Prot. J. 2022, 15, 1–9. [Google Scholar] [CrossRef]
- Ayala-Usma, D.A.; Cárdenas, M.; Guyot, R.; De Mares, M.C.; Bernal, A.; Muñoz, A.R.; Restrepo, S.A. Whole genome duplication drives the genome evolution of Phytophthora betacei, a closely related species to Phytophthora infestans. BMC Genom. 2021, 22, 795. [Google Scholar] [CrossRef]
- Cárdenas, M.; Grajales, A.; Sierra, R.; Rojas, A.; González-Almario, A.; Vargas, A.; Marín, M.; Fermín, G.; Lagos, L.E.; Grünwald, N.J.; et al. Genetic diversity of Phytophthora infestans in the Northern Andean region. BMC Genet. 2011, 12, 23. [Google Scholar] [CrossRef]
- Vargas, A.M.; Ocampo, L.M.Q.; Céspedes, M.C.; Carreño, N.; González, A.; Rojas, A.; Zuluaga, A.P.; Myers, K.; Fry, W.E.; Jiménez, P.; et al. Characterization of Phytophthora infestans populations in Colombia: First report of the A2 mating type. Phytopathology 2009, 99, 82–88. [Google Scholar] [CrossRef]
- Chaves, S.C.; Rodríguez, M.C.; Mideros, M.F.; Lucca, F.; Ñústez, C.E.; Restrepo, S. Determining whether geographic origin and potato genotypes shape the population structure of Phytophthora infestans in the central region of Colombia. Phytopathology 2019, 109, 145–154. [Google Scholar] [CrossRef]
- Zhang, J.; Hieno, A.; Otsubo, K.; Feng, W.; Kageyama, K. Population genetic analysis of Phytophthora colocasiae from taro in Japan using ssr markers. J. Fungi 2023, 9, 391. [Google Scholar] [CrossRef]
- Bukhari, T.; Rana, R.M.; Hassan, M.U.; Naz, F.; Sajjad, M. Genetic diversity and marker trait association for Phytophthora resistance in chilli. Mol. Biol. Rep. 2022, 49, 5717–5728. [Google Scholar] [CrossRef] [PubMed]
- Dufková, H.; Greplová, M.; Hampejsová, R.; Kuzmenko, M.; Hausvater, E.; Brzobohatý, B.; Černý, M. Secondary metabolites, other prospective substances, and alternative approaches that could promote resistance against Phytophthora infestans. Agronomy 2023, 13, 1822. [Google Scholar] [CrossRef]
- Blossei, J.; Gäbelein, R.; Hammann, T.; Uptmoor, R. Late blight resistance in wild potato species—Resources for future potato (Solanum tuberosum) breeding. Plant Breed. 2022, 141, 314–331. [Google Scholar] [CrossRef]
- Paluchowska, P.; Śliwka, J.; Yin, Z. Late blight resistance genes in potato breeding. Planta 2022, 255, 127. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Viquez-Zamora, M.; den Uil, D.; Sinnige, J.; Kruyt, H.; Vossen, J.; Lindhout, P.; van Heusden, S. Introgression of genes for resistance against Phytophthora infestans in diploid potato. Am. J. Potato Res. 2020, 97, 33–42. [Google Scholar] [CrossRef]
- Stefańczyk, E.; Plich, J.; Janiszewska, M.; Smyda-Dajmund, P.; Sobkowiak, S.; Śliwka, J. Marker-assisted pyramiding of potato late blight resistance genes Rpi-rzc1 and Rpi-phu1 on di- and tetraploid levels. Mol. Breed. 2020, 40, 89. [Google Scholar] [CrossRef]
- Rodriguez, D.; Uribe, P.; Benavides, C.A. Response of commercial potato genotypes Solanum tuberosum L. to Phytophthora infestans (Mont.) de Bary late blight attack. Rev. Cienc. Agrícolas 2023, 40, e1200. [Google Scholar] [CrossRef]
- Martínez Pachón, E.; Insuasty Cordoba, S.d.C.; Benavides Cardona, C.A.; Gómez Gil, L.F.; Uribe Mejía, P.; Marcillo Paguay, C.A.; Calvache Muñoz, D.A.; Mejía España, D.F.; Arana Chico, H.C.; Ramos Zambrano, H.S.; et al. Caracterización del Sistema Productivo de Papa en el Departamento de Nariño 2015–2020: Conocimiento para la Toma de Decisiones; Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA): Mosquera, Colombia, 2021; ISBN 9789587404814. [Google Scholar]
- Reyes-Herrera, P.H.; Delgadillo-Duran, D.A.; Flores-Gonzalez, M.; Mueller, L.A.; Cristancho, M.A.; Barrero, L.S. Chromosome-scale genome assembly and annotation of the tetraploid potato cultivar Diacol Capiro adapted to the Andean region. G3 Genes Genomes Genet. 2024, 14, jkae139. [Google Scholar] [CrossRef]
- Sanabria, K.; Pérez, W.; Andrade-Piedra, J.L. Effectiveness of resistance inductors for potato late blight management in Peru. Crop Prot. 2020, 137, 105241. [Google Scholar] [CrossRef]
- Ñústez, C. Variedades Colombianas de Papa, 1st ed.; Universidad Nacional de Colombia, Ed.; Universidad Nacional de Colombia: Bogotá, Colombia, 2011. [Google Scholar]
- Barrientos, J.C.; Ñústez, C.E. Difusión de seis nuevas variedades de papa en Boyacá y Cundinamarca (Colombia) entre 2003 y 2010. Rev. Colomb. Cienc. Hortíc. 2014, 8, 126–147. [Google Scholar] [CrossRef]
- Céspedes, M.C.; Cárdenas, M.E.; Vargas, A.M.; Rojas, A.; Morales, J.G.; Jiménez, P.; Bernal, A.J.; Restrepo, S. Physiological and molecular characterization of Phytophthora infestans isolates from the central Colombian Andean Region. Rev. Iberoam. Micol. 2013, 30, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Revelo, E.; Dorado, G.; Lagos, L.E.; Burbano-Figueroa, O. Foliar virulence of isolates of Phytophthora infestans sensu lato on detached leaves of two Solanum betaceum cultivars. Trop. Plant Pathol. 2011, 36, 367–373. [Google Scholar] [CrossRef]
- Karki, H.; Halterman, D. Phytophthora infestans (late blight) infection assay in a detached leaf of potato. Bio-Protocol 2021, 11, e3926. [Google Scholar] [CrossRef] [PubMed]
- Andriani, A.; Wouters, D.; Wolters, P.J.; Vleeshouwers, V.G.A.A. Quantifying the contribution to virulence of Phytophthora infestans effectors in potato. In Solanum tuberosum; Humana: New York, NY, USA, 2021; pp. 303–313. [Google Scholar]
- Chaves, S.C.; Guayazán, N.; Mideros, M.F.; Parra, M.; Lucca, F.; Restrepo, S. Two clonal species of Phytophthora associated to solanaceous crops coexist in central and southern Colombia. Phytopathology 2020, 110, 1342–1351. [Google Scholar] [CrossRef] [PubMed]
- Berdúo-Sandoval, J.E.; Ruiz-Chután, J.A.; Sánchez-Pérez, A. Evaluación de la resistencia de genotipos de tomate frente a aislados de Phytophthora infestans provenientes de Guatemala. Cienc. Tecnol. Salud 2019, 6, 22–33. [Google Scholar] [CrossRef]
- Ristaino, J.B.; Madritch, M.; Trout, C.L.; Parra, G. PCR amplification of ribosomal DNA for species identification in the plant pathogen genus Phytophthora. Appl. Environ. Microbiol. 1998, 64, 948–954. [Google Scholar] [CrossRef]
- Griffith, G.W.; Shaw, D.S. Polymorphisms in Phytophthora infestans: Four mitochondrial haplotypes are detected after PCR amplification of DNA from pure cultures or from host lesions. Appl. Environ. Microbiol. 1998, 64, 4007–4014. [Google Scholar] [CrossRef]
- Knapova, G.; Gisi, U. Phenotypic and genotypic structure of Phytophthora infestans populations on potato and tomato in France and Switzerland. Plant Pathol. 2002, 51, 641–653. [Google Scholar] [CrossRef]
- Lees, A.K.; Wattier, R.; Shaw, D.S.; Sullivan, L.; Williams, N.A.; Cooke, D.E.L. Novel microsatellite markers for the analysis of Phytophthora infestans populations. Plant Pathol. 2006, 55, 311–319. [Google Scholar] [CrossRef]
- Li, Y.; Cooke, D.E.L.; Jacobsen, E.; van der Lee, T. Efficient multiplex simple sequence repeat genotyping of the oomycete plant pathogen Phytophthora infestans. J. Microbiol. Methods 2013, 92, 316–322. [Google Scholar] [CrossRef]
- Velasquez-Vasconez, P.A.; Hunt, B.J.; Dias, R.O.; Souza, T.P.; Bass, C.; Silva-Filho, M.C. Adaptation of Helicoverpa armigera to soybean peptidase inhibitors is associated with the transgenerational upregulation of serine peptidases. Int. J. Mol. Sci. 2022, 23, 14301. [Google Scholar] [CrossRef] [PubMed]
- Abramoff, M.; Magalhaes, P.; Ram, S. Biophotonics International. Image Processing with ImageJ; LAURIN: Pittsfield, MA, USA, 2004. [Google Scholar]
- Bruvo, R.; Michiels, N.K.; D’Souza, T.G.; Schulenburg, H. A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Mol. Ecol. 2004, 13, 2101–2106. [Google Scholar] [CrossRef] [PubMed]
- Kamvar, Z.N.; Tabima, J.F.; Grünwald, N.J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2014, 2, e281. [Google Scholar] [CrossRef] [PubMed]
- Shakya, S.K.; Larsen, M.M.; Cuenca-Condoy, M.M.; Lozoya-Saldaña, H.; Grünwald, N.J. Variation in genetic diversity of Phytophthora infestans populations in Mexico from the center of origin outwards. Plant Dis. 2018, 102, 1534–1540. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Garduño, T.; Vázquez-Domínguez, E. Métodos de análisis genéticos, espaciales y de conectividad en genética del paisaje. Rev. Mex. Biodivers. 2013, 84, 1031–1054. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Padilla-Ramos, R.; Salas-Muñoz, S.; Velásquez-Valle, R.; Reveles-Torres, L.R. Un nuevo enfoque molecular en el estudio de la interacción parásito-hospedero. Rev. Mex. Fitopatol. Mex. J. Phytopathol. 2018, 37, 95–114. [Google Scholar] [CrossRef]
- Insuasty, S.E.G.; Jurado, G.H. Remolacha forrajera Beta vulgaris sembrada en microtúneles y su efecto en parámetros productivos del cuy. Biotecnol. Sect. Agropecu. Agroind. 2019, 18, 74–83. [Google Scholar] [CrossRef]
- Ali, A.; Alexandersson, E.; Sandin, M.; Resjö, S.; Lenman, M.; Hedley, P.; Levander, F.; Andreasson, E. Quantitative proteomics and transcriptomics of potato in response to Phytophthora infestans in compatible and incompatible interactions. BMC Genom. 2014, 15, 497. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2; Springer: New York, NY, USA, 2009; ISBN 978-0-387-98140-6. [Google Scholar]
- El-Ganainy, S.; Iqbal, Z.; Awad, H.; Sattar, M.; Tohamy, A.; Abbas, A.; Squires, J.; Cooke, D. Genotypic and Phenotypic Structure of the Population of Phytophthora Infestans in Egypt Revealed the Presence of European Genotypes. J. Fungi 2022, 8, 468. [Google Scholar] [CrossRef]
- Olave-Achury, A.; Cardenas, D.; Restrepo, S.; Lucca, F.; Fry, W.E.; Myers, K.L.; Danies, G.; Soto-Suarez, M. Phenotypic and genotypic characterization of Phytophthora infestans isolates associated with tomato and potato crops in Colombia. Phytopathology 2022, 112, 1783–1794. [Google Scholar] [CrossRef]
- Kanja, C.; Hammond-Kosack, K.E. Proteinaceous effector discovery and characterization in filamentous plant pathogens. Mol. Plant Pathol. 2020, 21, 1353–1376. [Google Scholar] [CrossRef] [PubMed]
- Todd, J.N.A.; Carreón-Anguiano, K.G.; Couoh-Dzul, O.J.; de los Santos-Briones, C.; Canto-Canché, B. Effectors: Key Actors in Phytopathology. Rev. Mex. Fitopatol. Mex. J. Phytopathol. 2023, 41, 203–228. [Google Scholar] [CrossRef]
- Hurlburt, N.K.; Chen, L.-H.; Stergiopoulos, I.; Fisher, A.J. Structure of the Cladosporium Fulvum Avr4 effector in complex with (GlcNAc)6 reveals the ligand-binding mechanism and uncouples its intrinsic function from recognition by the Cf-4 resistance protein. PLoS Pathog. 2018, 14, e1007263. [Google Scholar] [CrossRef] [PubMed]
- Mizubuti, E.S.; Aylor, D.E.; Fry, W.E. Survival of Phytophthora Infestans Sporangia Exposed to Solar Radiation. Phytopathology 2000, 90, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Meno, L.; Abuley, I.K.; Escuredo, O.; Seijo, M.C. Factors influencing the airborne sporangia concentration of Phytophthora infestans and its relationship with potato disease severity. Sci. Hortic. 2023, 307, 111520. [Google Scholar] [CrossRef]
- Mboup, M.K.; Sweigard, J.W.; Carroll, A.; Jaworska, G.; Genet, J. Genetic mechanism, baseline sensitivity and risk of resistance to oxathiapiprolin in oomycetes. Pest Manag. Sci. 2022, 78, 905–913. [Google Scholar] [CrossRef]
- Mugao, L. Morphological and molecular variability of Alternaria solani and Phytophthora infestans causing tomato blights. Int. J. Microbiol. 2023, 2023, 8951351. [Google Scholar] [CrossRef]
Code | Municipality | Coordinates | Altitude | |
---|---|---|---|---|
P00119 | Obonuco, Pasto | 1°11′14.51″ N | 77°18′23.07″ W | 2841 |
P00519 | Obonuco, Pasto | 1°11′21.26″ N | 77°18′25.76″ W | 2834 |
P00221 | Obonuco, Pasto | 1°11′15.53″ N | 77°18′37.11″ W | 2864 |
P00321 | Obonuco, Pasto | 1°10′57.34″ N | 77°18′43.63″ W | 2940 |
P02421 | Gualmatan, Pasto | 1°10′15.454″ N | 77°19′20.597″ W | 3091 |
P02521 | Gualmatan, Pasto | 1°10′5.494″ N | 77°19′8.587″ W | 3016 |
P00921 | Catambuco, Pasto | 1°10′101″ N | 77°18′7.705″ W | 2875 |
Variation Source | Dfs | Mean Square | |||
---|---|---|---|---|---|
Number of Affected Leaflets | Number of Affected Leaves | Number of Necrotic Spots (2 mm2) | Number of Necrotic Spots (1 cm2) | ||
Isolates | 1 | 0.043 | 0.183 | 0.306 | 0.601 |
Genotypes | 3 | 3.482 *** | 3.536 *** | 3.473 *** | 2.482 *** |
Days post-inoculation (DPI) | 3 | 19.617 *** | 20.454 *** | 20.536 *** | 13.791 *** |
Block | 3 | 3.753 *** | 3.176 *** | 3.993 *** | 4.872 *** |
Isolates/Genotype | 3 | 0.931 ** | 0.142 | 0.105 | 0.348 |
Isolates/DPI | 3 | 1.193 ** | 0.246 | 0.661 | 0.252 |
Genotype/DPI | 9 | 1.159 *** | 1.217 *** | 1.097 *** | 0.568 * |
Isolates/Genotype/DPI | 9 | 0.506 * | 0.255 | 0.169 | 0.121 |
Residuals | 92 | 0.225 | 0.28 | 0.254 | 0.264 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velasquez-Vasconez, P.A.; Chaves-Ordoñez, R.Y.; Pantoja Unigarro, J.D.; Hernandez Diaz, T.Y.; Lagos Mora, L.E.; Betancourth García, C.; Salazar-Gonzalez, C. Genetic Diversity and Pathogenicity of Phytophthora infestans Isolates on Four Solanum tuberosum (Potato) Cultivars in Nariño, Colombia. Int. J. Plant Biol. 2024, 15, 1021-1031. https://doi.org/10.3390/ijpb15040072
Velasquez-Vasconez PA, Chaves-Ordoñez RY, Pantoja Unigarro JD, Hernandez Diaz TY, Lagos Mora LE, Betancourth García C, Salazar-Gonzalez C. Genetic Diversity and Pathogenicity of Phytophthora infestans Isolates on Four Solanum tuberosum (Potato) Cultivars in Nariño, Colombia. International Journal of Plant Biology. 2024; 15(4):1021-1031. https://doi.org/10.3390/ijpb15040072
Chicago/Turabian StyleVelasquez-Vasconez, Pedro Alexander, Reyven Yair Chaves-Ordoñez, Juan David Pantoja Unigarro, Tharling Yadhannia Hernandez Diaz, Luz Estela Lagos Mora, Carlos Betancourth García, and Claudia Salazar-Gonzalez. 2024. "Genetic Diversity and Pathogenicity of Phytophthora infestans Isolates on Four Solanum tuberosum (Potato) Cultivars in Nariño, Colombia" International Journal of Plant Biology 15, no. 4: 1021-1031. https://doi.org/10.3390/ijpb15040072
APA StyleVelasquez-Vasconez, P. A., Chaves-Ordoñez, R. Y., Pantoja Unigarro, J. D., Hernandez Diaz, T. Y., Lagos Mora, L. E., Betancourth García, C., & Salazar-Gonzalez, C. (2024). Genetic Diversity and Pathogenicity of Phytophthora infestans Isolates on Four Solanum tuberosum (Potato) Cultivars in Nariño, Colombia. International Journal of Plant Biology, 15(4), 1021-1031. https://doi.org/10.3390/ijpb15040072