Progress in the Use of Combined Omics for Mungbean Breeding Improvement and Its Potential in Promoting Resistance against Cercospora Leaf Spot
Abstract
:1. Introduction
2. Fundamental Overview of Omics Approaches
3. Genomic-Assisted Approaches for Promoting Resistance in Mungbean to CLS
Generation of Genomic Sequencing in Mungbean (Vigna radiata L.) | ||||||||
---|---|---|---|---|---|---|---|---|
Sanger Sequencing Generation (SSG) | Next Generation Sequencing (NGS) | Third Generation Sequencing (TGS) | ||||||
Genomic approach executed | Generation Year | References | Genomic approach executed | Generation Year | References | Genomic approach executed | Generation Year | References |
Gene mapping using RFLP markers | 1992 | Fatokun et al. [70]; Young et al. [71]; | SSR markers of NGS | 2009 | Gwang et al. [76] | Discovery of candidate genes for bruchid resistance | 2016 | Liu et al. [67] |
QTL mapping for powdery mildew and CLS disease | 1993 | Young et al. [73] | Discovery of SNP | 2010 | Gwang et al. [76] | Study of Genome-Wide Association (GWA) | 2020 | Sokolkova et al. [83] |
Enriching the genome library by 13 SSR markers | 2002 | Kumar et al. [75] | Resolution of SSR maps with 11 linkages | 2012 | Kajonphol et al. [84] | Candidate gene for powdery mildew was discovered | 2020 | Yundaeng et al. [85] |
Draft genome sequence of VC1973A | 2014 | Kang et al. [60] | (1) The draft of genome sequence of VC1973A was improved (2) Candidate gene for CLS disease was discovered | 2021 | Liu et al. [7]; Papan et al. [86] | |||
High-quality genome assembly and pan-genome studies to facilitate genetic discovery in mungbean and its improvement | 2022 | Liu et al. [3] |
4. Transcriptomic Approach for Mungbean Breeding Improvement
5. Proteomics Approach in Mungbean Retrospective Investigations
6. Metabolomic Approaches to Mungbean
7. Phenomics Achievements in Instances for Mungbean Breeding
8. Conclusions and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jiao, K.; Li, X.; Guo, W.; Yuan, X.; Cui, X.; Chen, X. Genome Re-Sequencing of Two Accessions and Fine Mapping the Locus of Lobed Leaflet Margins in Mungbean. Mol. Breed. 2016, 36, 1–12. [Google Scholar] [CrossRef]
- Nair, R.M.; Pandey, A.K.; War, A.R.; Hanumantharao, B.; Shwe, T.; Alam, A.K.M.M.; Pratap, A.; Malik, S.R.; Karimi, R.; Mbeyagala, E.K. Biotic and Abiotic Constraints in Mungbean Production—Progress in Genetic Improvement. Front. Plant Sci. 2019, 10, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, Y.; Peng, J.; Fan, B.; Xu, D.; Wu, J.; Cao, Z.; Gao, Y.; Wang, X.; Li, S. High-Quality Genome Assembly and Pan-Genome Studies Facilitate Genetic Discovery in Mung Bean and Its Improvement. Plant Commun. 2022, 3, 100352. [Google Scholar] [CrossRef] [PubMed]
- Chiteri, K.O.; Chiranjeevi, S.; Jubery, T.Z.; Rairdin, A.; Dutta, S.; Ganapathysubramanian, B.; Singh, A. Dissecting the Genetic Architecture of Leaf Morphology Traits in Mungbean [Vigna radiata (L.) Wizcek] Using Genome-Wide Association Study. Plant Phenome J. 2023, 6, 1–22. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, S.; Ai, J.; Zhang, P.; Yao, H.; Liu, Y.; Zhang, X. Transcriptomic and Biochemical Analyses of Drought Response Mechanism in Mung Bean [Vigna radiata (L.) Wilczek] leaves. Plant Genome. 2023, 18, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Kohli, M.; Bansal, H.; Mishra, G.P.; Dikshit, H.K.; Reddappa, S.B.; Roy, A.; Sinha, S.K.; Shivaprasad, K.M.; Kumari, N.; Kumar, A. Genome-Wide Association Studies for Earliness, MYMIV Resistance, and Other Associated Traits in Mungbean [Vigna radiata (L). Wilczek] Using Genotyping by Sequencing Approach. PeerJ. 2024, 12, e16653. [Google Scholar] [CrossRef]
- Ha, J.; Satyawan, D.; Jeong, H.; Lee, E.; Cho, K.; Kim, M.Y.; Lee, S. A Near-Complete Genome Sequence of Mungbean (Vigna radiata L.) provides key insights into the Modern Breeding Program. Plant Genome. 2021, 14, 1–16. [Google Scholar] [CrossRef]
- Li, C.; Gao, Z.; Hu, W.; Zhu, X.; Li, Y. Integration of Comparative Transcriptomics and WGCNA Characterizes the Regulation of Anthocyanin Biosynthesis in Mung Bean (Vigna radiata L.). Front. Plant Sci. 2023, 14, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Nair, R.M.; Lee, J.; Lee, S.H. Genomic Resources in Mungbean for Future Breeding Programs. Front. Plant Sci. 2015, 6, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Nair, R.M.; Yang, R.Y.; Easdown, W.J.; Thavarajah, D.; Thavarajah, P.; Hughes, J.d.A.; Keatinge, J.D.H. Biofortification of Mungbean (Vigna radiata L.) as a Whole Food to Enhance Human Health. J. Sci. Food Agric. 2013, 93, 1805–1813. [Google Scholar] [CrossRef] [PubMed]
- Besfat, B.T.; Merkuz, A.A.; Gezahegne, G.D. Assessment and Characterization of Mung Bean (Vigna radiata L.) Bacterial Brown Spot in Eastern Amhara, Ethiopia. Afr. J. Agric. Res. 2020, 16, 606–621. [Google Scholar] [CrossRef]
- Uppalwar, S.V.; Garg, V.; Dutt, R. Seeds of Mung Bean [Vigna radiata (L.) Wilczek]: Taxonomy, Phytochemistry, Medicinal Uses and Pharmacology. Current Bioactive Compounds. 2020, 17, 220–233. [Google Scholar] [CrossRef]
- Dahiya, P.K.; Linnemann, A.R.; Van Boekel, M.A.J.S.; Khetarpaul, N.; Grewal, R.B.; Nout, M.J.R. Mung Bean: Technological and Nutritional Potential. Crit. Rev. Food Sci. Nutr. 2015, 55, 670–688. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.; Yousaf, L.; Xue, Y.; Hu, J.; Wu, J.; Hu, X.; Feng, N.; Shen, Q. Mung Bean (Vigna radiata L.): Bioactive Polyphenols, Polysaccharides, Peptides, and Health Benefits. Nutrients. 2019, 11, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Elobuike, C.S.; Idowu, M.A.; Adeola, A.A.; Bakare, H.A. Nutritional and Functional Attributes of Mungbean (Vigna radiata [L] Wilczek) Flour as Affected by Sprouting Time. Legum. Sci. 2021, 3, 1–11. [Google Scholar] [CrossRef]
- Ali, A.; Altaf, M.T.; Nadeem, M.A.; Karaköy, T.; Shah, A.N.; Azeem, H.; Baloch, F.S.; Baran, N.; Hussain, T.; Duangpan, S. Recent Advancement in OMICS Approaches to Enhance Abiotic Stress Tolerance in Legumes. Front. Plant Sci. 2022, 13, 952759. [Google Scholar] [CrossRef] [PubMed]
- Shafique, S.; Attia, U.; Shafique, S.; Tabassum, B.; Akhtar, N.; Naeem, A.; Abbas, Q. Management of Mung Bean Leaf Spot Disease Caused by Phoma Herbarum through Penicillium Janczewskii Metabolites Mediated by MAPK Signaling Cascade. Sci. Rep. 2023, 13, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Yoseph, T. Performance Evaluation of Mung Bean [Vigna radiata (L.) Wilczek] Varieties in Pastoral Areas of South Omo Zone, Southern Ethiopia. Int. J. Agric. Res. Innov. Technol. 2022, 12, 141–144. [Google Scholar] [CrossRef]
- Bunaka, A.; Bibiso, M.; Lelago, A. Determination of Levels of Essential and Non-Essential Metals and Nutritional Value in Mung Bean Seed (Vigna radiate L.) Cultivated in Wolaita Zone, Southern Ethiopia. Indian J. Agric. Res. 2023, 57, 198–202. [Google Scholar] [CrossRef]
- Ademe, B.E. Mung Bean (Vigna radiata L.) Production Vis-Avis Market Potential in Ethiopia: A Review. Asian J. Biol. Sci. 2023, 16, 614–622. [Google Scholar] [CrossRef]
- Mahapatra, S.S.; Beura, S.K.; Swain, D.; Jadhao, K.R.; Rout, G.R. New Report of Cercospora Canescens Isolates from Coastal Regions of Odisha, India Causing Cercospora Leaf Spot (CLS) Disease in Mung Bean (Vigna radiata L.). Legum. Res. 2023, 46, 1247–1252. [Google Scholar] [CrossRef]
- Buttar, H.S.; Singh, A.; Sirari, A.; Anupam; Kaur, K.; Kumar, A.; Lal, M.K.; Tiwari, R.K.; Kumar, R. Investigating the Impact of Fungicides and Mungbean Genotypes on the Management of Pod Rot Disease Caused by Fusarium equiseti and Fusarium chlamydosporum. Front. Plant Sci. 2023, 14, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kelly, L.A.; Vaghefi, N.; Bransgrove, K.; Fechner, N.A.; Stuart, K.; Pandey, A.K.; Sharma, M.; Nemeth, M.Z.; Liu, S.Y.; Tang, S.R. One Crop Disease, How Many Pathogens? Podosphaera xanthii and Erysiphe vignae Sp. Nov. Identified as the Two Species That Cause Powdery Mildew of Mungbean (Vigna radiata) and Black Gram (V. mungo) in Australia. Phytopathology 2021, 111, 1193–1206. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Meena, A.K.; Kumar, V.; Nathawat, B.D.S.; Yadav, A.L. Management of Cercospora Leaf Spot [Cercospora canescens Ellis and Martin] of Mothbean [Vigna aconitifolia (Jacq.) Marechal] through Fungicides. Legum. Res.-Int. J. 2023, I, 1–5. [Google Scholar] [CrossRef]
- Songwattana, P.; Boonchuen, P.; Piromyou, P.; Wongdee, J.; Greetatorn, T.; Inthaisong, S.; Tantasawat, P.A.; Teamtisong, K.; Tittabutr, P.; Boonkerd, N. Insights into Antifungal Mechanisms of Bacillus Velezensis S141 against Cercospora Leaf Spot in Mungbean (V. radiata). Microbes Environ. 2023, 38, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Abbas, H.; Iqbal, M.A.; Kamran, M.; Shahbaz, M.U.; Kamber, H.U.; Javed, N.; Junaid, M.; Abbas, H.; Haq, M.E. Evaluation of Advanced Mung Bean Germplasm against Cercospora Leaf Spot and Its In-Vitro Management by Different Fungicides. Pak. J. Agric. Res. 2020, 33, 872–877. [Google Scholar] [CrossRef]
- Shahzady, M.; Ahmad, T.; Moosa, A.; Khan, W.; Naeem, I.; Nasir, M.; Aslam Khan, M.; Hin, P. A General Review of Cercospora Leaf Spot Disease of Mungbean and Its Management. Int. J. Sci. Res. 2017, 5, 1–84. [Google Scholar] [CrossRef]
- Chand, R.; Singh, V.; Pal, C.; Kumar, P.; Kumar, M. First Report of a New Pathogenic Variant of Cercospora canescens on Mungbean (Vigna radiata L.) from India. New Dis. Reports. 2012, 26, 6. [Google Scholar] [CrossRef]
- Das, A.; Gupta, S.; Parihar, A.K.; Singh, D.; Chand, R.; Pratap, A.; Dayamoy, K.; Pati, K.; Kushwaha, S. Delineating Genotype × Environment Interactions towards Durable Resistance in Mungbean against Cercospora Leaf Spot (Cercospora Canescens) Using GGE Biplot. Plant Breed. 2019, 00, 1–12. [Google Scholar] [CrossRef]
- Rehman, A.U.; Khan, M.E.; Akhtar, K.P.; Kaukab, S.; Saeed, S.; Asghar, M.J.; Salim, J. Identification of Sources of Disease Resistance To Mungbean Yellow Mosaic Virus (Mymv) and Cercospora Leaf Spot Disease (Cls) in Mungbean (Vigna radiata L.). Pak. J. Phytopathol. 2021, 33, 335–347. [Google Scholar] [CrossRef]
- Malik, L.; Atiq, M.; Rajput, N.A.; Usman, M.; Akram, A.; Jabbar, A.; Zahid, M.N.; Ahmad, W.; Qasim, M.W. Induction of Resistance in Mungbean Against Cercospora Leaf Spot Through Plant Defense Activators. Agric. Sci. J. 2023, 5, 28–34. [Google Scholar] [CrossRef]
- Jackson, G.; McKenzie, E. Pacific Pests, Pathogens, Weeds & Pesticides—Online Edition Yam Mosaic Virus Disease. 2022. No. 526. Available online: https://apps.lucidcentral.org/pppw (accessed on 22 March 2024).
- Kumar, N.; Kumar, S.; Satyadev, P.; Shivam, M. Cercospora Leaf Spot Disease of Green Gram and Its Management: A Review. J. Pharmacogn. Phytochem. 2020, 9, 1574–1576. [Google Scholar]
- Ilyas, S.; Ali, S.; Habib, A.; Ali, M.; Zeshan, M.A.; Iftikhar, Y.; Ghani, M.U.; Umair, M. Unveiling the factors affecting leaf spot disease in mungbean and its management. Pak. J. Agric. Research. 2023, 36, 147–154. [Google Scholar] [CrossRef]
- Braun, U.; Nakashima, C.; Crous, P.W. Cercosporoid fungi (Mycosphaerellaceae) 1. Species on other fungi, Pteridophyta and Gymnospermae. Ima Fungus. 2013, 4, 265–345. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.; Souframanien, J.; Chand, R.; Pawar, S.E. Genetic Diversity Study of Cercospora Canescens (Ellis & Martin) Isolates, the Pathogen of Cercospora Leaf Spot in Legumes. Curr. Sci. 2006, 90, 564–568. [Google Scholar]
- Batzer, J.C.; Singh, A.; Rairdin, A.; Chiteri, K.; Mueller, D.S. Mungbean: A Preview of Disease Management Challenges for an Alternative U.S. Cash Crop. J. Integr. Pest Manag. 2022, 13, 1–21. [Google Scholar] [CrossRef]
- Bhat, N.A.; Maheshwari, S.K.; Ahmad, S.; Beig, B.A.; Masoodi, S.D. Field evaluation of mung bean accessions against Cercospora leaf spot. Ann. Biol. 2008, 24, 1–4. [Google Scholar]
- Yadav, L.D.; Pandey, R.N.; Jaisani, P.; Gohel, N.M. Sources of Resistance in Mungbean Genotypes to Cercospora Leaf Spot Disease and Its Management. Afr. J. Agric. Res. 2014, 9, 3111–3114. [Google Scholar] [CrossRef]
- Akhtar, J.; Lal, H.C.; Kumar, Y.; Singh, P.K.; Ghosh, J.; Khan, Z.; Gautam, N.K. Multiple disease resistance in greengram and blackgram germplasm and management through chemicals under rain-fed conditions. Legume Res. 2014, 37, 101–109. [Google Scholar] [CrossRef]
- Nair, R.M.; Mahbubul Alam, A.; Douglas, C.; Gowda, A.; Pratap, A.; Mar Win, M.; Karimi, R.; Emmanuel, M.K.; Binagwa, P.; Boddepalli, V. Establishing the International Mungbean Improvement Network-Final Report (FR2021-086); Australian Centre for International Agricultural Research (ACIAR): Canberra, ATC, Australia, 2022; pp. 1–77.
- Babar, M.; Ijaz, S.; Haq, I.U.; Khan, M.S. Development of Molecular Marker Linked with Cercospora Leaf Spot (CLS) Disease Resistance in Vigna radiata, Cloning, and Expression for Evaluating Antifungal Activity against Cercospora Canescens. Phyton-Int. J. Exp. Bot. 2023, 92, 1289–1300. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, D.; Chauhan, S.; Dhillon, H.K.; Kumar, S.; Kumar, V.; Kapoor, R. Role of Omics Approaches in Vegetable Breeding for Insect Pest Resistance. SN Appl. Sci. 2023, 5, 1–8. [Google Scholar] [CrossRef]
- Khedher, M.B.; Ghedira, K.; Rolain, J.M.; Ruimy, R.; Croce, O. Application and Challenge of 3rd Generation Sequencing for Clinical Bacterial Studies. Int. J. Mol. Sci. 2022, 23, 1395. [Google Scholar] [CrossRef] [PubMed]
- Solanke, A.; Tribhuvan, K. Genomics: An Integrative Approach for Molecular Biology. Biotechnol. Prospect. 2015, 234–270. [Google Scholar]
- Qi, S.; Wang, J.; Zhang, Y.; Naz, M.; Afzal, M.R.; Du, D.; Dai, Z. Omics Approaches in Invasion Biology: Understanding Mechanisms and Impacts on Ecological Health. Plants 2023, 12, 1860. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Kirti, P.B. Transcriptomic and Proteomic Analyses of Resistant Host Responses in Arachis diogoi Challenged with Late Leaf Spot Pathogen, Phaeoisariopsis personata. PLoS ONE. 2015, 10, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Tugizimana, F.; Mhlongo, M.I.; Piater, L.A.; Dubery, I.A. Metabolomics in Plant Priming Research: The Way Forward? Int. J. Mol. Sci. 2018, 19, 1759. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, L.; Liu, Z.; Zhao, Z.; Zhao, J.; Wang, Z.; Zhou, G.; Liu, P.; Liu, M. Transcriptome and Metabolome Profiling Unveil the Mechanisms of Ziziphus Jujuba Mill. Peel Coloration. Food Chem. 2020, 312, 125903. [Google Scholar] [CrossRef] [PubMed]
- Shaw, R.K.; Shen, Y.; Wang, J.; Sheng, X.; Zhao, Z.; Yu, H.; Gu, H. Advances in Multi-Omics Approaches for Molecular Breeding of Black Rot Resistance in Brassica oleracea L. Front. Plant Sci. 2021, 12, 2553. [Google Scholar] [CrossRef] [PubMed]
- Jha, U.C.; Nayyar, H.; Parida, S.K.; Bakır, M.; von Wettberg, E.J.B.; Siddique, K.H.M. Progress of Genomics-Driven Approaches for Sustaining Underutilized Legume Crops in the Post-Genomic Era. Front. Genet. 2022, 13, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Saand, M.A.; Huang, L.; Abdelaal, W.B.; Zhang, J.; Wu, Y.; Li, J.; Sirohi, M.H.; Wang, F. Applications of Multi-Omics Technologies for Crop Improvement. Front. Plant Sci. 2021, 12, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Tabassum, J.; Kudapa, H.; Varshney, R.K. Can Omics Deliver Temperature Resilient Ready-to-Grow Crops? Crit. Rev. Biotechnol. 2021, 41, 1209–1232. [Google Scholar] [CrossRef] [PubMed]
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-Omics Approaches to Disease. Genome Biol. 2017, 18, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Scossa, F.; Alseekh, S.; Fernie, A.R. Integrating Multi-Omics Data for Crop Improvement. J. Plant Physiol. 2021, 257, 153352. [Google Scholar] [CrossRef] [PubMed]
- Jost, M.; Outram, M.A.; Dibley, K.; Zhang, J.; Luo, M.; Ayliffe, M. Plant and Pathogen Genomics: Essential Approaches for Stem Rust Resistance Gene Stacks in Wheat. Front. Plant Sci. 2023, 14, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Edet, I.A.; Afolabi, C.G.; Popoola, A.R.; Arogundade, O.; Akinbode, O.A. Identification and Molecular Characterisation of Cercospora Leaf Spot Disease Pathogen on Cowpea (Vigna unguiculata L. Walp). Arch. Phytopathol. Plant Prot. 2022, 55, 109–120. [Google Scholar] [CrossRef]
- Chankaew, S.; Somta, P.; Sorajjapinun, W.; Srinives, P. Quantitative Trait Loci Mapping of Cercospora Leaf Spot Resistance in Mungbean, Vigna radiata (L.) Wilczek. Mol. Breed. 2011, 28, 255–264. [Google Scholar] [CrossRef]
- Arsakit, K.; Banno, K. ISSR and SSR Markers Linked to Powdery Mildew and Cercospora Leaf Spot Resistance In Mungbean. Master’s Thesis, School of Crop Production Technology Institute of Agricultural Technology Suranaree University of Thailand, Nakhon Ratchasima, Thailand, 2019; pp. 1–61. [Google Scholar]
- Kang, Y.J.; Kim, S.K.; Kim, M.Y.; Lestari, P.; Kim, K.H.; Ha, B.K.; Jun, T.H.; Hwang, W.J.; Lee, T.; Lee, J. Genome Sequence of Mungbean and Insights into Evolution within Vigna Species. Nat. Commun. 2014, 5, 5443. [Google Scholar] [CrossRef] [PubMed]
- Yundaeng, C.; Somta, P.; Chen, J.; Yuan, X.; Chankaew, S.; Chen, X. Fine Mapping of QTL Conferring Cercospora Leaf Spot Disease Resistance in Mungbean Revealed TAF5 as Candidate Gene for the Resistance. Theor. Appl. Genet. 2020, 134, 701–714. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, J.P.; Samal, K.C.; Lenka, D.; Beura, S.K.; Behera, L.; Khamari, B.; Sawant, S.B. Assessment of Genetic Diversity for Cercospora Leaf Spot (CLS) Resistance in Mung Bean [Vigna radiata (L.) Wilczek] Using SSR Markers. Legum. Res. Int. J. 2022, 1–6. [Google Scholar] [CrossRef]
- Akhtar, M.A.; Aslam, M.; Schafleitner, R.; Atif, R.M.; Murtaza, G. Genetics of Cercospora Leaf Spot Resistance in Mung Bean. Sabrao J. Breed. Genet. 2023, 55, 1109–1122. [Google Scholar] [CrossRef]
- Choudhary, P.; Chand, R.; Singh, A.K. Genetics of Cercospora Leaf Spot Resistance in Mungbean [Vigna radiata (L.) Wilczek] through Generation Mean Analysis. Legum. Res. 2023, 46, 1526–1533. [Google Scholar] [CrossRef]
- Ahmad, A.; Razvi, S.M.; Rather, M.A.; Gulzafar; Dar, M.A.; Ganie, S.A. Association and Inter-Relationship among Yield and Yield Contributing Characters and Screening against Cercospora Leaf Spot in Mung Bean (Vigna radiata L.). Sci. Res. Essays. 2013, 8, 2008–2014. [Google Scholar] [CrossRef]
- Sharma, S.; Mittal, R.K.; Chaudhary, H.K.; Sood, V.K. Introgression of Disease Resistance in Urdbean (Vigna mungo) by Involving Its Related Species. Indian J. Agric. Sci. 2022, 92, 1348–1352. [Google Scholar] [CrossRef]
- Liu, M.; Sen; Kuo, T.C.Y.; Ko, C.Y.; Wu, D.C.; Li, K.Y.; Lin, W.J.; Lin, C.P.; Wang, Y.W.; Schafleitner, R.; et al. Genomic and Transcriptomic Comparison of Nucleotide Variations for Insights into Bruchid Resistance of Mungbean (Vigna radiata [L.] R. Wilczek). BMC Plant Biol. 2016, 16, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Koche, D.; Chaudhary, A.D. Defense Gene Expression of Vigna radiata (L.) Wilczek., against Cercospora Leaf Spots (CLS). Asian J. Res. Crop. Sci. 2019, 3, 1–8. [Google Scholar] [CrossRef]
- Bangar, P.; Tyagi, N.; Tiwari, B.; Kumar, S.; Barman, P.; Kumari, R.; Gaikwad, A.; Bhat, K.V.; Chaudhury, A. Identification and Characterization of SNPs in Released, Landrace and Wild Accessions of Mungbean (Vigna radiata (L.) Wilczek) Using Whole Genome Re-Sequencing. J. Crop. Sci. Biotechnol. 2021, 24, 153–165. [Google Scholar] [CrossRef]
- Fatokun, C.A.; Menancio-hautea, D.I.; Danesh, D.; Young, N.D. Evidence for OrthologousSeed Weight Genes in Cowpea and Mung Bean Based on RFLP Mapping. Genetics 1992, 132, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Young, N.D.; Kumar, L.; Menancio-Hautea, D.; Danesh, D.; Talekar, N.S.; Shanmugasundarum, S.; Kim, D.H. RFLP Mapping of a Major Bruchid Resistance Gene in Mungbean (Vigna radiata, L. Wilczek). Theor. Appl. Genet. 1992, 84, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Menancio-Hautea, D.; Fatokun, C.A.; Kumar, L.; Danesh, D.; Young, N.D. Comparative Genome Analysis of Mungbean (Vigna radiata L. Wilczek) and Cowpea (V. unguiculata L. Walpers) Using RFLP Mapping Data. Theor. Appl. Genet. 1993, 86, 797–810. [Google Scholar] [CrossRef] [PubMed]
- Young, N.D.; Danesh, D.; Menancio-Hautea, D.; Kumar, L. Mapping Oligogenic Resistance to Powdery Mildew in Mungbean with RFLPs. Theor. Appl. Genet. Int. J. Plant Breed. Res. 1993, 87, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Park, S.J.; Poysa, V.; Gepts, P. Integration of Simple Sequence Repeat (SSR) Markers Into a Molecular Linkage Map of Common Bean (Phaseolus vulgaris L.). J. Hered. 2000, 91, 429–432. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.V.; Tan, S.G.; Quah, S.C.; Yusoff, K. Isolation of Microsatellite Markers in Mungbean, Vigna radiata (L.). Mol. Ecol. Notes 2002, 2, 96–98. [Google Scholar] [CrossRef]
- Gwag, J.G.; Dixit, A.; Park, Y.J.; Ma, K.H.; Kwon, S.J.; Cho, G.T.; Lee, G.A.; Lee, S.Y.; Kang, H.K.; Lee, S.H. Assessment of Genetic Diversity and Population Structure in Mungbean. Genes Genom. 2010, 32, 299–308. [Google Scholar] [CrossRef]
- Taguchi, K.; Kubo, T.; Takahashi, H.; Abe, H. Identi Fi Cation and Precise Mapping of Resistant QTLs of Cercospora Leaf Spot Resistance in Sugar Beet (Beta vulgaris L.). G3 Genes|Genomes|Genetics 2011, 1, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Zhang, B.; Ding, W.; Liu, X.; Yang, D.L.; Wei, P.; Cao, F.; Zhu, S.; Zhang, F.; Mao, Y. Efficient Genome Editing in Plants Using a CRISPR/Cas System. Cell Res. 2013, 23, 1229–1232. [Google Scholar] [CrossRef]
- Shan, Q.; Wang, Y.; Li, J.; Zhang, Y.; Chen, K.; Liang, Z.; Zhang, K.; Liu, J.; Xi, J.J.; Qiu, J.L.; et al. Targeted Genome Modification of Crop Plants Using a CRISPR-Cas System. Nat. Biotechnol. 2013, 31, 686–688. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, Y.; Ma, L. Recent Advances in CRISPR/Cas9 and Applications for Wheat Functional Genomics and Breeding. aBIOTECH 2021, 2, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Bonagiri, G.; Gurjar, D.; Kuri, A.; Kumar Yella, V.; Author Ganesh Bonagiri, C. CRISPR/Cas9 Gene Editing Tool for Diseases Resistant Varieties. Pharma Innov. J. 2022, 11, 2731–2738. [Google Scholar]
- Elsharawy, H.; Refat, M. CRISPR/Cas9 Genome Editing in Wheat: Enhancing Quality and Productivity for Global Food Security—A Review. Funct. Integr. Genom. 2023, 23. [Google Scholar] [CrossRef] [PubMed]
- Sokolkova, A.; Burlyaeva, M.; Valiannikova, T.; Vishnyakova, M.; Schafleitner, R.; Lee, C.R.; Ting, C.T.; Nair, R.M.; Nuzhdin, S.; Samsonova, M.; et al. Genome-wide association study in accessions of the mini-core collection of mungbean (Vigna radiata) from the World Vegetable Gene Bank (Taiwan). BMC Plant Biol. 2020, 20, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kajonphol, T.; Sangsiri, C.; Somta, P.; Toojinda, T.; Srinives, P. SSR map construction and quantitative trait loci (QTL) identification of major agronomic traits in mungbean (Vigna radiata (L.) Wilczek). Sabrao J. Breed. Genet. 2012, 44, 71–86. [Google Scholar]
- Yundaeng, C.; Somta, P.; Chen, J.; Yuan, X.; Chankaew, S.; Srinives, P.; Chen, X. Candidate gene mapping reveals VrMLO12 (MLO Clade II) is associated with powdery mildew resistance in mungbean (Vigna radiata [L.] Wilczek). Plant Sci. 2020, 298, 110594. [Google Scholar] [CrossRef] [PubMed]
- Papan, P.; Chueakhunthod, W.; Jinagool, W.A.; Tharapreuksapong, A.; Masari, C.; Kaewkasi, S.; Ngampongsai, T.; Girdthaj, P.A. Improvement of Cercospora leaf spot and powdery mildew resistance of mungbean variety KING through marker-assisted selection. J. Agric. Sci. 2021, 159, 9–10, 676–687. [Google Scholar] [CrossRef]
- Talakayala, A.; Mekala, G.K.; Reddy, M.K.; Ankanagari, S.; Garladinne, M. Manipulating Resistance to Mungbean Yellow Mosaic Virus in Greengram (Vigna radiata L): Through CRISPR/Cas9 Mediated Editing of the Viral Genome. Front. Sustain. Food Syst. 2022, 6. [Google Scholar] [CrossRef]
- Lee, E.; Yang, X.; Ha, J.; Kim, M.Y.; Park, K.Y.; Lee, S.H. Identification of a Locus Controlling Compound Raceme Inflorescence in Mungbean [Vigna radiata (L.) R. Wilczek]. Front. Genet. 2021, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, K.; Singh, A. Strategies for the utilization of the USDA mung bean germplasm collection for breeding outcomes. Crop. Sci. 2021, 1, 422–442. [Google Scholar] [CrossRef]
- Chen; Hu, L.; Wang, S.; Wang, L.; Cheng, X.; Chen, H. Construction of High-Density Genetic Map and Identification of a Bruchid Resistance Locus in Mung Bean (Vigna radiata L.). Front. Genet. 2022, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Fatmawati, Y.; Setiawan, A.B.; Purwantoro, A.; Respatie, D.W.; Teo, C.H. Analysis of Genetic Variability in F2 Interspecific Hybrids of Mung Bean (Vigna radiata L.) Using Inter-Retrotransposon Amplified Polymorphism Marker System. Biodiversitas. 2021, 22, 4880–4889. [Google Scholar] [CrossRef]
- Zehra, A.; Raytekar, N.A.; Meena, M.; Swapnil, P. Efficiency of microbial bio-agents as elicitors in plant defense mechanism under biotic stress: A review. Curr. Res. Microb. Sci. 2021, 2, 100054. [Google Scholar] [CrossRef] [PubMed]
- Dubey, S.C.; Tripathi, A.; Tak, R. Expression of defense-related genes in mung bean varieties in response to Trichoderma virens alone and in the presence of Rhizoctonia solani infection. 3 Biotech 2018, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Singh, C.M.; Pratap, A.; Gupta, S.; Biradar, R.S.; Singh, N.P. Association Mapping for Mungbean Yellow Mosaic India Virus Resistance in Mungbean (Vigna radiata L. Wilczek). Biotech. 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Chankaew, S.; Somta, P.; Isemura, T.; Tomooka, N.; Kaga, A.; Vaughan, D.A.; Srinives, P. Quantitative Trait Locus Mapping Reveals Conservation of Major and Minor Loci for Powdery Mildew Resistance in Four Sources of Resistance in Mungbean [Vigna radiata (L.) Wilczek]. Mol. Breed. 2013, 32, 121–130. [Google Scholar] [CrossRef]
- Sompong, U.; Somta, P.; Raboy, V.; Srinives, P. Mapping of Quantitative Trait Loci for Phytic Acid and Phosphorus Contents in Seed and Seedling of Mungbean (Vigna radiata (L.) Wilczek). Breed. Sci. 2012, 62, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Papan, P.; Chueakhunthod, W.; Poolsawat, O.; Arsakit, K.; Tharapreuksapong, A.; Tantasawat, P.A. Validation of Molecular Markers Linked to Cercospora Leaf Spot Disease Resistance in Mungbean (Vigna radiata [L.] WILCZEK). Sabrao J. Breed. Genet. 2021, 53, 749–757. [Google Scholar] [CrossRef]
- Schafleitner, R.; Huang, S.M.; Chu, S.H.; Yen, J.Y.; Lin, C.Y.; Yan, M.R.; Krishnan, B.; Liu, M.S.; Lo, H.F.; Chen, C.Y. Identification of Single Nucleotide Polymorphism Markers Associated with Resistance to Bruchids (Callosobruchus spp.) in Wild Mungbean (Vigna radiata Var. Sublobata) and Cultivated V. Radiata through Genotyping by Sequencing and Quantitative Trait Locus A. BMC Plant Biol. 2016, 16, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Peng, L.; Ji, L.; Wang, S.; Wang, L.; Wu, J. Genome-Wise Association Study Identified Genomic Regions Associated with Drought Tolerance in Mungbean (Vigna radiata (L.) R. Wilczek). Theor. Appl. Genet. 2023, 136, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Wang; Li, J.; Liu, Z.; Yuan, X.; Wang, S.; Chen, H.; Chen, X.; Cheng, X.; Wang, L. Construction of a High-Density Genetic Map and Its Application for QTL Mapping of Leaflet Shapes in Mung Bean (Vigna radiata L.). Front. Genet. 2020, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Yang, Y.; Wang, P.; Zhang, Y.; Zhang, L.; Tian, D.; Zhang, L.; Zhang, L.; Zhou, B. InDel Marker Development and QTL Analysis of Agronomic Traits in Mung Bean [Vigna radiata (L.) Wilczek]. Mol. Breed. 2021, 41, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Huang, S.; Zhu, Z.; Ma, Y.; Yang, X.; Yao, L.; Gao, X.; Zhang, M.; Liu, W.; Qiu, L.; et al. Genome-Wide Association of Single Nucleotide Polymorphism Loci and Candidate Genes for Frogeye Leaf Spot (Cercospora Sojina) Resistance in Soybean. BMC Plant Biol. 2021, 21, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.; Lightfoot, D.A. Quantitative Trait Loci Underlying Partial Resistance to Cercospora Sojina Race 2 Detected in Soybean Seedlings in Greenhouse Assays. Atlas J. Biol. 2014, 3, 175–182. [Google Scholar] [CrossRef]
- Chen, L.; Liu, L.; Li, Z.; Zhang, Y.; Kang, M.S.; Wang, Y.; Fan, X. High-Density Mapping for Gray Leaf Spot Resistance Using Two Related Tropical Maize Recombinant Inbred Line Populations. Mol. Biol. Rep. 2021, 48, 3379–3392. [Google Scholar] [CrossRef] [PubMed]
- Mei, L.; Cheng, X.Z.; Wang, S.H.; Wang, L.X.; Liu, C.Y.; Sun, L.; Xu, N.; Humphry, M.E.; Lambrides, C.J.; Li, H.B. Relationship between Bruchid Resistance and Seed Mass in Mungbean Based on QTL Analysis. Genome 2009, 52, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wu, C.; Zhong, M.; Zhao, D.; Mei, L.; Chen, H.; Wang, S.; Liu, C.; Cheng, X. Construction of an Integrated Map and Location of a Bruchid Resistance Gene in Mung Bean. Crop. J. 2016, 4, 360–366. [Google Scholar] [CrossRef]
- Mathivathana, M.K.; Murukarthick, J.; Karthikeyan, A.; Jang, W.; Dhasarathan, M.; Jagadeeshselvam, N.; Sudha, M.; Vanniarajan, C.; Karthikeyan, G.; Yang, T.J. Detection of QTLs Associated with Mungbean Yellow Mosaic Virus (MYMV) Resistance Using the Interspecific Cross of Vigna radiata × Vigna umbellata. J. Appl. Genet. 2019, 60, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Poolsawat, O.; Kativat, C.; Arsakit, K.; Tantasawat, P.A. Identification of Quantitative Trait Loci Associated with Powdery Mildew Resistance in Mungbean Using ISSR and ISSR-RGA Markers. Mol. Breed. 2017, 37, 1–12. [Google Scholar] [CrossRef]
- Kitsanachandee, R.; Somta, P.; Chatchawankanphanich, O.; Akhtar, K.P.; Shah, T.M.; Nair, R.M.; Bains, T.S.; Sirari, A.; Kaur, L.; Srinives, P. Detection of Quantitative Trait Loci for Mungbean Yellow Mosaic India Virus (MYMIV) Resistance in Mungbean (Vigna radiata (L.) Wilczek) in India and Pakistan. Breed. Sci. 2013, 63, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Breria, C.M.; Hsieh, C.H.; Yen, T.B.; Yen, J.Y.; Noble, T.J.; Schafleitner, R. A SNP-Based Genome-Wide Association Study to Mine Genetic Loci Associated to Salinity Tolerance in Mungbean (Vigna radiata L.). Genes 2020, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.K.; Mittal, S.; Wankhede, D.P.; Parida, S.K.; Chattopadhyay, D.; Prasad, G.; Mishra, D.C.; Joshi, D.C.; Singh, M.; Singh, K. Transcriptome Analysis Reveals Key Pathways and Candidate Genes Controlling Seed Development and Size in Ricebean (Vigna umbellata). Front. Genet. 2022, 12, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.J.; Wang, L.; Fan, B.; Cao, Z.; Su, Q.; Zhang, Z.; Wang, Y.; Tian, J.; Wang, S. Quantitative Trait Locus Mapping under Irrigated and Drought Treatments Based on a Novel Genetic Linkage Map in Mungbean (Vigna radiata L.). Theor. Appl. Genet. 2017, 130, 2375–2393. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.K.M.; Somta, P.; Muktadir, M.A.; Srinives, P. Quantitative Trait Loci Associated with Seed Weight in Mungbean (Vigna radiata (L.) Wilczek. Kasetsart J. -Nat. Sci. 2014, 48, 197–204. [Google Scholar]
- Noble, T.J.; Tao, Y.; Mace, E.S.; Williams, B.; Jordan, D.R.; Douglas, C.A.; Mundree, S.G. Characterization of Linkage Disequilibrium and Population Structure in a Mungbean Diversity Panel. Front. Plant Sci. 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Amkul, K.; Laosatit, K.; Liu, J.; Yimram, T.; Chen, J.; Yuan, X.; Chen, X.; Somta, P. Fine mapping of QTL conferring resistance to calcareous soil in mungbean reveals VrYSL3 as candidate gene for the resistance. Plant Sci. 2023, 332, 111698. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, L.; Wang, S.; Liu, C.; Blair, M.W.; Cheng, X. Transcriptome Sequencing of Mung Bean (Vigna radiate L.) Genes and the Identification of EST-SSR Markers. PLoS ONE. 2015, 10, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Li, S.; Liu, Y.; Liu, X. Transcriptomic Profiling Reveals Metabolic and Regulatory Pathways in the Desiccation Tolerance of Mungbean (Vigna radiata [L.] R. Wilczek). Front. Plant Sci. 2016, 7, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Guo, X.; Li, Q.; Lu, Y.; Huang, W.; Zhang, F.; Chen, L.; Liu, R.H.; Yan, S. Integrated Transcriptomic and Metabolic Framework for Carbon Metabolism and Plant Hormones Regulation in Vigna radiata during Post-Germination Seedling Growth. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kumar Seema, R.; Kushwaha, A.; Rashid, M.H.; Tarannum, N.; Chakraborty, S. Mungbean (Vigna radiata (L.) Wilczek): Progress in Breeding and Future Challenges. Int. J. Plant Soil Sci. 2020, 34, 50–59. [Google Scholar] [CrossRef]
- Hu, H.; Feng, N.; Shen, X.; Zhao, L.; Zheng, D. Transcriptomic Analysis of Vigna radiata in Response to Chilling Stress and Uniconazole Application. BMC Genom. 2022, 23, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Sudha, M.; Karthikeyan, A.; Madhumitha, B.; Veera Ranjani, R.; Kanimoli Mathivathana, M.; Dhasarathan, M.; Murukarthick, J.; Samu Shihabdeen, M.N.; Eraivan Arutkani Aiyanathan, K.; Pandiyan, M. Dynamic Transcriptome Profiling of Mungbean Genotypes Unveil the Genes Respond to the Infection of Mungbean Yellow Mosaic Virus. Pathogens 2022, 11, 190. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yan, Q.; Yuan, X.; Lin, Y.; Chen, J.; Wu, R.; Xue, C.; Zhu, Y.; Chen, X. Two Polygalacturonase-Inhibiting Proteins (VrPGIP) of Vigna radiata Confer Resistance to Bruchids (Callosobruchus spp.). J. Plant Physiol. 2021, 258–259, 153376. [Google Scholar] [CrossRef]
- Lim, I.; Kang, M.; Kim, B.C.; Ha, J. Metabolomic and Transcriptomic Changes in Mungbean (Vigna radiata (L.) Wilczek) Sprouts under Salinity Stress. Front. Plant Sci. 2022, 13, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Al-Amrani, S.; Al-Jabri, Z.; Al-Zaabi, A.; Alshekaili, J.; Al-Khabori, M. Proteomics: Concepts and Applications in Human Medicine. World J. Biol. Chem. 2021, 12, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Chunkao, S.; Youravong, W.; Yupanqui, C.T.; Alashi, A.M.; Aluko, R.E. Structure and Function of Mung Bean Protein- Derived Iron-Binding Antioxidant Peptides. Foods 2020, 9, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Zaker, M. Natural Plant Products as Eco-Friendly Fungicides for Plant Diseases Control—A Review. Agriculturists 2016, 14, 134–141. [Google Scholar] [CrossRef]
- Yi-Shen, Z.; Shuai, S.; Fitzgerald, R. Mung Bean Proteins and Peptides: Nutritional, Functional and Bioactive Properties. Food Nutr. Res. 2018, 62, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Maurya, A.K.; Navathe, S.; Mohapatra, C.; Chand, R. Antioxidants Elevates the Resistance to Cercospora canescens in Interspecific Cross of Vigna radiata (Kopergaon) × Vigna mungo (Pant Urd 31). Indian Phytopathol. 2018, 71, 519–528. [Google Scholar] [CrossRef]
- Inayati, A.; Aini, L.Q.; Yusnawan, E. Growth Performance and Metabolic Changes in Susceptible Mung Bean [Vigna radiata (L.) Wilczek] during Interaction with Rhizoctonia Solani and Trichoderma Virens. Legum. Res. 2023, 46, 228–232. [Google Scholar] [CrossRef]
- Gan, R.; Wang, M.; Lui, W.; Wu, K.; Corke, H. Original Article Dynamic Changes in Phytochemical Composition and Antioxidant Capacity in Green and Black Mung Bean (Vigna radiata) Sprouts. Int. J. Food Sci. Technol. 2016, 51, 2090–2098. [Google Scholar] [CrossRef]
- Tiwari, U.; Servan, A.; Nigam, D. Comparative Study on Antioxidant Activity, Phytochemical Analysis and Mineral Composition of the Mung Bean (Vigna radiata L.) and Its Sprouts. J. Pharmacogn. Phytochem. 2017, 6, 336–340. [Google Scholar]
- Kabré, J.d.W.; Dah-Nouvlessounon, D.; Hama-Ba, F.; Agonkoun, A.; Guinin, F.; Sina, H.; Kohonou, A.N.; Tchogou, P.; Senou, M.; Savadogo, A.; et al. Mung Bean (Vigna radiata (L.) R. Wilczek) from Burkina Faso Used as Antidiabetic, Antioxidant and Antimicrobial Agent. Plants 2022, 11, 3556. [Google Scholar] [CrossRef] [PubMed]
- Świderska-Burek, U.; Daub, M.E.; Thomas, E.; Jaszek, M.; Pawlik, A.; Janusz, G. Phytopathogenic Cercosporoid Fungi—From Taxonomy to Modern Biochemistry and Molecular Biology. Int. J. Mol. Sci. 2020, 21, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, H.; Aftab, Z.E.H.; Anjum, T.; Ali, B.; Akram, W.; Bashir, U.; Mirza, F.S.; Aftab, M.; Ali, M.D.; Li, G. Bio-Fabrication of Zinc Oxide Nanoparticles to Rescue Mung Bean against Cercospora Leaf Spot Disease. Front. Plant Sci. 2022, 13, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Chitayat, S.; Rudan, J.F. Phenome Centers and Global Harmonization; Elsevier Inc.: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Bhavyasri, T.; Delvadiya, I.R.; Ginoya, A.V. Breeding of Physiological Traits and Improving the Productivity of Green Gram (Vigna radiata L. Wilczek). Pharma J. 2022, 11, 2591–2601. [Google Scholar]
- Ninomiya, S. High-Throughput Field Crop Phenotyping: Current Status and Challenges. Breed. Sci. 2022, 72, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Jamie, C.S.M.; Spicer, J.I.; Ibbini, Z.; Tills, O. Phenomics as an Approach to Comparative Developmental Physiology. Front. Physiol. 2023, 14, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Wang, X.; Kumar, U.; Gao, L.; Noor, M.; Imtiaz, M.; Singh, R.P.; Poland, J. High-Throughput Phenotyping Enabled Genetic Dissection of Crop Lodging in Wheat. Front. Plant Sci. 2019, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Lee, C.; Hong, S.; Kim, S.L.; Baek, J.; Kim, K.H. High-Throughput Phenotyping Methods for Breeding Drought-Tolerant Crops. Int. J. Mol. Sci. 2021, 22, 8266. [Google Scholar] [CrossRef] [PubMed]
- Pratap, A.; Gupta, S.; Nair, R.M.; Gupta, S.K.; Schafleitner, R.; Basu, P.S.; Singh, C.M.; Prajapati, U.; Gupta, A.K.; Nayyar, H.; et al. Using Plant Phenomics to Exploit the Gains of Genomics. Agronomy 2019, 9, 126. [Google Scholar] [CrossRef]
- Ngugi, H.N.; Ezugwu, A.E.; Akinyelu, A.A.; Abualigah, L. Revolutionizing Crop Disease Detection with Computational Deep Learning: A Comprehensive Review. Environ. Monit. Assess. 2024, 196, 302. [Google Scholar] [CrossRef] [PubMed]
- Azam, M.G.; Hossain, M.A.; Sarker, U.; Alam, A.K.M.; Nair, R.M.; Roychowdhury, R.; Ercisli, S.; Golokhvast, K.S. Genetic Analyses of Mungbean [Vigna radiata (L.) Wilczek] Breeding Traits for Selecting Superior Genotype(s) Using Multivariate and Multi-Traits Indexing Approaches. Plants 2023, 12, 1984. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, X.; Chen, D.; Hou, J.; Liu, T. Real-Time and Visual Detection of Cercospora canescens Based on the Cytb Gene Using Loop-Mediated Isothermal Amplification (LAMP). Can. J. Plant Pathol. 2021, 43, 551–558. [Google Scholar] [CrossRef]
- Ramesh, S.M.; Vinod, P.V.; Niveditha, M.; Pooja, R.; Prasad Bhat, N.; Shashank, N.; Hebbar, R. Plant Disease Detection Using Machine Learning. In Proceedings of the 2018 International Conference on Design Innovations for 3Cs Compute Communicate Control (ICDI3C), Bangalore, India, 25–28 April 2018; pp. 41–45. [Google Scholar] [CrossRef]
- Naik, H.S.; Zhang, J.; Lofquist, A.; Assefa, T.; Sarkar, S.; Ackerman, D.; Singh, A.; Singh, A.K.; Ganapathysubramanian, B. A Real-Time Phenotyping Framework Using Machine Learning for Plant Stress Severity Rating in Soybean. Plant Methods 2017, 13, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Van Haeften, S.; Dudley, C.; Kang, Y.; Smith, D.; Nair, R.M.; Douglas, C.A.; Potgieter, A.; Robinson, H.; Hickey, L.T.; Smith, M.R. Building a Better Mungbean: Breeding for Reproductive Resilience in a Changing Climate. Food Energy Secur. 2023, 12, 1–18. [Google Scholar] [CrossRef]
- Anim-Ayeko, A.O.; Schillaci, C.; Lipani, A. Automatic Blight Disease Detection in Potato (Solanum tuberosum L.) and Tomato (Solanum lycopersicum, L. 1753) Plants Using Deep Learning. Smart Agric. Technol. 2023, 4, 100178. [Google Scholar] [CrossRef]
- Abud, H.F.; de Souza Mesquita, C.M.; Sarmento, E.C.S.; de Sá Melo, R.; de Lima, K.A.P.; da Silva, A.K.F. Image Analysis of the Seeds and Seedlings of Vigna radiata L. Rev. Cienc. Agron. 2022, 53, 1–9. [Google Scholar] [CrossRef]
- McDonald, S.C.; Buck, J.; Li, Z. Automated, image-based disease measurement for phenotyping resistance to soybean frogeye leaf spot. Plant Methods. 2022, 18, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Prashant, K. A Review on High Throughput Phenotyping for Vegetable Crops. J. Bot. Res. 2023, 6, 170–175. [Google Scholar] [CrossRef]
- Wang, G.; Sun, Y.; Wang, J. Automatic Image-Based Plant Disease Severity Estimation Using Deep Learning. Comput. Intell. Neurosci. 2017, 2017, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Jangra, S.; Chaudhary, V.; Yadav, R.C.; Yadav, N.R. High-Throughput Phenotyping: A Platform to Accelerate Crop Improvement. Phenomics 2021, 1, 31–53. [Google Scholar] [CrossRef] [PubMed]
- Rane, J.; Raina, S.K.; Govindasamy, V.; Bindumadhava, H.; Hanjagi, P.; Giri, R.; Jangid, K.K.; Kumar, M.; Nair, R.M. Use of Phenomics for Differentiation of Mungbean (Vigna radiata L. Wilczek) Genotypes Varying in Growth Rates Per Unit of Water. Front. Plant Sci. 2021, 12, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Miano, A.C.; Pereira, J.D.C.; Castanha, N.; Júnior, M.D.D.M.; Augusto, P.E.D. Enhancing Mung Bean Hydration Using the Ultrasound Technology: Description of Mechanisms and Impact on Its Germination and Main Components. Sci. Rep. 2016, 6, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Parmar, V.R.; Patel, B.H. Susceptibility of Mung Bean Varieties to Callosobruchus Chinensis under Storage Conditions. Legum. Res. 2016, 39, 637–642. [Google Scholar] [CrossRef]
- Fang, L.J.; Qin, R.L.; Liu, Z.; Liu, C.R.; Gai, Y.P.; Ji, X.L. Expression and Functional Analysis of a PR-1 Gene, MuPR1, Involved in Disease Resistance Response in Mulberry (Morus multicaulis). J. Plant Interact. 2019, 14, 376–385. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gudeta, T.B.; Keneni, G.; Figlan, S. Progress in the Use of Combined Omics for Mungbean Breeding Improvement and Its Potential in Promoting Resistance against Cercospora Leaf Spot. Int. J. Plant Biol. 2024, 15, 482-504. https://doi.org/10.3390/ijpb15020037
Gudeta TB, Keneni G, Figlan S. Progress in the Use of Combined Omics for Mungbean Breeding Improvement and Its Potential in Promoting Resistance against Cercospora Leaf Spot. International Journal of Plant Biology. 2024; 15(2):482-504. https://doi.org/10.3390/ijpb15020037
Chicago/Turabian StyleGudeta, Temesgen Bedassa, Gemechu Keneni, and Sandiswa Figlan. 2024. "Progress in the Use of Combined Omics for Mungbean Breeding Improvement and Its Potential in Promoting Resistance against Cercospora Leaf Spot" International Journal of Plant Biology 15, no. 2: 482-504. https://doi.org/10.3390/ijpb15020037
APA StyleGudeta, T. B., Keneni, G., & Figlan, S. (2024). Progress in the Use of Combined Omics for Mungbean Breeding Improvement and Its Potential in Promoting Resistance against Cercospora Leaf Spot. International Journal of Plant Biology, 15(2), 482-504. https://doi.org/10.3390/ijpb15020037