Acute Effects of Albuterol on Ventilatory Capacity in Children with Asthma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pulmonary Function Test
2.2. Cardiopulmonary Exercise Test (CPET)
2.3. Estimated Ventilatory Capacity
2.4. Breathing Reserve
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Albouaini, K.; Egred, M.; Alahmar, A.; Wright, D.J. Cardiopulmonary exercise testing and its application. Postgrad. Med. J. 2007, 83, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Babb, T.G. Mechanical ventilatory constraints in aging, lung disease, and obesity: Perspectives and brief review. Med. Sci. Sports Exerc. 1999, 31, S12–S22. [Google Scholar] [CrossRef] [PubMed]
- Bateman, E.D.; Hurd, S.S.; Barnes, P.J.; Bousquet, J.; Drazen, J.M.; FitzGerald, J.M.; Gibson, P.; Ohta, K.; O’Byrne, P.; Pedersen, S.E.; et al. Global strategy for asthma management and prevention: GINA executive summary. Eur. Respir. J. 2008, 31, 143–178. [Google Scholar] [CrossRef] [PubMed]
- Op’t Holt, T.B. Inhaled beta agonists. Respir. Care 2007, 52, 820–832. [Google Scholar] [PubMed]
- American Thoracic Society; American College of Chest Physicians. ATS/ACCP Statement on Cardiopulmonary Exercise Testing. Am. J. Respir. Crit. Care Med. 2003, 167, 211–277. [Google Scholar] [CrossRef] [PubMed]
- Dillard, T.A.; Hnatiuk, O.W.; McCumber, T.R. Maximum voluntary ventilation. Spirometric determinants in chronic obstructive pulmonary disease patients and normal subjects. Am. Rev. Respir. Dis. 1993, 147, 870–875. [Google Scholar] [CrossRef] [PubMed]
- Carter, R.; Peavler, M.; Zinkgraf, S.; Williams, J.; Fields, S. Predicting maximal exercise ventilation in patients with chronic obstructive pulmonary disease. Chest 1987, 92, 253–259. [Google Scholar] [CrossRef]
- Klas, J.V.; Dempsey, J.A. Voluntary versus reflex regulation of maximal exercise flow: Volume loops. Am. Rev. Respir. Dis. 1989, 139, 150–156. [Google Scholar] [CrossRef]
- Jensen, J.I.; Lyager, S.; Pedersen, O.F. The relationship between maximal ventilation, breathing pattern and mechanical limitation of ventilation. J. Physiol. 1980, 309, 521–532. [Google Scholar] [CrossRef]
- Colwell, K.L.; Bhatia, R. Calculated versus Measured MVV-Surrogate Marker of Ventilatory CPET. Med. Sci. Sports Exerc. 2017, 49, 1987–1992. [Google Scholar] [CrossRef]
- Babb, T.G.; Rodarte, J.R. Estimation of ventilatory capacity during submaximal exercise. J. Appl. Physiol. 1993, 74, 2016–2022. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, R.G., Jr.; Phillips, N.E.; Wolski, G. Maximum voluntary ventilation prediction from the velocity-volume loop. Dis. Chest 1963, 43, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Wilhite, D.P.; Bhammar, D.M.; Balmain, B.N.; Martinez-Fernandez, T.; Babb, T.G. Inhaled albuterol increases estimated ventilatory capacity in nonasthmatic children without and with obesity. Respir. Physiol. Neurobiol. 2021, 285, 103597. [Google Scholar] [CrossRef] [PubMed]
- Nourry, C.; Deruelle, F.; Fabre, C.; Baquet, G.; Bart, F.; Grosbois, J.M.; Berthoin, S.; Mucci, P. Evidence of ventilatory constraints in healthy exercising prepubescent children. Pediatr. Pulmonol. 2006, 41, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Parsons, J.P.; Hallstrand, T.S.; Mastronarde, J.G.; Kaminsky, D.A.; Rundell, K.W.; Hull, J.H.; Storms, W.W.; Weiler, J.M.; Cheek, F.M.; Wilson, K.C.; et al. An official American Thoracic Society clinical practice guideline: Exercise-induced bronchoconstriction. Am. J. Respir. Crit. Care Med. 2013, 187, 1016–1027. [Google Scholar] [CrossRef] [PubMed]
- Blake, K.; Pearlman, D.S.; Scott, C.; Wang, Y.; Stahl, E.; Arledge, T. Prevention of exercise-induced bronchospasm in pediatric asthma patients: A comparison of salmeterol powder with albuterol. Ann. Allergy Asthma Immunol. 1999, 82, 205–211. [Google Scholar] [CrossRef]
- Abaya, R.; Delgado, E.M.; Scarfone, R.J.; Reardon, A.M.; Rodio, B.; Simpkins, D.; Mehta, V.; Hayes, K.; Zorc, J.J. Improving efficiency of pediatric emergency asthma treatment by using metered dose inhaler. J. Asthma 2019, 56, 1079–1086. [Google Scholar] [CrossRef]
- Ross, N.A.; Wong, M.W.; Kechkarian, A.L.; Gould, D.J.; Nakamura, C.; Bhammar, D.M. Bronchodilation Increases Estimated Ventilatory Capacity In Children With Mild Asthma. Med. Sci. Sports Exerc. 2020, 52, 832. [Google Scholar] [CrossRef]
- ACSM’s Guidelines for Exercise Testing and Prescription, 9th ed.; Pescatello, L. (Ed.) Wolters Kluwer/Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; p. 173. [Google Scholar]
- Thomas, S.; Reading, J.; Shephard, R.J. Revision of the Physical Activity Readiness Questionnaire (PAR-Q). Can. J. Sport Sci. 1992, 17, 338–345. [Google Scholar]
- van Veen, W.J.; Driessen, J.M.M.; Kersten, E.T.G.; van Leeuwen, J.C.; Brusse-Keizer, M.G.J.; van Aalderen, W.M.C.; Thio, B.J. BMI predicts exercise induced bronchoconstriction in asthmatic boys. Pediatr. Pulmonol. 2017, 52, 1130–1134. [Google Scholar] [CrossRef]
- Morris, N.M.; Udry, J.R. Validation of a self-administered instrument to assess stage of adolescent development. J. Youth Adolesc. 1980, 9, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Crapo, R.O.; Casaburi, R.; Coates, A.L.; Enright, P.L.; Hankinson, J.L.; Irvin, C.G.; MacIntyre, N.R.; McKay, R.T.; Wanger, J.S.; Anderson, S.D.; et al. Guildelines for methacholine and exercise challenge testing-1999. Am. J. Respir. Crit. Care Med. 2000, 161, 309–329. [Google Scholar] [CrossRef] [PubMed]
- Coates, A.L.; Wanger, J.; Cockcroft, D.W.; Culver, B.H.; Bronchoprovocation Testing Task Force; Kai-Hakon, C.; Diamant, Z.; Gauvreau, G.; Hall, G.L.; Hallstrand, T.S.; et al. ERS technical standard on bronchial challenge testing: General considerations and performance of methacholine challenge tests. Eur. Respir. J. 2017, 49, 1601526. [Google Scholar] [CrossRef] [PubMed]
- Radtke, T.; Crook, S.; Kaltsakas, G.; Louvaris, Z.; Berton, D.; Urquhart, D.S.; Kampouras, A.; Rabinovich, R.A.; Verges, S.; Kontopidis, D.; et al. ERS statement on standardisation of cardiopulmonary exercise testing in chronic lung diseases. Eur. Respir. Rev. 2019, 28, 180101. [Google Scholar] [CrossRef] [PubMed]
- Pellegrino, R.; Viegi, G.; Brusasco, V.; Crapo, R.O.; Burgos, F.; Casaburi, R.; Coates, A.; van der Grinten, C.P.; Gustafsson, P.; Hankinson, J.; et al. Interpretative strategies for lung function tests. Eur. Respir. J. 2005, 26, 948–968. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [PubMed]
- Quanjer, P.H.; Stanojevic, S.; Cole, T.J.; Baur, X.; Hall, G.L.; Culver, B.H.; Enright, P.L.; Hankinson, J.L.; Ip, M.S.; Zheng, J.; et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: The global lung function 2012 equations. Eur. Respir. J. 2012, 40, 1324–1343. [Google Scholar] [CrossRef]
- Olsen, C.; Hale, F. A method for interpreting acute response to bronchodilators from the spirogram. Am. Rev. Respir. Dis. 1968, 98, 301–302. [Google Scholar]
- Bussamra, M.H.; Cukier, A.; Stelmach, R.; Rodrigues, J.C. Evaluation of the magnitude of the bronchodilator response in children and adolescents with asthma. Chest 2005, 127, 530–535. [Google Scholar] [CrossRef]
- Milanese, M.; Saporiti, R.; Bartolini, S.; Pellegrino, R.; Baroffio, M.; Brusasco, V.; Crimi, E. Bronchodilator effects of exercise hyperpnea and albuterol in mild-to-moderate asthma. J. Appl. Physiol. 2009, 107, 494–499. [Google Scholar] [CrossRef]
- Mickleborough, T.D.; Lindley, M.R.; Turner, L.A. Comparative effects of a high-intensity interval warm-up and salbutamol on the bronchoconstrictor response to exercise in asthmatic athletes. Int. J. Sports Med. 2007, 28, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Rossman, M.J.; Petrics, G.; Klansky, A.; Craig, K.; Irvin, C.G.; Haverkamp, H.C. Exercise-induced Bronchodilation Equalizes Exercise Ventilatory Mechanics despite Variable Baseline Airway Function in Asthma. Med. Sci. Sports Exerc. 2022, 54, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Freeman, J.V.; Dewey, F.E.; Hadley, D.M.; Myers, J.; Froelicher, V.F. Autonomic nervous system interaction with the cardiovascular system during exercise. Prog. Cardiovasc. Dis. 2006, 48, 342–362. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M. The β-adrenoceptor. Am. J. Respir. Crit. Care Med. 1998, 158, S146–S153. [Google Scholar] [CrossRef]
- Proskocil, B.J.; Fryer, A.D. β2-agonist and anticholinergic drugs in the treatment of lung disease. Proc. Am. Thorac. Soc. 2005, 2, 305–310. [Google Scholar] [CrossRef]
- De Fuccio, M.B.; Nery, L.E.; Malaguti, C.; Taguchi, S.; Dal Corso, S.; Neder, J.A. Clinical role of rapid-incremental tests in the evaluation of exercise-induced bronchoconstriction. Chest 2005, 128, 2435–2442. [Google Scholar] [CrossRef]
- Brashier, B.; Salvi, S. Measuring lung function using sound waves: Role of the forced oscillation technique and impulse oscillometry system. Breathe 2015, 11, 57–65. [Google Scholar] [CrossRef]
n = 15 | |
---|---|
Age | 10.6 ± 0.9 |
Sex (M,F) | 11,4 |
Tanner (Stages 1,2,3) | 6,5,4 |
Height (cm) | 143.6 ± 6.6 |
Body mass (kg) | 41.1 ± 12.1 |
BMI (kg/m2) | 19.73 ± 4.73 |
BMI (Z score) | 0.59 ± 0.97 |
BMI (% ile) | 64.86 ± 25.29 |
Medications | |
Inhaled steroids (n) | 7 |
LABA (n) | 2 |
Leukotriene Receptor Antagonist (n) | 7 |
LAMA (n) | 1 |
SABA only (n) | 3 |
No meds (n) | 1 |
Spirometry | |
FVC (L) | 2.70 ± 0.41 |
FVC (% pred) | 112.55 ± 13.70 |
FEV1 (L) | 2.11 ± 0.35 |
FEV1 (% pred) | 101.90 ± 16.79 |
FEV1/FVC | 78.20 ± 6.59 |
FEF25–75 (L/s) | 2.00 ± 0.60 |
FEF25–75 (% pred) | 81.70 ± 25.79 |
PEF (L/s) | 4.51 ± 0.82 |
PEF (% pred) | 89.44 ± 13.15 |
Maximal exercise | |
Work rate (W) | 95 ± 20 |
O2 (L/min) | 1.51 ± 0.38 |
O2 (ml/kg/min) | 38.33 ± 10.11 |
O2 (% pred) | 103.03 ± 18.15 |
CO2 (L/min) | 1.69 ± 0.43 |
RER | 1.11 ± 0.06 |
E (L/min) | 53.6 ± 14.5 |
VT (L) | 1.12 ± 0.24 |
fB (/min) | 49 ± 11 |
VT (%FVC) | 41.49 ± 6.16 |
Heart rate (bpm) | 186 ± 14 |
SpO2 (%) * | 97.9 ± 1.4 |
RPB (Borg 0–10 scale) | 5.3 ± 2.8 |
RPE (Borg 6–20 scale) | 16.5 ± 1.9 |
n = 15 | Baseline | After Albuterol | After CPET | p Value | Post Hoc |
---|---|---|---|---|---|
Ventilatory capacity (L/min) | 60.9 ± 22.0 | 68.7 ± 21.2 | 75.8 ± 25.6 | 0.0003 | a,b,c |
Breathing reserve (%) | −3.6 ± 55.1 | 13.4 ± 51.3 | 16.1 ± 46.6 | 0.0034 | a,b |
FVC (L) | 2.71 ± 0.46 | 2.70 ± 0.44 | 2.75 ± 0.45 | 0.3673 | |
FVC (% pred) | 113 ± 15 | 113 ± 13 | 115 ± 14 | 0.4007 | |
FEV1 (L) | 2.15 ± 0.42 | 2.21 ± 0.41 | 2.31 ± 0.48 | 0.0005 | b,c |
FEV1 (% pred) | 104 ± 20 | 107 ± 19 | 112 ± 21 | 0.0138 | b,c |
isoFEF25–75 (L/min) | 2.05 ± 0.74 | 2.43 ± 0.73 | 2.69 ± 0.92 | <0.0001 | a,b,c |
isoFEF25–75 (% pred) | 84 ± 32 | 100 ± 31 | 110 ± 39 | 0.0024 | a,b,c |
PEF (L/min) | 4.50 ± 1.17 | 4.59 ± 0.80 | 4.96 ± 0.79 | 0.1079 | |
isoFET25–75 (s) | 0.75 ± 0.27 | 0.63 ± 0.29 | 0.62 ± 0.25 | 0.0088 | a,b |
RPB: Pearson’s r | p Value | |
---|---|---|
Max Ttot | −0.739 | 0.002 |
Max fB | 0.736 | 0.002 |
Max Ti | −0.697 | 0.004 |
Breathing reserve (%) | ||
After incremental exercise | −0.592 | 0.020 |
Baseline | −0.589 | 0.021 |
After albuterol | −0.475 | 0.074 |
isoFEF25–75 (after albuterol) | −0.539 | 0.038 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, M.W.H.; Chien, L.-C.; Bhammar, D.M. Acute Effects of Albuterol on Ventilatory Capacity in Children with Asthma. Pediatr. Rep. 2024, 16, 46-56. https://doi.org/10.3390/pediatric16010005
Wong MWH, Chien L-C, Bhammar DM. Acute Effects of Albuterol on Ventilatory Capacity in Children with Asthma. Pediatric Reports. 2024; 16(1):46-56. https://doi.org/10.3390/pediatric16010005
Chicago/Turabian StyleWong, Michael W. H., Lung-Chang Chien, and Dharini M. Bhammar. 2024. "Acute Effects of Albuterol on Ventilatory Capacity in Children with Asthma" Pediatric Reports 16, no. 1: 46-56. https://doi.org/10.3390/pediatric16010005
APA StyleWong, M. W. H., Chien, L. -C., & Bhammar, D. M. (2024). Acute Effects of Albuterol on Ventilatory Capacity in Children with Asthma. Pediatric Reports, 16(1), 46-56. https://doi.org/10.3390/pediatric16010005