The Effect of Electroencephalography Abnormalities on Cerebral Autoregulation in Sedated Ventilated Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Setting
2.3. Participants
2.4. Procedures
2.5. Data Acquisition and Processing
2.6. EEG Analysis
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vavilala, M.S.; Lee, L.A.; Boddu, K.; Visco, E.; Newell, D.W.; Zimmerman, J.J.; Lam, A.M. Cerebral autoregulation in pediatric traumatic brain injury. Pediatr. Crit. Care Med. 2004, 5, 257–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panerai, R.B.; Kerins, V.; Fan, L.; Yeoman, P.M.; Hope, T.; Evans, D.H. Association between dynamic cerebral autoregulation and mortality in severe head injury. Br. J. Neurosurg. 2004, 18, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Lara, L.; Zorrilla-Vaca, A.; Geocadin, R.G.; Healy, R.J.; Ziai, W.; Mirski, M.A. Cerebral Autoregulation-oriented Therapy at the Bedside: A Comprehensive Review. Anesthesiology 2017, 126, 1187–1199. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, J.E.; Young, A.M.H.; Brady, K. Autoregulation in paediatric TBI-current evidence and implications for treatment. Child’s Nerv. Syst. 2017, 33, 1735–1744. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Ortega-Gutierrez, S.; Petersen, N.H. Autoregulation in the Neuro ICU. Curr. Treat. Options Neurol. 2018, 20, 20. [Google Scholar] [CrossRef] [PubMed]
- Kontos, H.A.; Wei, E.P.; Navari, R.M.; Levasseur, J.E.; Rosenblum, W.I.; Patterson, J.L., Jr. Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am. J. Physiol. 1978, 234, H371–H383. [Google Scholar] [CrossRef] [PubMed]
- Scheeren, T.W.; Schober, P.; Schwarte, L.A. Monitoring tissue oxygenation by near-infrared spectroscopy (NIRS): Background and current applications. J. Clin. Monit. Comput. 2012, 26, 279–287. [Google Scholar] [CrossRef] [Green Version]
- Moerman, A.T.; Vanbiervliet, V.M.; Van Wesemael, A.; Bouchez, S.M.; Wouters, P.F.; De Hert, S.G. Assessment of Cerebral Autoregulation Patterns with Near-infrared Spectroscopy during Pharmacological-induced Pressure Changes. Anesthesiology 2015, 123, 327–335. [Google Scholar] [CrossRef] [Green Version]
- Zeiler, F.A.; Donnelly, J.; Menon, D.K.; Smielewski, P.; Zweifel, C.; Brady, K.; Czosnyka, M. Continuous Autoregulatory Indices Derived from Multi-Modal Monitoring: Each One Is Not Like the Other. J. Neurotrauma 2017, 34, 3070–3080. [Google Scholar] [CrossRef]
- Moerman, A.; De Hert, S. Recent advances in cerebral oximetry. Assessment of cerebral autoregulation with near-infrared spectroscopy: Myth or reality? F1000Research 2017, 6, 1615. [Google Scholar] [CrossRef]
- Brady, K.M.; Mytar, J.O.; Lee, J.K.; Cameron, D.E.; Vricella, L.A.; Thompson, W.R.; Hogue, C.W.; Easley, R.B. Monitoring cerebral blood flow pressure autoregulation in pediatric patients during cardiac surgery. Stroke 2010, 41, 1957–1962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ono, M.; Zheng, Y.; Joshi, B.; Sigl, J.C.; Hogue, C.W. Validation of a stand-alone near-infrared spectroscopy system for monitoring cerebral autoregulation during cardiac surgery. Anesth. Analg. 2013, 116, 198–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joram, N.; Beqiri, E.; Pezzato, S.; Andrea, M.; Robba, C.; Liet, J.M.; Chenouard, A.; Bourgoin, P.; Czosnyka, M.; Léger, P.L.; et al. Continuous Monitoring of Cerebral Autoregulation in Children Supported by Extracorporeal Membrane Oxygenation: A Pilot Study. Neurocrit. Care 2021, 34, 935–945. [Google Scholar] [CrossRef] [PubMed]
- Herman, S.T.; Abend, N.S.; Bleck, T.P.; Chapman, K.E.; Drislane, F.W.; Emerson, R.G.; Gerard, E.E.; Hahn, C.D.; Husain, A.M.; Kaplan, P.W.; et al. Consensus statement on continuous EEG in critically ill adults and children, part I: Indications. J. Clin. Neurophysiol. 2015, 32, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Bourel-Ponchel, E.; Mahmoudzadeh, M.; Delignières, A.; Berquin, P.; Wallois, F. Non-invasive, multimodal analysis of cortical activity, blood volume and neurovascular coupling in infantile spasms using EEG-fNIRS monitoring. Neuroimage Clin. 2017, 15, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Chegondi, M.; Francis, T.; Lin, W.C.; Naqvi, S.; Raszynski, A.; Totapally, B.R. Effects of Closed Endotracheal Suctioning on Systemic and Cerebral Oxygenation and Hemodynamics in Children. Pediatr. Crit. Care Med. 2018, 19, e23–e30. [Google Scholar] [CrossRef]
- Brady, K.M.; Lee, J.K.; Kibler, K.K.; Smielewski, P.; Czosnyka, M.; Easley, R.B.; Koehler, R.C.; Shaffner, D.H. Continuous time-domain analysis of cerebrovascular autoregulation using near-infrared spectroscopy. Stroke 2007, 38, 2818–2825. [Google Scholar] [CrossRef] [Green Version]
- Steiner, L.A.; Pfister, D.; Strebel, S.P.; Radolovich, D.; Smielewski, P.; Czosnyka, M. Near-infrared spectroscopy can monitor dynamic cerebral autoregulation in adults. Neurocrit. Care 2009, 10, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Britton, J.W.; Frey, L.C.; Hopp, J.L.; Korb, P.; Koubeissi, M.Z.; Lievens, W.E.; Pestana-Knight, E.M.; St. Louis, E.K. Electroencephalography (EEG): An Introductory Text and Atlas of Normal and Abnormal Findings in Adults, Children, and Infants; St. Louis, E.K., Frey, L.C., Eds.; American Epilepsy Society: Chicago, IL, USA, 2016. [Google Scholar]
- Wallois, F.; Patil, A.; Héberlé, C.; Grebe, R. EEG-NIRS in epilepsy in children and neonates. Neurophysiol. Clin. 2010, 40, 281–292. [Google Scholar] [CrossRef]
- Abramo, T.J.; McKinney, S.; Moore, J.; Jacobs, R.; Albert, G.; Meredith, M.; Porter, N.H.; Storm, E.; Willis, E.; Gonzalez, C.V.; et al. Hemispheric Cerebral Oximetry Monitoring During Pediatric Seizure Activity in a Pediatric Emergency Department. Pediatr. Emerg. Care 2020, 36, e513–e526. [Google Scholar] [CrossRef]
- Watanabe, E.; Nagahori, Y.; Mayanagi, Y. Focus diagnosis of epilepsy using near-infrared spectroscopy. Epilepsia 2002, 43 (Suppl. S9), 50–55. [Google Scholar] [CrossRef] [PubMed]
- Shichiri, M.; Tanabe, T.; Hara, K.; Suzuki, S.; Wakamiya, E.; Tamai, H. Usefulness of near-infrared spectroscopy for identification of epileptic foci in two localization-related epilepsy patients. No Hattatsu Brain Dev. 2001, 33, 475–479. [Google Scholar]
- Vavilala, M.S.; Lee, L.A.; Lee, M.; Graham, A.; Visco, E.; Lam, A.M. Cerebral autoregulation in children during sevoflurane anaesthesia. Br. J. Anaesth. 2003, 90, 636–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, C.D.; Gottfried, O.N.; Gupta, D.K.; Couldwell, W.T. Total intravenous anesthesia: Advantages for intracranial surgery. Neurosurgery 2007, 61 (Suppl. S2), 369–377. [Google Scholar] [CrossRef]
- Thorat, J.D.; Wang, E.C.; Lee, K.K.; Seow, W.T.; Ng, I. Barbiturate therapy for patients with refractory intracranial hypertension following severe traumatic brain injury: Its effects on tissue oxygenation, brain temperature and autoregulation. J. Clin. Neurosci. 2008, 15, 143–148. [Google Scholar] [CrossRef]
- Rhee, C.J.; da Costa, C.S.; Austin, T.; Brady, K.M.; Czosnyka, M.; Lee, J.K. Neonatal cerebrovascular autoregulation. Pediatr. Res. 2018, 84, 602–610. [Google Scholar] [CrossRef]
- Caldas, J.R.; Haunton, V.J.; Panerai, R.B.; Hajjar, L.A.; Robinson, T.G. Cerebral autoregulation in cardiopulmonary bypass surgery: A systematic review. Interact. Cardiovasc. Thorac. Surg. 2018, 26, 494–503. [Google Scholar] [CrossRef] [PubMed]
EEG Group | EEG Rhythm | N (%) |
---|---|---|
EEG-normal | Normal physiological | 244 (63.9) |
Prolonged suppression due to sedative effect | 113 (29.6) | |
EEG-abnormal | Burst suppression Periodic lateral epileptiform discharges Increased activity other than seizure | 8 (2.1) |
12 (3.1) | ||
5 (1.3) | ||
Total | 382 (100%) |
Concordance Threshold Value | EEG Normal | EEG Abnormal | p-Value |
---|---|---|---|
0.2 | 2 (2–3) | 2 (1–3) | 0.097 |
0.3 | 2 (1–3) | 2 (1–2.5) | 0.096 |
0.4 | 2 (1–2) | 1 (0.5–2) | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chegondi, M.; Lin, W.-C.; Naqvi, S.; Sendi, P.; Totapally, B.R. The Effect of Electroencephalography Abnormalities on Cerebral Autoregulation in Sedated Ventilated Children. Pediatr. Rep. 2023, 15, 9-15. https://doi.org/10.3390/pediatric15010002
Chegondi M, Lin W-C, Naqvi S, Sendi P, Totapally BR. The Effect of Electroencephalography Abnormalities on Cerebral Autoregulation in Sedated Ventilated Children. Pediatric Reports. 2023; 15(1):9-15. https://doi.org/10.3390/pediatric15010002
Chicago/Turabian StyleChegondi, Madhuradhar, Wei-Chiang Lin, Sayed Naqvi, Prithvi Sendi, and Balagangadhar R. Totapally. 2023. "The Effect of Electroencephalography Abnormalities on Cerebral Autoregulation in Sedated Ventilated Children" Pediatric Reports 15, no. 1: 9-15. https://doi.org/10.3390/pediatric15010002
APA StyleChegondi, M., Lin, W. -C., Naqvi, S., Sendi, P., & Totapally, B. R. (2023). The Effect of Electroencephalography Abnormalities on Cerebral Autoregulation in Sedated Ventilated Children. Pediatric Reports, 15(1), 9-15. https://doi.org/10.3390/pediatric15010002