Maternal Risk Factors Triggering Congenital Heart Defects in Down Syndrome: A Case-Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Designs
2.2. Participants
Genotyping of MTHFR and MTRR Gene
2.3. Risk Calculation and Statistical Analysis
3. Results
3.1. Maternal Risk Factors for the Occurrence of CHD in DS
3.2. Significance of Folic Acid Supplementation during Pregnancy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asim, A.; Ashok, K.; Srinivasan, M.; Shalu, J.; Sarita, A. Down syndrome: An insight of the disease. J. Biomed. Sci. 2015, 22, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mourato, F.A.; Villachan, L.R.R.; de Silva Mattos, S. Prevalence and profile of congenital heart disease and pulmonary hypertension in Down syndrome in a pediatric cardiology service. Rev. Paul. Pediatr. 2014, 32, 159–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bermudez, B.E.B.V.; Medeiros, S.L.; Bermudez, M.B.; Novadzki, I.M.; Magdalena, N.I.R. Down syndrome: Prevalence and distribution of congenital heart disease in Brazil. São Paulo Med. J. 2015, 133, 621–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergstrom, S.; Carr, H.; Ptereson, G.; Stephansson, O.; Bonamy, A.K.E.; Dahlström, A.; Halvorsen, C.P.; Johansson, S. Trends in congenital heart defects in infants with Down syndrome. Pediatrics 2016, 138, e20160123. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Morris, J.K. Trends in maternal age distribution and the live birth prevalence of Down’s syndrome in England and Wales: 1938–2010. Eur. J. Hum. Genet. 2013, 21, 943–947. [Google Scholar] [CrossRef]
- Somasundaram, A.; Ramkumar, P. Study on Congenital Cardiac Defects of Down Syndrome Children. J. Pediatr. Infants 2018, 1, 7–10. [Google Scholar]
- Best, K.E.; Rankin, J. Is advanced maternal age a risk factor for congenital heart disease? Birth Defects Res. Part A Clin. Mol. Teratol. 2016, 106, 461–467. [Google Scholar] [CrossRef]
- Schulkey, C.E.; Regmi, S.D.; Magnan, R.A.; Danzo, M.T.; Hutchinson, A.K.; Luther, H.; Panzer, A.A.; Wilson, D.B.; Jay, P.Y. Maternal Age is a Modifiable Risk Factor for Congenital Heart Disease. Circulation 2014, 130, A18016. [Google Scholar]
- Kloster, S.; Tolstrup, J.S.; Olsen, M.S.; Johnsen, S.P.; Søndergaard, L.; Nielsen, D.G.; Ersbøll, A.K. Neonatal Risk in Children of Women with Congenital Heart Disease: A Cohort Study With Focus on Socioeconomic Status. J. Am. Heart Assoc. 2019, 8, e013491. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, S.; Zhao, L.; Yu, D.; Hu, L.; Mo, X. Maternal reproductive history and the risk of congenital heart defects in offsprings: A systemic review and metaanalysis. Pediatr. Cardiol. 2015, 36, 253–263. [Google Scholar] [CrossRef]
- Coppedè, F. The genetics of folate metabolism and maternal risk of birth of a child with Down syndrome and associated congenital heart defects. Front. Genet. 2015, 6, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, B.; Qiu, J.; Zhao, N.; Shao, Y.; Dai, W.; He, X.; Cui, H.; Lin, X.; Lv, L.; Tang, Z.; et al. Maternal folic acid supplementation and dietary folate intake and congenital heart defects. PLoS ONE 2017, 12, e0187996. [Google Scholar] [CrossRef] [PubMed]
- Babić Božović, I.; Stanković, A.; Živković, M.; Vraneković, J.; Kapović, M.; Brajenović-Milić, B. Altered LINE-1 methylation in mothers of children with Down syndrome. PLoS ONE 2015, 10, e0127423. [Google Scholar] [CrossRef] [PubMed]
- Meijer, W.M.; Werler, M.M.; Louik, C.; Hernandez-Diaz, S.; de Jong-van den Berg, L.T.; Mitchell, A.A. Can folic acid protect against congenital heart defects in Down Syndrome? Birth Defects Res. Part A Clin. Mol. Teratol. 2006, 76, 714–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chéhab, G.; Chokor, I.; Fakhouri, H.; Hage, G.; Saliba, Z.; El-Rassi, I. Congenital heart disease, maternal age and parental consanguinity in children with Down’s syndrome. Leban. Med. J. 2007, 55, 133–137. [Google Scholar]
- Chan, A.; McCaul, K.A.; Keane, R.J.; Haan, E.A. Effect of parity, gravidity, previous miscarriage, and age on risk of Down’s syndrome: Population based study. BMJ 1998, 317, 923–924. [Google Scholar] [CrossRef] [Green Version]
- Asim, A.; Agarwal, S.; Panigrahi, I. MTRR gene variants may predispose to the risk of Congenital Heart Disease in Down syndrome patients of Indian origin. Egypt. J. Med. Hum. Genet. 2017, 18, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.N.; Wang, H.D.; Tie, L.Z.; Li, T.; Xiao, H.; Long, J.G.; Liao, S.X. Parental Genetic Variants, MTHFR 677C>T and MTRR 66A>G, Associated Differently with Fetal Congenital Heart Defect. BioMed Res. Int. 2017, 2017, 3043476. [Google Scholar] [CrossRef] [Green Version]
- Sukla, K.K.; Jaiswal, S.K.; Rai, A.K.; Mishra, O.P.; Gupta, V.; Kumar, A.; Raman, R. Role of folate-homocysteine pathway gene polymorphisms and nutritional cofactors in Down syndrome: A triad study. Hum. Reprod. 2015, 30, 1982–1993. [Google Scholar] [CrossRef] [Green Version]
- Xu, A.; Wang, W.; Jiang, X. The roles of MTRR and MTHFR gene polymorphisms in congenital heart diseases: A meta-analysis. Biosci. Rep. 2018, 38, BSR20181160. [Google Scholar] [CrossRef]
- Wang, X.; Wei, H.; Tian, Y.; Wu, Y.; Luo, L. Genetic variation in folate metabolism is associated with the risk of conotruncal heart defects in a Chinese population. BMC Pediatr. 2018, 18, 287. [Google Scholar] [CrossRef] [PubMed]
- Xuan, C.; Li, H.; Zhao, J.X.; Wang, H.W.; Wang, Y.; Ning, C.P.; Liu, Z.; Zhang, B.B.; He, G.W.; Lun, L.M. Association Between MTHFR Polymorphisms and Congenital Heart Disease: A Meta-analysis based on 9, 329 cases and 15,076 controls. Sci. Rep. 2015, 4, 7311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, N.N.; Chen, X.L.; Liu, Z.; Li, X.H.; Deng, Y.; Zhu, J. Maternal Abortion History and the Risk of Congenital Heart Defects. A Case-Control Study. J. Reprod. Med. 2015, 60, 236–242. [Google Scholar] [PubMed]
Gene (Variants) | Primers | Annealing Temperature (Ta °C) | Amplicon Size (bp) | Restrictions Enzymes |
---|---|---|---|---|
MTHFR (C677T) | F-5′-CCTTGAACAGGTGGAGGCCAG-3′ R-5′-GCGGTGAGAGTGGGGTGGAG-3′. | 65 | 196 | Hinf I |
MTHFR (A1298C) | F-5′-CTTTGGGGAGCTGAAGGACTACTA-3′ R-5′-CACTTTGTGACCATTCCGGTTTG-3′ | 62 | 163 | Mbo II |
MTRR (C524T) | F-5′-GTCAAGCAGAGGACAAGAG-3′ R-5′-AGAGACTCCTGCAGATGTAC-3′ | 60 | 247 | Xho I |
MTRR (A66G) | F-5′-GCAAAGGCCATCGCAGAAGACAT-3′ R-5′-AAACGGTAAACGGTAAAATCCACTGT-3′ | 60 | 126 | Nde I |
Maternal Risk | Group I (N = 40) n (%) | Group II (N = 60) n (%) | Group III (N = 50) n (%) |
---|---|---|---|
Maternal Age | |||
≥35 | 26 (65) | 25 (42) | 20 (40) |
<35 | 14 (35) | 35 (58) | 30 (60) |
Folic Acid supplementation | 21 (52) | 39 (65) | 45 (90) |
Miscarriages | 21 (52) | 5 (8.3) | 1 (2) |
Folic Acid Users vs. Non-Users | with CHD | without CHD | OR (p-Value, 95% CI) |
---|---|---|---|
USERS | |||
MTHFR CC | 12 | 28 | 1.909 (0.2538, 0.628 ± 5.79) |
MTHFR TT + CT | 09 | 11 | |
NON-USERS | |||
MTHFR CC | 11 | 19 | 6.909 (0.027, 1.23 ± 38.51) |
MTHFR TT + CT | 08 | 02 | |
USERS | |||
MTHFR AA | 15 | 33 | 2.20 |
MTHFR AC + CC | 06 | 06 | 0.22 (0.608 ± 7.95) |
NON-USERS | |||
MTHFR AA | 10 | 14 | 3.08 |
MTHFR AC + CC | 11 | 05 | (0.098, 0.812 ± 11.67) |
USERS | |||
MTRR CC | 12 | 31 | 2.90 (0.07, 0.90 ± 9.29) |
MTRR CT + TT | 09 | 08 | |
NON-USERS | |||
MTRR CC | 12 | 19 | 4.75 (0.040, 1.067 ± 21.44) |
MTRR CT + TT | 09 | 03 | |
USERS | |||
MTRR AA | 14 | 26 | 1.0 (1.0, 0.32 ± 3.08) |
MTRR AG + GG | 07 | 13 | |
NON-USERS | |||
MTRR AA | 14 | 18 | 9 (0.05, 0.988 ± 81.93) |
MTRR AG + GG | 07 | 01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asim, A.; Agarwal, S.; Dean, D.D. Maternal Risk Factors Triggering Congenital Heart Defects in Down Syndrome: A Case-Control Study. Pediatr. Rep. 2022, 14, 99-105. https://doi.org/10.3390/pediatric14010015
Asim A, Agarwal S, Dean DD. Maternal Risk Factors Triggering Congenital Heart Defects in Down Syndrome: A Case-Control Study. Pediatric Reports. 2022; 14(1):99-105. https://doi.org/10.3390/pediatric14010015
Chicago/Turabian StyleAsim, Ambreen, Sarita Agarwal, and Deepika Delsa Dean. 2022. "Maternal Risk Factors Triggering Congenital Heart Defects in Down Syndrome: A Case-Control Study" Pediatric Reports 14, no. 1: 99-105. https://doi.org/10.3390/pediatric14010015
APA StyleAsim, A., Agarwal, S., & Dean, D. D. (2022). Maternal Risk Factors Triggering Congenital Heart Defects in Down Syndrome: A Case-Control Study. Pediatric Reports, 14(1), 99-105. https://doi.org/10.3390/pediatric14010015