Microbial Diversity and Metabolite Changes in Greenhouse Soil Continuously Cropped with Morchella
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.1.1. Strains and Cultivation
2.1.2. Soil Sample Collection
2.2. Experimental Methods
2.2.1. Analysis of Soil Physicochemical Properties
2.2.2. High-Throughput Illumina Sequencing of Soil Microbes
2.2.3. Soil LC-MS Untargeted Metabolomics Analysis
2.3. Statistical Analysis
3. Results
3.1. Differences in Soil Physicochemical Properties
3.2. Soil Microbial Diversity and Composition
3.3. Differential Analysis of Soil Microorganisms and Key Biological Biomarkers
3.4. Soil Microbial Interactions
3.5. Metabolome Composition Analysis
3.6. Analysis of Differentially Accumulated Metabolites
3.7. KEGG Enrichment Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Q.; Ma, H.; Zhang, Y.; Dong, C. Artificial cultivation of true morels: Current state, issues and perspectives. Crit. Rev. Biotechnol. 2018, 38, 259–271. [Google Scholar] [CrossRef]
- Sambyal, K.; Singh, R.V. A comprehensive review on Morchella importuna: Cultivation aspects, phytochemistry, and other significant applications. Folia Microbiol. 2021, 66, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Sunil, C.; Xu, B. Mycochemical profile and health-promoting effects of morel mushroom Morchella esculenta (L.)—A review. Food Res. Int. 2022, 159, 111571. [Google Scholar] [CrossRef]
- Tan, F. History, present situation and prospect of artificial cultivation of morels. Edible Med. Mushrooms 2016, 24, 140–144. [Google Scholar]
- Yu, F.M.; Jayawardena, R.S.; Thongklang, N.; Lv, M.L.; Zhu, X.T.; Zhao, Q. Morel production associated with soil nitrogen-fixing and nitrifying microorganisms. J. Fungi 2022, 8, 299. [Google Scholar] [CrossRef]
- Liu, W.; He, P.; Shi, X.; Zhang, Y.; Perez-Moreno, J.; Yu, F. Large-scale field cultivation of Morchella and relevance of basic knowledge for its steady production. J. Fungi 2023, 9, 855. [Google Scholar] [CrossRef]
- Du, X. Review on species resources, resproductive modes and genetic diversity of black morels. J. Fungal Res. 2019, 17, 240–251. [Google Scholar] [CrossRef]
- Liu, W.; Cai, Y.; Ma, X.; He, P. Evaluation system of cultivating suitability for the productive strains of Morchella mushrooms. J. Light. Ind. 2022, 37, 50–57. [Google Scholar] [CrossRef]
- Chen, B.; Shao, G.; Zhou, T.; Fan, Q.; Yang, N.; Cui, M.; Zhang, J.; Wu, X.; Zhang, B.; Zhang, R. Dazomet changes microbial communities and improves morel mushroom yield under continuous cropping. Front. Microbiol. 2023, 14, 1200226. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.; Chen, Z.; He, P.; Liu, W.; Zhang, W.; Cao, X. Allelopathic effects of phenolic acid extracts on Morchella mushrooms, pathogenic fungus, and soil-dominant fungus uncover the mechanism of morel continuous cropping obstacle. Arch. Microbiol. 2024, 206, 55. [Google Scholar] [CrossRef]
- Tan, H.; Liu, T.; Yu, Y.; Tang, J.; Jiang, L.; Martin, F.M.; Peng, W. Morel production related to soil microbial diversity and evenness. Microbiol. Spectr. 2021, 9, e0022921. [Google Scholar] [CrossRef]
- Zhang, F.; Long, L.; Hu, Z.; Yu, X.; Liu, Q.; Bao, J.; Long, Z. Analyses of artificial morel soil bacterial community structure and mineral element contents in ascocarp and the cultivated soil. Can. J. Microbiol. 2019, 65, 738–749. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sun, S.; Luo, D.; Mao, P.; Rosazlina, R.; Martin, F.; Xu, L. Decline in morel production upon continuous cropping is related to changes in soil mycobiome. J. Fungi 2023, 9, 492. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.Y.; Guo, H.B.; Bi, K.X.; Alekseevna, S.L.; Qi, X.J.; Yu, X.D. Determining why continuous cropping reduces the production of the morel Morchella sextelata. Front. Microbiol. 2022, 13, 903983. [Google Scholar] [CrossRef]
- Yao, C.; Yu, P.; Yang, J.; Liu, J.; Zi, Z.; Li, D.; Liang, M.; Tian, G. Differences in soil microflora between the two chinese geographical indication products of "Tricholoma matsutake shangri-la" and " T. matsutake nanhua". Agronomy 2024, 14, 4. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Mulvaney, R.L.; Khan, S.A. Diffusion methods to determine different forms of nitrogen in soil hydrolysates. Soil Sci. Soc. Am. J. 2001, 65, 1284–1292. [Google Scholar] [CrossRef]
- Truog, E. The determination of the readily available phosphorus soils. J. Am. Soc. Agron. 1930, 22, 874. [Google Scholar] [CrossRef]
- Ieggli, C.V.S.; Bohrer, D.; Do Nascimento, P.C.; De Carvalho, L.M. Determination of sodium, potassium, calcium, magnesium, zinc and iron in emulsified chocolate samples by flame atomic absorption spectrometry. Food Chem. 2011, 124, 1189–1193. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Stackebrandt, E.; Goebel, B.M. Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology. Int. J. Syst. Bacteriol. 1994, 44, 846–849. [Google Scholar] [CrossRef]
- Wang, Q. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 2009, 75, 7537. [Google Scholar]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef]
- He, M.Y.; Shen, C.; Zhang, J.H.; Wang, Y.D. Effects of continuous cropping on the physiochemical properties, pesticide residues, and microbial community in the root zone soil of Lycium barbarum. Huan Jing Ke Xue 2024, 45, 5578–5590. [Google Scholar] [CrossRef]
- Li, C.; Chen, G.; Zhang, J.; Zhu, P.; Bai, X.; Hou, Y.; Zhang, X. The comprehensive changes in soil properties are continuous cropping obstacles associated with American ginseng (Panax quinquefolius) cultivation. Sci. Rep. 2021, 11, 5068. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Yi, Z.; Qian, W.; Liu, H.; Jiang, X. Rotations improve the diversity of rhizosphere soil bacterial communities, enzyme activities and tomato yield. PLoS ONE 2023, 18, e0270944. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Peng, X.; Yuan, Y.; Zhou, X.; Huang, J.; Wang, H. The effect of Torreya grandis inter-cropping with Polygonatum sibiricum on soil microbial community. Front. Microbiol. 2024, 15, 1487619. [Google Scholar] [CrossRef]
- Liang, B.; Wang, G.; Zhao, Y.; Chen, K.; Li, S.; Jiang, J. Facilitation of bacterial adaptation to chlorothalonil-contaminated sites by horizontal transfer of the chlorothalonil hydrolytic dehalogenase gene. Appl. Environ. Microbiol. 2011, 77, 4268–4272. [Google Scholar] [CrossRef]
- Heng, Z.C.; Nath, J.; Liu, X.; Ong, T.M. Induction of chromosomal aberrations by 2,4-dichloro-6-aminophenol in cultured V79 cells. Teratog. Carcinog. Mutagen. 1996, 16, 81–87. [Google Scholar] [CrossRef]
- Heng, Z.C.; Ong, T.; Nath, J. In vitro studies on the genotoxicity of 2,4-dichloro-6-nitrophenol ammonium (DCNPA) and its major metabolite. Mutat. Res. 1996, 368, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Maddigapu, P.R.; Minella, M.; Vione, D.; Maurino, V.; Minero, C. Modeling phototransformation reactions in surface water bodies: 2,4-dichloro-6-nitrophenol as a case study. Environ. Sci. Technol. 2011, 45, 209–214. [Google Scholar] [CrossRef]
- Ma, Z.; Guan, Z.; Liu, Q.; Hu, Y.; Liu, L.; Wang, B.; Huang, L.; Li, H.; Yang, Y.; Han, M.; et al. Obstacles in continuous cropping: Mechanisms and control measures. Adv. Agron. 2023, 179, 205–256. [Google Scholar] [CrossRef]
Sample ID | pH | Organic Matter | Hydrolyzed N | Available P | Available K | Total Porosity | Moisture |
---|---|---|---|---|---|---|---|
dNC | 6.95 | 28.8 | 150 | 37.1 | 600 | 55.3 | 17.7 |
dCC | 6.87 | 34.8 | 166 | 37.7 | 508 | 56.8 | 20.1 |
Sample ID | dNC-1 | dNC-2 | dNC-3 | dCC-1 | dCC-2 | dCC-3 |
---|---|---|---|---|---|---|
Bacteria | 96.31% | 95.35% | 95.74% | 95.76% | 96.01% | 95.99% |
Fungi | 98.29% | 97.74% | 97.86% | 98.33% | 97.92% | 97.92% |
Node | Positive Edge | Negative Edge | Average Degree | Modularity | Average Clustering Coefficient | Average Path Distance | Hub Nodes | |
---|---|---|---|---|---|---|---|---|
dNC bacteria | 406 | 1751 | 2626 | 21.56 | 0.43 | 0.476 | 2.302 | 45 |
dCC bacteria | 374 | 2216 | 2375 | 24.55 | 0.53 | 0.469 | 2.598 | 13 |
dNC fungi | 216 | 247 | 338 | 5.42 | 0.42 | 0.188 | 3.161 | 27 |
dCC fungi | 243 | 357 | 435 | 6.52 | 0.37 | 0.245 | 2.773 | 41 |
Metabolite | Log2FC | VIP | Up/Down Regulate |
---|---|---|---|
2,4,5-Trichloro-6-Hydroxybenzene-1,3-Dicarbonitrile | 0.46 ** | 4.44 | ↑ |
Beta-L-Dioxolane-cytidine | 0.34 ** | 2.67 | ↑ |
Dopamine quinone | 0.13 ** | 2.34 | ↑ |
Sonolisib | 0.10 ** | 1.92 | ↑ |
Pantothenic Acid | 0.12 ** | 1.91 | ↑ |
5-[(1-Iminoethyl)amino]-2-aminopentanoic acid | 0.10 ** | 1.84 | ↑ |
5-Deoxyribose-1-phosphate | 0.07 ** | 1.77 | ↑ |
Linoleic Acid | 0.12 * | 1.72 | ↑ |
9(S)-HpODE | 0.06 ** | 1.57 | ↑ |
Alcophosphamide | 0.07 ** | 1.54 | ↑ |
2,4-Dichloro-6-nitrophenol | 0.05 ** | 1.54 | ↑ |
Taurodehydrocholic acid | 0.07 ** | 1.52 | ↑ |
Aflatoxin B2 | 0.06 ** | 1.37 | ↑ |
11-Oxahexadecanolide | 0.06 ** | 1.30 | ↑ |
Prostaglandin A2 | 0.04 * | 1.14 | ↑ |
(6Z,9Z,11E,13S)-13-Hydroperoxyoctadeca-6,9,11-Trienoic Acid | 0.04 * | 1.10 | ↑ |
13-L-Hydroperoxylinoleic acid | 0.04 * | 1.08 | ↑ |
2,3,5-Trichlorodienelactone | 0.03 ** | 1.06 | ↑ |
Gardenin B | −0.27 * | 2.19 | ↓ |
QH2 | −0.21 * | 2.13 | ↓ |
Raffinose | −0.08 | 1.54 | ↓ |
Isoferulic acid | −0.08 * | 1.40 | ↓ |
Galactinol | −0.04 ** | 1.29 | ↓ |
Narirutin | −0.04 ** | 1.21 | ↓ |
Trinexapac-ethyl | −0.04 ** | 1.15 | ↓ |
Alpha-Methylene-Gamma-Butyrolactone | −0.05 ** | 1.10 | ↓ |
4-O-Methyl-12-O-tetradecanoylphorbol 13-acetate. | −0.03 ** | 1.07 | ↓ |
Urea- | −0.04 * | 1.01 | ↓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, P.; Tao, N.; Chen, W.; Zhang, J.; Yao, C.; Tian, G. Microbial Diversity and Metabolite Changes in Greenhouse Soil Continuously Cropped with Morchella. Microbiol. Res. 2025, 16, 205. https://doi.org/10.3390/microbiolres16090205
Yu P, Tao N, Chen W, Zhang J, Yao C, Tian G. Microbial Diversity and Metabolite Changes in Greenhouse Soil Continuously Cropped with Morchella. Microbiology Research. 2025; 16(9):205. https://doi.org/10.3390/microbiolres16090205
Chicago/Turabian StyleYu, Ping, Nan Tao, Weimin Chen, Jie Zhang, Chunxin Yao, and Guoting Tian. 2025. "Microbial Diversity and Metabolite Changes in Greenhouse Soil Continuously Cropped with Morchella" Microbiology Research 16, no. 9: 205. https://doi.org/10.3390/microbiolres16090205
APA StyleYu, P., Tao, N., Chen, W., Zhang, J., Yao, C., & Tian, G. (2025). Microbial Diversity and Metabolite Changes in Greenhouse Soil Continuously Cropped with Morchella. Microbiology Research, 16(9), 205. https://doi.org/10.3390/microbiolres16090205