Mechanisms of Cultivation Chronosequence on Distribution Characteristics of Arbuscular Mycorrhizal Fungi in Tea Plantations, South Henan, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design and Soil Sampling
Sampling Sites | Elevation (m) | Average Temperature (°C) |
---|---|---|
10a Tea Age | 151 | 19.0 |
30a Tea Age | 261 | 18.5 |
60a Tea Age | 308 | 17.9 |
100a Tea Age | 276 | 18.3 |
2.3. AM Fungal Indices
2.4. Soil Physicochemical Properties
2.5. Data Analysis
3. Results
3.1. Distribution of AM Fungal Indices Under Different Tea Cultivation Chronosequences
3.2. Soil Physiochemical Characteristics Under Different Tea Cultivation Chronosequences
3.3. Linear Regression Analysis of Cultivation Chronosequence with AM Fungal Indices and Soil Physiochemical Characteristics
3.4. Variance Partitioning Analysis (VPA) of AM Fungal Indices and Environmental Factors
3.5. Pearson Correlation and Redundancy Analysis (RDA) of AM Fungal Indices and Soil Physiochemical Characteristics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CC | Cultivation chronosequence |
MC | Mycorrhizal colonization of AM fungi |
SD | AM fungal spore density |
Hypha | Hypha biomass of AM fungi |
GRSP | Glomalin-related soil protein |
pH | Soil pH |
EC | Soil electrical conductivity |
Moisture | Soil gravimetric water content |
MAR | Soil microaggregates |
AP | Soil available phosphorus contents in bulk soils |
MAP | Soil available phosphorus contents in the microaggregates |
SOM | Soil organic matter contents in bulk soils |
MSOM | Soil organic matter contents in the microaggregates. |
SV | Standard value |
PCoA | Principal coordinate analysis |
PERMANOVA | Permutational multivariate analysis of variance |
HP | Hierarchical partitioning |
RDA | Redundancy analysis |
VPA | Variance partitioning analysis |
References
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: Cambridge, UK, 2008. [Google Scholar]
- Smith, S.E.; Smith, F.A.; Jakobsen, I. Mycorrhizal Fungi Can Dominate Phosphate Supply to Plants Irrespective of Growth Responses. Plant Physiol. 2011, 133, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Augé, R.M. Water Relations, Drought and Vesicular-Arbuscular Mycorrhizal Symbiosis. Mycorrhiza 2001, 11, 3–42. [Google Scholar] [CrossRef]
- Rillig, M.C.; Mummey, D.L. Mycorrhizas and Soil Structure. New Phytol. 2006, 171, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, A.W.; Farrell, R.E.; Walley, F.L.; Ross, A.R.S.; Leinweber, P.; Eckhardt, K.U.; Regier, T.Z.; Blyth, R.I.R. Glomalin-Related Soil Protein Contains Non-Mycorrhizal-Related Heat-Stable Proteins, Lipids and Humic Materials. Soil Biol. Biochem. 2011, 43, 766–777. [Google Scholar] [CrossRef]
- Van der Heijden, M.G.A.; Klironomos, J.N.; Ursic, M.; Moutoglis, P.; Streitwolf-Engel, R.; Boller, T.; Wiemken, A.; Sanders, I.R. Mycorrhizal Fungal Diversity Determines Plant Biodiversity, Ecosystem Variability and Productivity. Nature 1998, 396, 69–72. [Google Scholar] [CrossRef]
- Wang, S.Y.; Wei, H.; Chen, K.Y.; Dong, Q.; Ji, B.M.; Zhang, J. Practical methods for arbuscular mycorrhizal fungal spore density, hyphal density and colonization rate of AMF. Bio Protoc. 2021, 101, e2104253. (In Chinese) [Google Scholar] [CrossRef]
- Gosling, P.; Hodge, A.; Goodlass, G.; Bending, G.D. Arbuscular Mycorrhizal Fungi and Organic Farming. Agric. Ecosyst. Environ. 2006, 113, 17–35. [Google Scholar] [CrossRef]
- Li, S.J.; Barreiro, A.; Almeida, J.P.; Prade, T.; Mårtensson, L.M.D. Perennial Crops Shape the Soil Microbial Community and Increase the Soil Carbon in the Upper Soil Layer. Soil Biol. Biochem. 2025, 200, 109621. [Google Scholar] [CrossRef]
- Yan, P.; Shen, C.; Fan, L.C.; Li, X.; Zhang, L.P.; Zhang, L.; Han, W.Y. Tea Planting Affects Soil Acidification and Nitrogen and Phosphorus Distribution in Soil. Agric. Ecosyst. Environ. 2018, 254, 20–25. [Google Scholar] [CrossRef]
- Xiao, P.N.; Qian, J.P.; Yu, Q.Y.; Li, X.T.; Xu, J.; Liu, Y.J. Identify Tea Plantations Using Multidimensional Features Based on Multisource Remote Sensing Data: A Case Study of the Northwest Mountainous Area of Hubei Province. Remote Sens. 2025, 17, 908. [Google Scholar] [CrossRef]
- Alotaibi, M.O.; Saleh, A.M.; Sobrinho, R.L.; Sheteiwy, M.S.; El-Sawah, A.M.; Mohammed, A.E.; Elgawad, H.A. Arbuscular Mycorrhizae Mitigate Aluminum Toxicity and Regulate Proline Metabolism in Plants Grown in Acidic Soil. J. Fungi 2021, 7, 531. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.E.; Li, F.; Li, Y.D.; Duan, T.Y. Progress in the Elucidation of the Mechanisms of Arbuscular Mycorrhizal Fungi in Promotion of Phosphorus Uptake and Utilization by Plants. Pratacult. Sci. 2016, 33, 2379–2390. (In Chinese) [Google Scholar] [CrossRef]
- Duan, S.L.; Huo, Y.J.; Tian, Y.X.; Yan, W.H.; George, T.S.; Huang, C.D.; Feng, G.; Zhang, L. The Interplay of Direct and Mycorrhizal Pathways for Plants to Efficiently Acquire Phosphorus from Soil. Front. Agric. Sci. Eng. 2025, 12, 47–56. [Google Scholar] [CrossRef]
- Ling, C.J.; Zhou, Q.Y.; Wei, L.; Liang, D.X.; Gao, L.Y.; Liu, S.M.; Zhu, X.M. Effects of Different Conditioning Agents on Soil Chemical Properties and Tea Quality in Acidified Tea Gardens. Soils Crops 2024, 13, 85–97. (In Chinese) [Google Scholar] [CrossRef]
- Liu, Y.J.; Shi, G.X.; Mao, L.; Cheng, G.; Jiang, S.J.; Ma, X.J.; An, L.Z.; Du, G.Z.; Johnson, N.C.; Feng, H.Y. Direct and Indirect Influences of 8 yr of Nitrogen and Phosphorus Fertilization on Glomeromycota in an Alpine Meadow Ecosystem. New Phytol. 2012, 194, 523–535. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.L.; Pei, Y.C.; Huang, W.; Ding, J.Q.; Siemann, E. Increasing Flavonoid Concentrations in Root Exudates Enhance Associations Between Arbuscular Mycorrhizal Fungi and an Invasive Plant. ISME J. 2021, 15, 1919–1930. [Google Scholar] [CrossRef]
- He, F.; Li, D.H.; Bu, F. Analysis of Arbuscular Mycorrhizal Fungal Community Structure in the Rhizosphere of Different Tea Cultivars. J. Tea Sci. 2020, 40, 319–327. (In Chinese) [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.L.; Zhu, X.C.; Zhang, Y.; Yang, H.Y.; Dobbie, S.; Zhang, X.; Deng, A.X.; Qian, H.Y.; Zhang, W.J. Effects of Arbuscular Mycorrhizal Fungi on Crop Growth and Soil N2O Emissions in the Legume System. Agric. Ecosyst. Environ. 2021, 322, 107641. [Google Scholar] [CrossRef]
- Shen, X.T.; Tu, B.H.; Liu, C.Y.; Zhao, Y.; Ding, J.X.; Liang, Y.T. Mechanisms of Rhizosphere Microorganisms in Regulating Plant Root System Architecture in Acidic Soils. Environ. Sci. 2025, 46, 570–578. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Wang, Y.X.; Zhang, Q.Z.; Ning, S.Y.; Han, Y.Y.; Qi, N.; Zhang, Y. Research Advances on the Impact of Soil Disturbance on Soil Microorganisms. Environ. Prot. Circ. Econ. 2024, 44, 43–46. (In Chinese) [Google Scholar]
- Xiong, Y.L.; Shao, S.B.; Li, D.L.; Liu, H.; Xie, W.; Huang, W.; Li, J.; Nie, C.P.; Zhang, J.M.; Hong, Y.C.; et al. Exploring the Impact of Tea (Camellia sinensis (L.) O. Ktze.)/Trachelospermum jasminoides (Lindl.) Lem. Intercropping on Soil Health and Microbial Communities. Agronomy 2024, 14, 1261. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Wang, B.J.; Wang, G.W.; Zheng, Z.S.; Chen, Y.C.; Li, O.; Peng, Y.L.; Hu, X.F. Acidification Induce Chemical and Microbial Variation in Tea Plantation Soils and Bacterial Degradation of the Key Acidifying Phenolic Acids. Arch. Microbiol. 2024, 206, 239. [Google Scholar] [CrossRef] [PubMed]
- Pu, D.; Luo, Y.J.; Chen, H.Y.; Shi, M.; Lan, Z.Q. Effects of Long-Term Cultivation of Yunnan Large-Leaf Tea (Camellia sinensis var. assamica) on Soil Fungal Community Characteristics. Chin. J. Appl. Environ. Biol. 2023, 29, 440–448. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, Y. Analysis of Fungal Diversity Characteristics in Rhizosphere Soils of Wuyi Rock Tea Gardens with Different Elevations. Biotic Resour. 2024, 46, 467–477. (In Chinese) [Google Scholar] [CrossRef]
- Soudzilovskaia, N.A.; Douma, J.C.; Akhmetzhanova, A.A.; van Bodegom, P.M.; Cornwell, W.K.; Moens, E.J.; Treseder, K.K.; Tibbett, M.; Wang, Y.P.; Cornelissen, J.H.C. Global Patterns of Plant Root Colonization Intensity by Mycorrhizal Fungi Explained by Climate and Soil Chemistry. Glob. Ecol. Biogeogr. 2015, 24, 371–382. [Google Scholar] [CrossRef]
- Treseder, K.K. A Meta-Analysis of Mycorrhizal Responses to Nitrogen, Phosphorus, and Atmospheric CO2 in Field Studies. New Phytol. 2004, 164, 347–355. [Google Scholar] [CrossRef]
- Wang, Y.F.; Zhang, J.F.; Zhai, H.G. An Analysis of the Ecological Conditions in the Xinyang Tea-Producing Area. Acta Geogr. Sin. 1993, 48, 428–436. (In Chinese). Available online: https://www.geog.com.cn/CN/10.11821/xb199305006 (accessed on 15 September 1993).
- Wang, Y.S.; Liu, R.J. Species List of Arbuscular Mycorrhizal Fungi Based on the Latest Classification System of Glomeromycota. Mycosystema 2017, 36, 820–850. (In Chinese) [Google Scholar] [CrossRef]
- Phillips, J.M.; Hayman, D.S. Improved Procedures for Clearing Roots and Staining Parasitic and Vesicular Arbuscular Mycorrhizal Fungi for Rapid Assessment of Infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- Giovannetti, M.; Mosse, B. An Evaluation of Techniques for Measuring Vesicular Arbuscular Mycorrhizal Infection in Roots. New Phytol. 1980, 84, 489–500. [Google Scholar] [CrossRef]
- Schenck, N.C.; Perez, Y. Manual for the Identification of Vesicular-Arbuscular Mycorrhizal Fungi; INVAM: Gainesville, FL, USA, 1988. [Google Scholar]
- Wright, S.F.; Upadhyaya, A. Extraction of an Abundant and Unusual Protein from Soil and Comparison with Hyphal Protein of Arbuscular Mycorrhizal Fungi. Soil Sci. 1996, 161, 575–586. [Google Scholar] [CrossRef]
- Li, Q.; Wen, H.C.; Hu, C.R. Difference Between International and Domestic Methods in Determining Soil pH. Soils 2007, 39, 488–491. (In Chinese). Available online: http://soils.issas.ac.cn/tr/article/abstract/20070330 (accessed on 19 May 2017).
- Li, D.S.; Yang, J.S.; Zhou, J. Measurement and Conversion of Electrical Conductivity of Huang Huai Hai Plain Saline Leaching Solution. Chin. J. Soil Sci. 1996, 27, 285–287. (In Chinese) [Google Scholar] [CrossRef]
- Lu, R.K. Methods of Soil Agricultural Chemical Analysis; China Agricultural Science and Technology Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Guo, J.L.; Wang, H.Y.; Lu, S.G. Comparative Study on Methods for Determining Aggregate Stability of Subtropical Soils. Chin. J. Soil Sci. 2010, 41, 542–546. (In Chinese) [Google Scholar] [CrossRef]
- Zhu, W.Z.; Cai, X.H.; Liu, X.L.; Wang, J.X.; Cheng, S.; Zhang, X.Y.; Li, D.Y.; Li, M.H. Soil Microbial Population Dynamics Along a Chronosequence of Moist Evergreen Broad-Leaved Forest Succession in Southwestern China. J. Mt. Sci. 2010, 7, 327–338. [Google Scholar] [CrossRef]
- Pérez-Jaramillo, J.E.; Mendes, R.; Raaijmakers, J.M. Impact of Plant Domestication on Rhizosphere Microbiome Assembly and Functions. Plant Mol. Biol. 2016, 90, 635–644. [Google Scholar] [CrossRef]
- Korenblum, E.; Dong, Y.H.; Szymanski, J. Rhizosphere Microbiome Mediates Systemic Root Metabolite Exudation by Root-to-Root Signaling. Proc. Natl. Acad. Sci. USA 2020, 117, 3874–3883. [Google Scholar] [CrossRef]
- Bennett, A.E.; Groten, K. The Costs and Benefits of Plant-Arbuscular Mycorrhizal Fungal Interactions. Annu. Rev. Plant Biol. 2022, 73, 649–672. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Y.X.; Jia, F.C.; Meng, S.; Wang, S.K.; Lu, J.K. Composition and Function of Soil Microbial Community in Rhizosphere Soil and Bulk Soil Eucalyptus Plantation Across Different Stand Ages. J. Ecol. 2024, 44, 8409–8422. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Y.X.; Ma, Y.X.; Ma, X.Z.; Li, C.W. Temporal Changes in Arbuscular Mycorrhizal Fungi Communities and Their Driving Factors in Xanthoceras sorbifolium Plantations. Front. Microbiol. 2025, 16, 1579868. [Google Scholar] [CrossRef]
- Li, W.; Zheng, Z.C.; Li, T.X.; Zhang, X.Z.; Wang, Y.D.; Yu, H.Y.; He, S.Q.; Liu, T. Effect of Tea Plantation Age on the Distribution of Soil Organic Carbon Fractions within Water-Stable Aggregates in the Hilly Region of Western Sichuan, China. Catena 2015, 133, 198–205. [Google Scholar] [CrossRef]
- Yan, P.; Wu, L.Q.; Wang, D.H.; Fu, J.Y.; Shen, C.; Li, X.; Zhang, L.P.; Zhang, L.; Fan, L.C.; Han, W.Y. Soil Acidification in Chinese Tea Plantations. Sci. Total Environ. 2020, 715, 136963. [Google Scholar] [CrossRef]
- Li, Y.C.; Li, Z.W.; Arafat, Y.; Lin, W.W.; Jiang, Y.H.; Weng, B.Q.; Lin, W.X. Characterizing Rhizosphere Microbial Communities in Long-Term Monoculture Tea Orchards by Fatty Acid Profiles and Substrate Utilization. Eur. J. Soil Biol. 2017, 81, 48–54. [Google Scholar] [CrossRef]
- Yan, H.Q.; He, S.; Zhang, J.B. Research Progress in the Regulation of Genes Involved in Alleviating Plant Aluminum Toxicity. J. Ecol. 2022, 41, 1213–1220. (In Chinese). Available online: https://www.cje.net.cn/EN/10.13292/j.1000-4890.202206.001 (accessed on 9 June 2022).
- Wen, X.; Wu, D.L.; Chen, D.J.; Xu, P.R.; Zhao, T.T.; Chen, S.Y.; Zhu, Z.H.; Zhong, H.; Chen, P. Soil Organic Matter and Total Nitrogen as Key Driving Factors Promoting the Assessment of Acid–Base Buffering Characteristics in a Tea (Camellia sinensis) Plantation Habitat. Environ. Monit. Assess. 2024, 196, 596. [Google Scholar] [CrossRef]
- Yulnafatmawita, Y.; Yasin, S.; Haris, Z.A. Organic Carbon Sequestration at Different Age of Tea (Camellia sinensis) Plantation Under the Wet Tropical Area. IOP Conf. Ser.: Earth Environ. Sci. 2020, 497, 012037. [Google Scholar] [CrossRef]
- Wang, H.X.; Xu, J.L.; Liu, X.J.; Zhang, D.; Li, L.W.; Li, W.; Sheng, L.X. Effects of long-term application of organic fertilizer on improving organic matter content and retarding acidity in red soil from China. Soil Till Res. 2019, 195, 104382. [Google Scholar] [CrossRef]
- Lauber, C.L.; Strickland, M.S.; Bradford, M.A.; Fierer, N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem. 2008, 40, 2407–2415. [Google Scholar] [CrossRef]
- Yu, Z.; Liang, K.N.; Wang, X.B.; Huang, G.H.; Lin, M.P.; Zhou, Z.Z.; Chen, Y.L. Alterations in Arbuscular Mycorrhizal Community Along a Chronosequence of Teak (Tectona grandis) Plantations in Tropical Forests of China. Front. Microbiol. 2021, 12, 737068. [Google Scholar] [CrossRef]
- Kochian, L.V.; Piñeros, M.A.; Liu, J.P.; Magalhaes, J.V. Plant Adaptation to Acid Soils: The Molecular Basis for Crop Aluminum Resistance. Annu. Rev. Plant Biol. 2015, 66, 571–598. [Google Scholar] [CrossRef]
Samples | pH | EC /mS cm−1 | Moisture /% | MAR /% | SOM /g kg−1 | MSOM /g kg−1 | AP /mg kg−1 | MAP /mg kg−1 |
---|---|---|---|---|---|---|---|---|
10a | 6.32 | 0.020 | 9.4 | 26.5 | 10.3 | 10.8 | 114.0 | 170.0 |
10a | 6.41 | 0.023 | 9.3 | 25.2 | 10.6 | 12.8 | 136.8 | 210.6 |
10a | 6.37 | 0.015 | 9.2 | 25.8 | 10.9 | 11.8 | 108.2 | 190.3 |
30a | 6.04 | 0.023 | 17.3 | 30.4 | 24.7 | 23.4 | 50.0 | 73.9 |
30a | 5.86 | 0.026 | 17.6 | 28.7 | 23.9 | 24.2 | 30.1 | 27.8 |
30a | 5.78 | 0.020 | 17.0 | 32.2 | 25.6 | 22.7 | 27.7 | 50.9 |
60a | 4.86 | 0.049 | 12.4 | 35.3 | 39.6 | 36.0 | 24.6 | 11.9 |
60a | 4.91 | 0.051 | 13.4 | 45.3 | 34.0 | 32.1 | 21.7 | 36.2 |
60a | 4.74 | 0.050 | 13.4 | 40.3 | 35.7 | 40.0 | 49.9 | 60.4 |
100a | 6.34 | 0.039 | 31.4 | 39.9 | 33.5 | 34.5 | 65.8 | 89.4 |
100a | 5.93 | 0.037 | 29.0 | 28.9 | 32.8 | 27.0 | 56.8 | 62.8 |
100a | 6.14 | 0.034 | 30.2 | 50.9 | 33.2 | 30.8 | 83.8 | 116.0 |
Soil Physicochemical Properties | Unique | Average Share | Individual | Individual Percentage (%) | R2 | p-Value | padj-Value |
---|---|---|---|---|---|---|---|
EC | 0.085 | 0.141 | 0.226 | 26.5 | 0.880 | 0.001 | 0.003 |
pH | 0.012 | 0.166 | 0.178 | 20.9 | 0.778 | 0.003 | 0.005 |
Moisture | 0.032 | 0.11 | 0.142 | 16.7 | 0.917 | 0.001 | 0.003 |
MAR | 0.056 | 0.08 | 0.136 | 15.9 | 0.585 | 0.016 | 0.019 |
MSOM | 0.041 | 0.071 | 0.112 | 13.1 | 0.843 | 0.002 | 0.004 |
MAP | 0.001 | 0.058 | 0.06 | 7 | 0.533 | 0.040 | 0.040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, X.; Xu, D.; Huang, S.; Wei, W.; Ma, G.; Li, M.; Yan, J. Mechanisms of Cultivation Chronosequence on Distribution Characteristics of Arbuscular Mycorrhizal Fungi in Tea Plantations, South Henan, China. Microbiol. Res. 2025, 16, 188. https://doi.org/10.3390/microbiolres16080188
Cui X, Xu D, Huang S, Wei W, Ma G, Li M, Yan J. Mechanisms of Cultivation Chronosequence on Distribution Characteristics of Arbuscular Mycorrhizal Fungi in Tea Plantations, South Henan, China. Microbiology Research. 2025; 16(8):188. https://doi.org/10.3390/microbiolres16080188
Chicago/Turabian StyleCui, Xiangchao, Dongmeng Xu, Shuping Huang, Wei Wei, Ge Ma, Mengdi Li, and Junhui Yan. 2025. "Mechanisms of Cultivation Chronosequence on Distribution Characteristics of Arbuscular Mycorrhizal Fungi in Tea Plantations, South Henan, China" Microbiology Research 16, no. 8: 188. https://doi.org/10.3390/microbiolres16080188
APA StyleCui, X., Xu, D., Huang, S., Wei, W., Ma, G., Li, M., & Yan, J. (2025). Mechanisms of Cultivation Chronosequence on Distribution Characteristics of Arbuscular Mycorrhizal Fungi in Tea Plantations, South Henan, China. Microbiology Research, 16(8), 188. https://doi.org/10.3390/microbiolres16080188