Proteomics-Based Prediction of Candidate Effectors in the Interaction Secretome of Trichoderma harzianum and Pseudocercospora fijiensis
Abstract
1. Introduction
2. Materials and Methods
2.1. Subsection Fungal Strains and Cultivation
2.2. Fungal Interaction Assay
2.3. Isolation of the Interaction Secretome
2.4. LC-MS/MS Analysis of Peptides
2.5. Bioinformatic Analysis
2.6. Sequence Alignment and Phylogenetic Analysis
2.7. Gene Cloning
2.8. Transformation of Agrobacterium tumefaciens
2.9. Agroinfiltration Assay in N. benthamiana
2.10. Cell Death Suppression Assay
3. Results
3.1. Expansions and Contractions in the T. harzianum–P. fijiensis Interaction Secretome
3.2. The Diverse Nature of the Interaction Secretome
3.3. The Interaction Secretome Contains Candidate Effector Proteins
3.4. The Interaction Secretome Contains Broad-Host Range Effectors
3.5. Characterization of ThCFEM1 (A0A0F9X6Z0), a Novel Broad Host-Range Effector from T. harzianum
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yonow, T.; Ramirez-Villegas, J.; Abadie, C.; Darnell, R.E.; Ota, N.; Kriticos, D.J. Black Sigatoka in Bananas: Ecoclimatic Suitability and Disease Pressure Assessments. PLoS ONE 2019, 14, e0220601. [Google Scholar] [CrossRef] [PubMed]
- Alakonya, A.E.; Kimunye, J.; Mahuku, G.; Amah, D.; Uwimana, B.; Brown, A.; Swennen, R. Progress in Understanding Pseudocercospora Banana Pathogens and the Development of Resistant Musa Germplasm. Plant Pathol. 2018, 67, 759–770. [Google Scholar] [CrossRef]
- Sardos, J.; Cenci, A.; Martin, G.; Breton, C.; Guignon, V.; Van Den Houwe, I.; Mendez, Y.; Sachter-Smith, G.L.; Chase, R.; Ruas, M.; et al. Painting the Diversity of a World’s Favorite Fruit: A next Generation Catalog of Cultivated Bananas. Plants People Planet 2025, 7, 263–283. [Google Scholar] [CrossRef]
- Gutierrez-Monsalve, J.A.; Mosquera, S.; González-Jaramillo, L.M.; Mira, J.J.; Villegas-Escobar, V. Effective Control of Black Sigatoka Disease Using a Microbial Fungicide Based on Bacillus subtilis EA-CB0015 Culture. Biol. Control 2015, 87, 39–46. [Google Scholar] [CrossRef]
- Arango Isaza, R.E.; Diaz-Trujillo, C.; Dhillon, B.; Aerts, A.; Carlier, J.; Crane, C.F.; de Jong, T.V.; de Vries, I.; Dietrich, R.; Farmer, A.D.; et al. Combating a Global Threat to a Clonal Crop: Banana Black Sigatoka Pathogen Pseudocercospora fijiensis (Synonym Mycosphaerella fijiensis) Genomes Reveal Clues for Disease Control. PLoS Genet. 2016, 12, e1005876. [Google Scholar] [CrossRef]
- Strobl, E.; Mohan, P. Climate and the Global Spread and Impact of Bananas’ Black Leaf Sigatoka Disease. Atmosphere 2020, 11, 947. [Google Scholar] [CrossRef]
- Mbo Nkoulou, L.F.; Ngalle, H.B.; Cros, D.; Adje, C.O.A.; Fassinou, N.V.H.; Bell, J.; Achigan-Dako, E.G. Perspective for Genomic-Enabled Prediction against Black Sigatoka Disease and Drought Stress in Polyploid Species. Front. Plant Sci. 2022, 13, 953133. [Google Scholar] [CrossRef]
- O’Callaghan, M.; Ballard, R.A.; Wright, D. Soil Microbial Inoculants for Sustainable Agriculture: Limitations and Opportunities. Soil Use Manag. 2022, 38, 1340–1369. [Google Scholar] [CrossRef]
- Lahlali, R.; Ezrari, S.; Radouane, N.; Kenfaoui, J.; Esmaeel, Q.; El Hamss, H.; Belabess, Z.; Barka, E.A. Biological Control of Plant Pathogens: A Global Perspective. Microorganisms 2022, 10, 596. [Google Scholar] [CrossRef]
- Grano-Maldonado, M.I.; Ramos-Payan, R.; Rivera-Chaparro, F.; Aguilar-Medina, M.; Romero-Quintana, J.G.; Rodríguez-Santiago, A.; Nieves-Soto, M. First Molecular Characterization of Colletotrichum sp. and Fusarium sp. Isolated from Mangrove in Mexico and the Antagonist Effect of Trichoderma harzianum as an Effective Biocontrol Agent. Plant Pathol. J. 2021, 37, 465–475. [Google Scholar] [CrossRef]
- Rahman, M.; Borah, S.M.; Borah, P.K.; Bora, P.; Sarmah, B.K.; Lal, M.K.; Tiwari, R.K.; Kumar, R. Deciphering the Antimicrobial Activity of Multifaceted Rhizospheric Biocontrol Agents of Solanaceous Crops Viz., Trichoderma harzianum MC2, and Trichoderma Harzianum NBG. Front. Plant Sci. 2023, 14, 1141506. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.; Brar, S.K.; Tyagi, R.D.; Surampalli, R.Y.; Valéro, J.R. Antagonistic Fungi, Trichoderma spp.: Panoply of Biological Control. Biochem. Eng. J. 2007, 37, 1–20. [Google Scholar] [CrossRef]
- Rush, T.A.; Shrestha, H.K.; Gopalakrishnan Meena, M.; Spangler, M.K.; Ellis, J.C.; Labbé, J.L.; Abraham, P.E. Bioprospecting Trichoderma: A Systematic Roadmap to Screen Genomes and Natural Products for Biocontrol Applications. Front. Fungal Biol. 2021, 2, 716511. [Google Scholar] [CrossRef] [PubMed]
- Saravanakumar, K.; Li, Y.; Yu, C.; Wang, Q.; Wang, M.; Sun, J.; Gao, J.; Chen, J. Effect of Trichoderma harzianum on Maize Rhizosphere Microbiome and Biocontrol of Fusarium Stalk Rot. Sci. Rep. 2017, 7, 1771. [Google Scholar] [CrossRef]
- Huang, X.; Chen, L.; Ran, W.; Shen, Q.; Yang, X. Trichoderma harzianum Strain SQR-T37 and Its Bio-Organic Fertilizer Could Control Rhizoctonia solani Damping-off Disease in Cucumber Seedlings Mainly by the Mycoparasitism. Appl. Microbiol. Biotechnol. 2011, 91, 741–755. [Google Scholar] [CrossRef]
- You, J.; Zhang, J.; Wu, M.; Yang, L.; Chen, W.; Li, G. Multiple Criteria-Based Screening of Trichoderma Isolates for Biological Control of Botrytis cinerea on Tomato. Biol. Control 2016, 101, 31–38. [Google Scholar] [CrossRef]
- Guzmán-Guzmán, P.; Kumar, A.; de los Santos-Villalobos, S.; Parra-Cota, F.I.; Orozco-Mosqueda, M.d.C.; Fadiji, A.E.; Hyder, S.; Babalola, O.O.; Santoyo, G. Trichoderma Species: Our Best Fungal Allies in the Biocontrol of Plant Diseases—A Review. Plants 2023, 12, 432. [Google Scholar] [CrossRef]
- Acosta-Suárez, M.; Pichardo, T.; Roque, B.; Cruz-Martín, M.; Mena, E.; Leiva-Mora, M.; Castro, R.; Alvarado-Capó, Y. Antagonismo in vitro de Trichoderma harzianum Rifai contra Mycosphaerella fijiensis Morelet. Biotecnol. Veg. 2013, 13, 98–104. Available online: https://www.redalyc.org/articulo.oa?id=61224203 (accessed on 9 June 2025).
- Galarza, L.; Akagi, Y.; Takao, K.; Kim, C.S.; Maekawa, N.; Itai, A.; Peralta, E.; Santos, E.; Kodama, M. Characterization of Trichoderma Species Isolated in Ecuador and Their Antagonistic Activities against Phytopathogenic Fungi from Ecuador and Japan. J. Gen. Plant Pathol. 2015, 81, 201–210. [Google Scholar] [CrossRef]
- Selin, C.; de Kievit, T.R.; Belmonte, M.F.; Fernando, W.G.D. Elucidating the Role of Effectors in Plant-Fungal Interactions: Progress and Challenges. Front. Microbiol. 2016, 7, 600. [Google Scholar] [CrossRef]
- Zhang, S.; Li, C.; Si, J.; Han, Z.; Chen, D. Action Mechanisms of Effectors in Plant-Pathogen Interaction. Int. J. Mol. Sci. 2022, 23, 6758. [Google Scholar] [CrossRef] [PubMed]
- Thynne, E.; Ali, H.; Seong, K.; Abukhalaf, M.; Guerreiro, M.A.; Flores-Nunez, V.M.; Hansen, R.; Bergues, A.; Salman, M.J.; Rudd, J.J.; et al. An Array of Zymoseptoria tritici Effectors Suppress Plant Immune Responses. Mol. Plant Pathol. 2024, 25, e13500. [Google Scholar] [CrossRef] [PubMed]
- Todd, J.N.A.; Carreón-Anguiano, K.G.; Islas-Flores, I.; Canto-Canché, B. Fungal Effectoromics: A World in Constant Evolution. Int. J. Mol. Sci. 2022, 23, 13433. [Google Scholar] [CrossRef] [PubMed]
- Plett, J.M.; Daguerre, Y.; Wittulsky, S.; Vayssières, A.; Deveau, A.; Melton, S.J.; Kohler, A.; Morrell-Falvey, J.L.; Brun, A.; Veneault-Fourrey, C.; et al. Effector MiSSP7 of the Mutualistic Fungus Laccaria bicolor Stabilizes the Populus JAZ6 Protein and Represses Jasmonic Acid (JA) Responsive Genes. Proc. Natl. Acad. Sci. USA 2014, 111, 8299–8304. [Google Scholar] [CrossRef]
- Guzmán-Guzmán, P.; Alemán-Duarte, M.I.; Delaye, L.; Herrera-Estrella, A.; Olmedo-Monfil, V. Identification of Effector-like Proteins in Trichoderma spp. and Role of a Hydrophobin in the Plant-Fungus Interaction and Mycoparasitism. BMC Genet. 2017, 18, 16. [Google Scholar] [CrossRef]
- Laur, J.; Ramakrishnan, G.B.; Labbé, C.; Lefebvre, F.; Spanu, P.D.; Bélanger, R.R. Effectors Involved in Fungal–Fungal Interaction Lead to a Rare Phenomenon of Hyperbiotrophy in the Tritrophic System Biocontrol Agent–Powdery Mildew–Plant. New Phytol. 2018, 217, 713–725. [Google Scholar] [CrossRef]
- Kettles, G.J.; Bayon, C.; Sparks, C.A.; Canning, G.; Kanyuka, K.; Rudd, J.J. Characterization of an Antimicrobial and Phytotoxic Ribonuclease Secreted by the Fungal Wheat Pathogen Zymoseptoria tritici. New Phytol. 2018, 217, 320–331. [Google Scholar] [CrossRef]
- Snelders, N.C.; Rovenich, H.; Petti, G.C.; Rocafort, M.; van den Berg, G.C.M.; Vorholt, J.A.; Mesters, J.R.; Seidl, M.F.; Nijland, R.; Thomma, B.P.H.J. Microbiome Manipulation by a Soil-Borne Fungal Plant Pathogen Using Effector Proteins. Nat. Plants 2020, 6, 1365–1374. [Google Scholar] [CrossRef]
- Romero-Contreras, Y.J.; Ramírez-Valdespino, C.A.; Guzmán-Guzmán, P.; Macías-Segoviano, J.I.; Villagómez-Castro, J.C.; Olmedo-Monfil, V. Tal6 From Trichoderma atroviride Is a LysM Effector Involved in Mycoparasitism and Plant Association. Front. Microbiol. 2019, 10, 2231. [Google Scholar] [CrossRef]
- Salas-Marina, M.A.; Isordia-Jasso, M.I.; Islas-Osuna, M.A.; Delgado-Sánchez, P.; Jiménez-Bremont, J.F.; Rodríguez-Kessler, M.; Rosales-Saavedra, M.T.; Herrera-Estrella, A.; Casas-Flores, S. The Epl1 and Sm1 Proteins from Trichoderma atroviride and Trichoderma virens Differentially Modulate Systemic Disease Resistance against Different Life Style Pathogens in Solanum lycopersicum. Front. Plant Sci. 2015, 6, 77. [Google Scholar] [CrossRef]
- Gomes, E.V.; Costa, M.d.N.; de Paula, R.G.; Ricci de Azevedo, R.; da Silva, F.L.; Noronha, E.F.; José Ulhoa, C.; Neves Monteiro, V.; Elena Cardoza, R.; Gutiérrez, S.; et al. The Cerato-Platanin Protein Epl-1 from Trichoderma harzianum Is Involved in Mycoparasitism, Plant Resistance Induction and Self Cell Wall Protection. Sci. Rep. 2015, 5, 17998. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.-H.; Shen, B.-N.; Shang, Q.-W.; Liu, L.-Y.D.; Peng, K.-C.; Chen, Y.-H.; Chen, F.-F.; Hu, S.-F.; Wang, Y.-T.; Wang, H.-C.; et al. Gene-to-Gene Network Analysis of the Mediation of Plant Innate Immunity by the Eliciting Plant Response-Like 1 (Epl1) Elicitor of Trichoderma formosa. Mol. Plant-Microbe Interact. 2018, 31, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Gomes, E.V.; Ulhoa, C.J.; Cardoza, R.E.; Silva, R.N.; Gutiérrez, S. Involvement of Trichoderma harzianum Epl-1 Protein in the Regulation of Botrytis Virulence- and Tomato Defense-Related Genes. Front. Plant Sci. 2017, 8, 880. [Google Scholar] [CrossRef]
- Agrawal, G.K.; Jwa, N.-S.; Lebrun, M.-H.; Job, D.; Rakwal, R. Plant Secretome: Unlocking Secrets of the Secreted Proteins. Proteomics 2010, 10, 799–827. [Google Scholar] [CrossRef]
- Mendoza-Mendoza, A.; Zaid, R.; Lawry, R.; Hermosa, R.; Monte, E.; Horwitz, B.A.; Mukherjee, P.K. Molecular Dialogues between Trichoderma and Roots: Role of the Fungal Secretome. Fungal Biol. Rev. 2018, 32, 62–85. [Google Scholar] [CrossRef]
- Kubicek, C.P.; Steindorff, A.S.; Chenthamara, K.; Manganiello, G.; Henrissat, B.; Zhang, J.; Cai, F.; Kopchinskiy, A.G.; Kubicek, E.M.; Kuo, A.; et al. Evolution and Comparative Genomics of the Most Common Trichoderma Species. BMC Genom. 2019, 20, 485. [Google Scholar] [CrossRef]
- Carreón-Anguiano, K.G.; Islas-Flores, I.; Vega-Arreguín, J.; Sáenz-Carbonell, L.; Canto-Canché, B. EffHunter: A Tool for Prediction of Effector Protein Candidates in Fungal Proteomic Databases. Biomolecules 2020, 10, 712. [Google Scholar] [CrossRef]
- Carreón-Anguiano, K.G.; Todd, J.N.A.; Chi-Manzanero, B.H.; Couoh-Dzul, O.J.; Islas-Flores, I.; Canto-Canché, B. WideEffHunter: An Algorithm to Predict Canonical and Non-Canonical Effectors in Fungi and Oomycetes. Int. J. Mol. Sci. 2022, 23, 13567. [Google Scholar] [CrossRef]
- Stergiopoulos, I.; van den Burg, H.A.; Okmen, B.; Beenen, H.G.; van Liere, S.; Kema, G.H.J.; de Wit, P.J.G.M. Tomato Cf Resistance Proteins Mediate Recognition of Cognate Homologous Effectors from Fungi Pathogenic on Dicots and Monocots. Proc. Natl. Acad. Sci. USA 2010, 107, 7610–7615. [Google Scholar] [CrossRef]
- González-López, M.D.C.; Jijón-Moreno, S.; Dautt-Castro, M.; Ovando-Vázquez, C.; Ziv, T.; Horwitz, B.A.; Casas-Flores, S. Secretome Analysis of Arabidopsis-Trichoderma atroviride Interaction Unveils New Roles for the Plant Glutamate:Glyoxylate Aminotransferase GGAT1 in Plant Growth Induced by the Fungus and Resistance against Botrytis cinerea. Int. J. Mol. Sci. 2021, 22, 6804. [Google Scholar] [CrossRef]
- Lamdan, N.-L.; Shalaby, S.; Ziv, T.; Kenerley, C.M.; Horwitz, B.A. Secretome of Trichoderma Interacting with Maize Roots: Role in Induced Systemic Resistance. Mol. Cell. Proteom. MCP 2015, 14, 1054–1063. [Google Scholar] [CrossRef] [PubMed]
- Nogueira-Lopez, G.; Greenwood, D.R.; Middleditch, M.; Winefield, C.; Eaton, C.; Steyaert, J.M.; Mendoza-Mendoza, A. The Apoplastic Secretome of Trichoderma virens During Interaction with Maize Roots Shows an Inhibition of Plant Defence and Scavenging Oxidative Stress Secreted Proteins. Front. Plant Sci. 2018, 9, 409. [Google Scholar] [CrossRef] [PubMed]
- Muthukathan, G.; Mukherjee, P.; Salaskar, D.; Pachauri, S.; Tak, H.; Ganapathi, T.R.; Mukherjee, P.K. Secretome of Trichoderma virens Induced by Banana Roots—Identification of Novel Fungal Proteins for Enhancing Plant Defence. Physiol. Mol. Plant Pathol. 2020, 110, 101476. [Google Scholar] [CrossRef]
- Gómez-Mendoza, D.P.; Junqueira, M.; do Vale, L.H.F.; Domont, G.B.; Ferreira Filho, E.X.; de Sousa, M.V.; Ricart, C.A.O. Secretomic Survey of Trichoderma harzianum Grown on Plant Biomass Substrates. J. Proteome Res. 2014, 13, 1810–1822. [Google Scholar] [CrossRef]
- Ramírez-Valdespino, C.A.; Casas-Flores, S.; Olmedo-Monfil, V. Trichoderma as a Model to Study Effector-Like Molecules. Front. Microbiol. 2019, 10, 1030. [Google Scholar] [CrossRef]
- Huang, Y.; Mijiti, G.; Wang, Z.; Yu, W.; Fan, H.; Zhang, R.; Liu, Z. Functional Analysis of the Class II Hydrophobin Gene HFB2-6 from the Biocontrol Agent Trichoderma asperellum ACCC30536. Microbiol. Res. 2015, 171, 8–20. [Google Scholar] [CrossRef]
- Wang, X.; Chen, W.; Zhang, J.; Hu, W.; Li, M.; Zhao, P.; Ren, A. Effector Cpe1 Secreted by Trichoderma longibrachiatum Induces Plant Disease Resistance. Biol. Control 2025, 202, 105726. [Google Scholar] [CrossRef]
- Ramada, M.H.S.; Steindorff, A.S.; Bloch, C.; Ulhoa, C.J. Secretome Analysis of the Mycoparasitic Fungus Trichoderma harzianum ALL 42 Cultivated in Different Media Supplemented with Fusarium solani Cell Wall or Glucose. Proteomics 2016, 16, 477–490. [Google Scholar] [CrossRef]
- Blauth de Lima, F.; Félix, C.; Osório, N.; Alves, A.; Vitorino, R.; Domingues, P.; da Silva Ribeiro, R.T.; Esteves, A.C. Trichoderma harzianum T1A Constitutively Secretes Proteins Involved in the Biological Control of Guignardia citricarpa. Biol. Control 2017, 106, 99–109. [Google Scholar] [CrossRef]
- Chang, T.-C.; Salvucci, A.; Crous, P.W.; Stergiopoulos, I. Comparative Genomics of the Sigatoka Disease Complex on Banana Suggests a Link between Parallel Evolutionary Changes in Pseudocercospora fijiensis and Pseudocercospora eumusae and Increased Virulence on the Banana Host. PLoS Genet. 2016, 12, e1005904. [Google Scholar] [CrossRef]
- Escobar-Tovar, L.; Guzmán-Quesada, M.; Sandoval-Fernández, J.A.; Gómez-Lim, M.A. Comparative Analysis of the in Vitro and in Planta Secretomes from Mycosphaerella fijiensis Isolates. Fungal Biol. 2015, 119, 447–470. [Google Scholar] [CrossRef] [PubMed]
- Chuc-Uc, J.; Brito-Argáez, L.; Canto-Canché, B.; Tzec-Simá, M.; Rodríguez-García, C.; Peraza-Echeverría, L.; Peraza-Echeverría, S.; James-Kay, A.; Cruz-Cruz, C.A.; Peña-Rodríguez, L.M.; et al. The in Vitro Secretome of Mycosphaerella fijiensis Induces Cell Death in Banana Leaves. Plant Physiol. Biochem. 2011, 49, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Burgos-Canul, Y.Y.; Canto-Canché, B.; Berezovski, M.V.; Mironov, G.; Loyola-Vargas, V.M.; Barba de Rosa, A.P.; Tzec-Simá, M.; Brito-Argáez, L.; Carrillo-Pech, M.; Grijalva-Arango, R.; et al. The Cell Wall Proteome from Two Strains of Pseudocercospora fijiensis with Differences in Virulence. World J. Microbiol. Biotechnol. 2019, 35, 105. [Google Scholar] [CrossRef] [PubMed]
- Sonah, H.; Deshmukh, R.K.; Bélanger, R.R. Computational Prediction of Effector Proteins in Fungi: Opportunities and Challenges. Front. Plant Sci. 2016, 7, 126. [Google Scholar] [CrossRef]
- Almagro Armenteros, J.J.; Tsirigos, K.D.; Sønderby, C.K.; Petersen, T.N.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 5.0 Improves Signal Peptide Predictions Using Deep Neural Networks. Nat. Biotechnol. 2019, 37, 420–423. [Google Scholar] [CrossRef]
- Krogh, A.; Larsson, B.; von Heijne, G.; Sonnhammer, E.L. Predicting Transmembrane Protein Topology with a Hidden Markov Model: Application to Complete Genomes. J. Mol. Biol. 2001, 305, 567–580. [Google Scholar] [CrossRef]
- Sperschneider, J.; Catanzariti, A.-M.; DeBoer, K.; Petre, B.; Gardiner, D.M.; Singh, K.B.; Dodds, P.N.; Taylor, J.M. LOCALIZER: Subcellular Localization Prediction of Both Plant and Effector Proteins in the Plant Cell. Sci. Rep. 2017, 7, 44598. [Google Scholar] [CrossRef]
- Guyon, K.; Balagué, C.; Roby, D.; Raffaele, S. Secretome Analysis Reveals Effector Candidates Associated with Broad Host Range Necrotrophy in the Fungal Plant Pathogen Sclerotinia sclerotiorum. BMC Genom. 2014, 15, 336. [Google Scholar] [CrossRef]
- Sperschneider, J.; Dodds, P.N.; Singh, K.B.; Taylor, J.M. ApoplastP: Prediction of Effectors and Plant Proteins in the Apoplast Using Machine Learning. New Phytol. 2018, 217, 1764–1778. [Google Scholar] [CrossRef]
- Canseco-Pérez, M.A.; Castillo-Avila, G.M.; Chi-Manzanero, B.; Islas-Flores, I.; Apolinar-Hernández, M.M.; Rivera-Muñoz, G.; Gamboa-Angulo, M.; Sanchez-Teyer, F.; Couoh-Uicab, Y.; Canto-Canché, B. Fungal Screening on Olive Oil for Extracellular Triacylglycerol Lipases: Selection of a Trichoderma harzianum Strain and Genome Wide Search for the Genes. Genes 2018, 9, 62. [Google Scholar] [CrossRef]
- Wartenberg, D.; Lapp, K.; Jacobsen, I.D.; Dahse, H.-M.; Kniemeyer, O.; Heinekamp, T.; Brakhage, A.A. Secretome Analysis of Aspergillus fumigatus Reveals Asp-Hemolysin as a Major Secreted Protein. Int. J. Med. Microbiol. IJMM 2011, 301, 602–611. [Google Scholar] [CrossRef] [PubMed]
- Ernst, O.; Zor, T. Linearization of the Bradford Protein Assay. J. Vis. Exp. JoVE 2010, 38, 1918. [Google Scholar] [CrossRef]
- Perkins, D.N.; Pappin, D.J.; Creasy, D.M.; Cottrell, J.S. Probability-Based Protein Identification by Searching Sequence Databases Using Mass Spectrometry Data. Electrophoresis 1999, 20, 3551–3567. [Google Scholar] [CrossRef]
- The UniProt Consortium UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [CrossRef]
- Conesa, A.; Götz, S. Blast2GO: A Comprehensive Suite for Functional Analysis in Plant Genomics. Int. J. Plant Genom. 2008, 2008, 619832. [Google Scholar] [CrossRef]
- Ye, J.; Zhang, Y.; Cui, H.; Liu, J.; Wu, Y.; Cheng, Y.; Xu, H.; Huang, X.; Li, S.; Zhou, A.; et al. WEGO 2.0: A Web Tool for Analyzing and Plotting GO Annotations, 2018 Update. Nucleic Acids Res. 2018, 46, W71–W75. [Google Scholar] [CrossRef]
- Blum, M.; Andreeva, A.; Florentino, L.C.; Chuguransky, S.R.; Grego, T.; Hobbs, E.; Pinto, B.L.; Orr, A.; Paysan-Lafosse, T.; Ponamareva, I.; et al. InterPro: The Protein Sequence Classification Resource in 2025. Nucleic Acids Res. 2025, 53, D444–D456. [Google Scholar] [CrossRef]
- Duvaud, S.; Gabella, C.; Lisacek, F.; Stockinger, H.; Ioannidis, V.; Durinx, C. Expasy, the Swiss Bioinformatics Resource Portal, as Designed by Its Users. Nucleic Acids Res. 2021, 49, W216–W227. [Google Scholar] [CrossRef]
- Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Gonzales, N.R.; Gwadz, M.; Lu, S.; Marchler, G.H.; Song, J.S.; Thanki, N.; Yamashita, R.A.; et al. The Conserved Domain Database in 2023. Nucleic Acids Res. 2023, 51, D384–D388. [Google Scholar] [CrossRef]
- Noar, R.D.; Daub, M.E. Transcriptome Sequencing of Mycosphaerella fijiensis during Association with Musa acuminata Reveals Candidate Pathogenicity Genes. BMC Genom. 2016, 17, 690. [Google Scholar] [CrossRef]
- Steindorff, A.S.; Ramada, M.H.S.; Coelho, A.S.G.; Miller, R.N.G.; Pappas, G.J.; Ulhoa, C.J.; Noronha, E.F. Identification of Mycoparasitism-Related Genes against the Phytopathogen Sclerotinia sclerotiorum through Transcriptome and Expression Profile Analysis in Trichoderma harzianum. BMC Genom. 2014, 15, 204. [Google Scholar] [CrossRef] [PubMed]
- Stange, P.; Kersting, J.; Sivaprakasam Padmanaban, P.B.; Schnitzler, J.-P.; Rosenkranz, M.; Karl, T.; Benz, J.P. The Decision for or against Mycoparasitic Attack by Trichoderma spp. Is Taken Already at a Distance in a Prey-Specific Manner and Benefits Plant-Beneficial Interactions. Fungal Biol. Biotechnol. 2024, 11, 14. [Google Scholar] [CrossRef] [PubMed]
- Lopes da Silva, F.; Aquino, E.N.; Costa da Cunha, D.; Vieira Hamann, P.R.; Magalhães, T.B.; Steindorff, A.S.; Ulhoa, C.J.; Noronha, E.F. Analysis of Trichoderma harzianum TR 274 Secretome to Assign Candidate Proteins Involved in Symbiotic Interactions with Phaseolus vulgaris. Biocatal. Agric. Biotechnol. 2022, 43, 102380. [Google Scholar] [CrossRef]
- Urban, M.; Cuzick, A.; Seager, J.; Nonavinakere, N.; Sahoo, J.; Sahu, P.; Iyer, V.L.; Khamari, L.; Martinez, M.C.; Hammond-Kosack, K.E. PHI-Base—The Multi-Species Pathogen–Host Interaction Database in 2025. Nucleic Acids Res. 2025, 53, D826–D838. [Google Scholar] [CrossRef] [PubMed]
- Berthold, F.; Roujol, D.; Hemmer, C.; Jamet, E.; Ritzenthaler, C.; Hoffmann, L.; Schmitt-Keichinger, C. Inside or Outside? A New Collection of Gateway Vectors Allowing Plant Protein Subcellular Localization or over-Expression. Plasmid 2019, 105, 102436. [Google Scholar] [CrossRef]
- Ma, Z.; Song, T.; Zhu, L.; Ye, W.; Wang, Y.; Shao, Y.; Dong, S.; Zhang, Z.; Dou, D.; Zheng, X.; et al. A Phytophthora sojae Glycoside Hydrolase 12 Protein Is a Major Virulence Factor during Soybean Infection and Is Recognized as a PAMP. Plant Cell 2015, 27, 2057–2072. [Google Scholar] [CrossRef]
- Steindorff, A.S.; Silva, R.d.N.; Coelho, A.S.G.; Nagata, T.; Noronha, E.F.; Ulhoa, C.J. Trichoderma harzianum Expressed Sequence Tags for Identification of Genes with Putative Roles in Mycoparasitism against Fusarium solani. Biol. Control 2012, 61, 134–140. [Google Scholar] [CrossRef]
- Dourado, M.N.; Pierry, P.M.; Feitosa-Junior, O.R.; Uceda-Campos, G.; Barbosa, D.; Zaini, P.A.; Dandekar, A.M.; da Silva, A.M.; Araújo, W.L. Transcriptome and Secretome Analyses of Endophyte Methylobacterium mesophilicum and Pathogen Xylella fastidiosa Interacting Show Nutrient Competition. Microorganisms 2023, 11, 2755. [Google Scholar] [CrossRef]
- Wu, J.; Wang, P.; Wang, W.; Hu, H.; Wei, Q.; Bao, C.; Yan, Y. Comprehensive Genomic and Proteomic Analysis Identifies Effectors of Fusarium oxysporum f. sp. melongenae. J. Fungi 2024, 10, 828. [Google Scholar] [CrossRef]
- Oh, Y.; Robertson, S.L.; Parker, J.; Muddiman, D.C.; Dean, R.A. Comparative Proteomic Analysis between Nitrogen Supplemented and Starved Conditions in Magnaporthe oryzae. Proteome Sci. 2017, 15, 20. [Google Scholar] [CrossRef]
- Tseng, S.-C.; Liu, S.-Y.; Yang, H.-H.; Lo, C.-T.; Peng, K.-C. Proteomic Study of Biocontrol Mechanisms of Trichoderma harzianum ETS 323 in Response to Rhizoctonia solani. J. Agric. Food Chem. 2008, 56, 6914–6922. [Google Scholar] [CrossRef] [PubMed]
- Parmar, H.J.; Bodar, N.P.; Lakhani, H.N.; Patel, S.V.; Umrania, V.V.; Hassan, M.M. Production of Lytic Enzymes by Trichoderma Strains during in Vitro Antagonism with Sclerotium rolfsii, the Causal Agent of Stem Rot of Groundnut. Afr. J. Microbiol. Res. 2015, 9, 365–372. [Google Scholar] [CrossRef]
- Gruber, S.; Seidl-Seiboth, V. Self versus Non-Self: Fungal Cell Wall Degradation in Trichoderma. Microbiol. Read. Engl. 2012, 158, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Champramary, S.; Sahu, N.; Indic, B.; Szűcs, A.; Nagy, G.; Maróti, G.; Pap, B.; Languar, O.; Vágvölgyi, C.; et al. Dual RNA-Seq Profiling Unveils Mycoparasitic Activities of Trichoderma atroviride against Haploid Armillaria ostoyae in Antagonistic Interaction Assays. Microbiol. Spectr. 2023, 11, e04626-22. [Google Scholar] [CrossRef]
- Suárez, M.B.; Sanz, L.; Chamorro, M.I.; Rey, M.; González, F.J.; Llobell, A.; Monte, E. Proteomic Analysis of Secreted Proteins from Trichoderma harzianum: Identification of a Fungal Cell Wall-Induced Aspartic Protease. Fungal Genet. Biol. 2005, 42, 924–934. [Google Scholar] [CrossRef]
- Sharma, V.; Salwan, R.; Sharma, P.N. Differential Response of Extracellular Proteases of Trichoderma harzianum Against Fungal Phytopathogens. Curr. Microbiol. 2016, 73, 419–425. [Google Scholar] [CrossRef]
- Deng, J.-J.; Huang, W.-Q.; Li, Z.-W.; Lu, D.-L.; Zhang, Y.; Luo, X. Biocontrol Activity of Recombinant Aspartic Protease from Trichoderma harzianum against Pathogenic Fungi. Enzyme Microb. Technol. 2018, 112, 35–42. [Google Scholar] [CrossRef]
- Huang, A.; Lu, M.; Ling, E.; Li, P.; Wang, C. A M35 Family Metalloprotease Is Required for Fungal Virulence against Insects by Inactivating Host Prophenoloxidases and Beyond. Virulence 2020, 11, 222–237. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Zhu, X.; Wang, W. Genome and Transcriptome Sequencing of Trichoderma harzianum T4, an Important Biocontrol Fungus of Rhizoctonia solani, Reveals Genes Related to Mycoparasitism. Can. J. Microbiol. 2024, 70, 86–101. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, X.; Wang, J.; Shen, C.; Wang, W. Identification of Mycoparasitism-Related Genes against the Phytopathogen Botrytis cinerea via Transcriptome Analysis of Trichoderma harzianum T4. J. Fungi 2023, 9, 324. [Google Scholar] [CrossRef]
- Zandi, P.; Schnug, E. Reactive Oxygen Species, Antioxidant Responses and Implications from a Microbial Modulation Perspective. Biology 2022, 11, 155. [Google Scholar] [CrossRef] [PubMed]
- Lennicke, C.; Cochemé, H.M. Redox Metabolism: ROS as Specific Molecular Regulators of Cell Signaling and Function. Mol. Cell 2021, 81, 3691–3707. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.-H.; Guo, Y.; Wang, Y.-Z.; Zhang, D.; Xu, L.; Tang, W.-H. A Cytoplasmic Cu-Zn Superoxide Dismutase SOD1 Contributes to Hyphal Growth and Virulence of Fusarium graminearum. Fungal Genet. Biol. 2016, 91, 32–42. [Google Scholar] [CrossRef]
- Zeng, T.; Rodriguez-Moreno, L.; Mansurkhodzaev, A.; Wang, P.; van den Berg, W.; Gasciolli, V.; Cottaz, S.; Fort, S.; Thomma, B.P.H.J.; Bono, J.-J.; et al. A Lysin Motif Effector Subverts Chitin-Triggered Immunity to Facilitate Arbuscular Mycorrhizal Symbiosis. New Phytol. 2020, 225, 448–460. [Google Scholar] [CrossRef]
- Zhang, H.; Wen, S.; Li, P.; Lu, L.; Yang, X.; Zhang, C.; Guo, L.; Wang, D.; Zhu, X. LysM Protein BdLM1 of Botryosphaeria dothidea Plays an Important Role in Full Virulence and Inhibits Plant Immunity by Binding Chitin and Protecting Hyphae from Hydrolysis. Front. Plant Sci. 2024, 14, 1320980. [Google Scholar] [CrossRef]
- Chow, V.; Kirzinger, M.W.; Kagale, S. Lend Me Your EARs: A Systematic Review of the Broad Functions of EAR Motif-Containing Transcriptional Repressors in Plants. Genes 2023, 14, 270. [Google Scholar] [CrossRef]
- Deb, D.; Anderson, R.G.; How-Yew-Kin, T.; Tyler, B.M.; McDowell, J.M. Conserved RxLR Effectors from Oomycetes Hyaloperonospora arabidopsidis and Phytophthora sojae Suppress PAMP- and Effector-Triggered Immunity in Diverse Plants. Mol. Plant-Microbe Interact. 2018, 31, 374–385. [Google Scholar] [CrossRef]
- Bogino, M.F.; Lapegna Senz, J.M.; Kourdova, L.T.; Tamagnone, N.; Romanowski, A.; Wirthmueller, L.; Fabro, G. Downy Mildew Effector HaRxL106 Interacts with the Transcription Factor BIM1 Altering Plant Growth, BR Signaling and Susceptibility to Pathogens. Plant J. 2025, 121, e17159. [Google Scholar] [CrossRef]
- Xu, L.; Wang, S.; Wang, W.; Wang, H.; Welsh, L.; Boevink, P.C.; Whisson, S.C.; Birch, P.R.J. Proteolytic Processing of Both RXLR and EER Motifs in Oomycete Effectors. New Phytol. 2025, 245, 1640–1654. [Google Scholar] [CrossRef]
- Frías, M.; González, C.; Brito, N. BcSpl1, a Cerato-Platanin Family Protein, Contributes to Botrytis cinerea Virulence and Elicits the Hypersensitive Response in the Host. New Phytol. 2011, 192, 483–495. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, H.; Li, G.; Li, W.; Wang, X.; Song, F. Ectopic Expression of MgSM1, a Cerato-Platanin Family Protein from Magnaporthe grisea, Confers Broad-Spectrum Disease Resistance in Arabidopsis. Plant Biotechnol. J. 2009, 7, 763–777. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Yang, J.; Zhang, Q.; Wang, W.; Feng, L.; Zhao, L.; An, B.; Wang, Q.; He, C.; Luo, H. The Effector Protein CgNLP1 of Colletotrichum gloeosporioides Affects Invasion and Disrupts Nuclear Localization of Necrosis-Induced Transcription Factor HbMYB8-Like to Suppress Plant Defense Signaling. Front. Microbiol. 2022, 13, 911479. [Google Scholar] [CrossRef] [PubMed]
- Lian, J.; Han, H.; Chen, X.; Chen, Q.; Zhao, J.; Li, C. Stemphylium lycopersici Nep1-like Protein (NLP) Is a Key Virulence Factor in Tomato Gray Leaf Spot Disease. J. Fungi 2022, 8, 518. [Google Scholar] [CrossRef]
- Luti, S.; Sella, L.; Quarantin, A.; Pazzagli, L.; Baccelli, I. Twenty Years of Research on Cerato-Platanin Family Proteins: Clues, Conclusions, and Unsolved Issues. Fungal Biol. Rev. 2020, 34, 13–24. [Google Scholar] [CrossRef]
- Silva, A.C.; Oshiquiri, L.H.; de Morais Costa de Jesus, L.F.; Maués, D.B.; Silva, R.d.N. The Cerato-Platanin EPL2 from Trichoderma reesei Is Not Directly Involved in Cellulase Formation but in Cell Wall Remodeling. Microorganisms 2023, 11, 1965. [Google Scholar] [CrossRef]
- Ning, N.; Xie, X.; Yu, H.; Mei, J.; Li, Q.; Zuo, S.; Wu, H.; Liu, W.; Li, Z. Plant Peroxisome-Targeting Effector MoPtep1 Is Required for the Virulence of Magnaporthe oryzae. Int. J. Mol. Sci. 2022, 23, 2515. [Google Scholar] [CrossRef]
- Liu, D.; Lun, Z.; Liu, N.; Yuan, G.; Wang, X.; Li, S.; Peng, Y.-L.; Lu, X. Identification and Characterization of Novel Candidate Effector Proteins from Magnaporthe oryzae. J. Fungi 2023, 9, 574. [Google Scholar] [CrossRef]
- Bradley, E.L.; Ökmen, B.; Doehlemann, G.; Henrissat, B.; Bradshaw, R.E.; Mesarich, C.H. Secreted Glycoside Hydrolase Proteins as Effectors and Invasion Patterns of Plant-Associated Fungi and Oomycetes. Front. Plant Sci. 2022, 13, 853106. [Google Scholar] [CrossRef]
- Rocafort, M.; Fudal, I.; Mesarich, C.H. Apoplastic Effector Proteins of Plant-Associated Fungi and Oomycetes. Curr. Opin. Plant Biol. 2020, 56, 9–19. [Google Scholar] [CrossRef]
- Viana, F.; Peringathara, S.S.; Rizvi, A.; Schroeder, G.N. Host Manipulation by Bacterial Type III and Type IV Secretion System Effector Proteases. Cell. Microbiol. 2021, 23, e13384. [Google Scholar] [CrossRef]
- Qiu, C.; Halterman, D.; Zhang, H.; Liu, Z. Multifunctionality of AsCFEM6 and AsCFEM12 Effectors from the Potato Early Blight Pathogen Alternaria solani. Int. J. Biol. Macromol. 2024, 257, 128575. [Google Scholar] [CrossRef] [PubMed]
- Cai, N.; Liu, R.; Yan, D.; Zhang, N.; Zhu, K.; Zhang, D.; Nong, X.; Tu, X.; Zhang, Z.; Wang, G. Bioinformatics Analysis and Functional Characterization of the CFEM Proteins of Metarhizium anisopliae. J. Fungi 2022, 8, 661. [Google Scholar] [CrossRef] [PubMed]
- Cai, N.; Nong, X.; Liu, R.; McNeill, M.R.; Wang, G.; Zhang, Z.; Tu, X. The Conserved Cysteine-Rich Secretory Protein MaCFEM85 Interacts with MsWAK16 to Activate Plant Defenses. Int. J. Mol. Sci. 2023, 24, 4037. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Zheng, X.; Wang, X.; Yang, J.; Zheng, X.; Zeng, Q.; Li, J.; Zhuge, Q.; Xiong, Q. Systematic Identification and Functional Characterization of the CFEM Proteins in Poplar Fungus Marssonina brunnea. Front. Cell. Infect. Microbiol. 2022, 12, 1045615. [Google Scholar] [CrossRef]
- Shang, S.; Liu, G.; Zhang, S.; Liang, X.; Zhang, R.; Sun, G. A Fungal CFEM-Containing Effector Targets NPR1 Regulator NIMIN2 to Suppress Plant Immunity. Plant Biotechnol. J. 2024, 22, 82–97. [Google Scholar] [CrossRef]
- Hong, T.; Wang, S.; Luo, Z.; Ren, Q.; Wu, D.; Wang, L.; Bao, Y.; Yao, W.; Zhang, M.; Hu, Q. Fusarium sacchari CFEM Proteins Suppress Host Immunity and Differentially Contribute to Virulence. Int. J. Mol. Sci. 2024, 25, 12805. [Google Scholar] [CrossRef]
- Liu, S.; Bu, Z.; Zhang, X.; Chen, Y.; Sun, Q.; Wu, F.; Guo, S.; Zhu, Y.; Tan, X. The New CFEM Protein CgCsa Required for Fe3+ Homeostasis Regulates the Growth, Development, and Pathogenicity of Colletotrichum gloeosporioides. Int. J. Biol. Macromol. 2024, 274, 133216. [Google Scholar] [CrossRef]
- Zhu, W.; Wei, W.; Wu, Y.; Zhou, Y.; Peng, F.; Zhang, S.; Chen, P.; Xu, X. BcCFEM1, a CFEM Domain-Containing Protein with Putative GPI-Anchored Site, Is Involved in Pathogenicity, Conidial Production, and Stress Tolerance in Botrytis cinerea. Front. Microbiol. 2017, 8, 1807. [Google Scholar] [CrossRef]
- Srikantha, T.; Daniels, K.J.; Pujol, C.; Kim, E.; Soll, D.R. Identification of Genes Upregulated by the Transcription Factor Bcr1 That Are Involved in Impermeability, Impenetrability, and Drug Resistance of Candida albicans a/α Biofilms. Eukaryot. Cell 2013, 12, 875–888. [Google Scholar] [CrossRef]
- Okamoto-Shibayama, K.; Kikuchi, Y.; Kokubu, E.; Ishihara, K. Possible Involvement of Surface Antigen Protein 2 in the Morphological Transition and Biofilm Formation of Candida albicans. Med. Mycol. J. 2017, 58, E139–E143. [Google Scholar] [CrossRef]
- Vaknin, Y.; Shadkchan, Y.; Levdansky, E.; Morozov, M.; Romano, J.; Osherov, N. The Three Aspergillus fumigatus CFEM-Domain GPI-Anchored Proteins (CfmA-C) Affect Cell-Wall Stability but Do Not Play a Role in Fungal Virulence. Fungal Genet. Biol. 2014, 63, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Dong, M.; Huang, Z.; Wang, Q.; An, B.; He, C.; Wang, Q.; Luo, H. CgCFEM1 Is Required for the Full Virulence of Colletotrichum gloeosporioides. Int. J. Mol. Sci. 2024, 25, 2937. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, D.-D.; Song, J.; Li, J.-J.; Wang, J.; Li, R.; Klosterman, S.J.; Kong, Z.-Q.; Lin, F.-Z.; Dai, X.-F.; et al. Verticillium dahliae CFEM Proteins Manipulate Host Immunity and Differentially Contribute to Virulence. BMC Biol. 2022, 20, 55. [Google Scholar] [CrossRef]
- Huang, Z.; Zhou, Y.; Li, H.; Bao, Y.; Duan, Z.; Wang, C.; Powell, C.A.; Wang, K.; Hu, Q.; Chen, B.; et al. Identification of Common Fungal Extracellular Membrane (CFEM) Proteins in Fusarium sacchari That Inhibit Plant Immunity and Contribute to Virulence. Microbiol. Spectr. 2023, 11, e01452-23. [Google Scholar] [CrossRef]
- Peng, Y.-J.; Hou, J.; Zhang, H.; Lei, J.-H.; Lin, H.-Y.; Ding, J.-L.; Feng, M.-G.; Ying, S.-H. Systematic Contributions of CFEM Domain-Containing Proteins to Iron Acquisition Are Essential for Interspecies Interaction of the Filamentous Pathogenic Fungus Beauveria bassiana. Environ. Microbiol. 2022, 24, 3693–3704. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, G.; Chen, B.; Peng, Y. The Virulence Contribution of the CFEM Family Genes of Beauveria bassiana Is Closely Influenced by the External Iron Environment. Microbiol. Spectr. 2025, 13, e03096-24. [Google Scholar] [CrossRef]
- Pérez, A.; Pedrós, B.; Murgui, A.; Casanova, M.; López-Ribot, J.L.; Martínez, J.P. Biofilm Formation by Candida albicans Mutants for Genes Coding Fungal Proteins Exhibiting the Eight-Cysteine-Containing CFEM Domain. FEMS Yeast Res. 2006, 6, 1074–1084. [Google Scholar] [CrossRef]
(A) Trichoderma harzianum effector candidates | |||||
Condition | Uniprot ID | Size (aa) | Domain (CDD NCBI) | PHI-Base Virulence and Avirulence Factors * Top Hit | % Identity of Effector Homologs (WideEffHunter) |
Int only | A0A0F9X4L9 | 220 | Cupredoxin domain-containing protein | MoPtep1 of Magnaporthe oryzae (32.4%) | - |
Int+ Control | A0A0G0ARJ7 | 395 | Glycoside hydrolase family 16 protein | Crh1 of Botrytis cinerea (Plant avr determinant) (46.7%) | - |
Int+ Control | A0A0F9ZFB8 | 458 | Glycoside hydrolase family 16 protein | Crh1 of Botrytis cinerea (Plant avr determinant) (45.6%) | - |
Int+ Control | A0A1T3C5B5 | 454 | Aspergillopepsin-like protease | BbepnL-1 of Beauveria bassiana (35.6%) | Acp (28.9%) of Candida tropicalis, Sap2 (28.1%), Sap3 (27.1%) and Sap1 (25.8%2) of Candida albicans |
Int+ Control | A0A0F9XKY7 | 298 | Cutinase | SsCut1 of Sclerotinia sclerotiorum (30.1%) | CutA (26.5%) of Fusarium solani f. sp. cucurbitae |
Int+ Control | A0A0F9XAH1 | 515 | Pepsin-like aspartic protease (SAP-like) | N/A | Acp (25.3%) of Candida tropicalis, Sap2 (24.3%), Sap1 (23.7%) and Sap3 (23.7%) of Candida albicans |
Int+ Control | A0A0F9WZ69 | 530 | Pepsin-like aspartic protease (SAP-like) | N/A | Sap1 (34.4%), Acp (34.1%), Sap2 (33.3%) and Sap3 (31.8%) of Candida albicans |
Int+ Control | A0A0F9XAQ4 | 624 | Pepsin-like aspartic protease (SAP-like) | SAP1 of Candida albicans (35.9%) | Sap1 (35.9%), Sap2 (35.3%) and Sap3 (34.5%) of Candida albicans and Acp (33.2%) of Candida tropicalis |
Int+ Control | A0A1T3CKS4 | 154 | Copper/zinc superoxide dismutase | SOD1 of Fusarium graminearum (87.6%) | - |
Int+ Control | A0A0F9ZKW4 | 552 | Bifunctional metallophosphatase/5′-nucleotidase, UshA Superfamily | AdsA of Staphylococcus aureus (26.2%) | - |
Int+ Control | A0A0F9ZHK4 | 324 | Transaldolase B | TalA of Francisella tularensis (52.1%) | - |
Int+ Control | A0A0F9XJM3 | 372 | Pepsin/retropepsin-like aspartic protease family protein | ACP of Candida tropicalis (26.13%) | - - |
Int+ Control | A0A0F9XK41 | 429 | Lytic polysaccharide monooxygenase (LMPO) auxiliary activity family 9 protein | PsFP1 of Phytophthora sojae (36.2%) | - - |
Int+ Control | A0A0F9XJ17 | 595 | Histidine phosphatase family protein | Aph1 of Cryptococcus neoformans (34.4%) | - |
Int+ Control | A0A0F9ZZN6 | 541 | Glyco_hydro superfamily | Gas1 of Fusarium oxysporum (60.15%) | - |
Int+ Control | A0A0F9ZXC9 | 1117 | WSC domain-containing protein; GO-like_E_set | GLX of Fusarium graminearum (44.5%) | - |
Int+ Control | A0A0G0AHN3 | 617 | DUF1996 superfamily | GLX of Fusarium graminearum (37.6%) | - |
Int+ Control | A0A0F9X6Z0 | 193 | CFEM domain-containing protein | FGSG_02077 of Fusarium graminearum (51.22%) | |
Int+ Control | A0A0F9XM39 | 138 | Cerato-platanin superfamily | Sm1 of Trichoderma virens (91.3%) | - |
Int+ Control | A0A0F9ZCK3 | 463 | Alpha amylase (AmyAc_euk_AmyA domain) | MalS of Salmonella enterica (26.82%) | - |
(B) Pseudocercospora fijiensis effector candidates | |||||
Condition | Uniprot ID | Size (aa) | Domain (CDD NCBI) | PHI-Base Virulence and Avirulence Factors * Top Hit | % Identity of Effector Homologs (WideEffHunter) |
Int only | A0A139HLB6 | 147 | Nis1 family; Necrosis-inducing secreted protein 1 | - | ChNIS1 (43.3%) of Colletotrichum gloeosporioides |
Int+ Control | M3AIE7 | 518 | Pepsin/retropepsin-like aspartic protease family protein | N/A | Sap1 (29.7%), Sap3 (28.2%) and Sap2 (28.1%) of Candida albicans and Acp (26.4%) of Candida tropicalis |
Int+ Control | A0A139H3Z9 | 408 | S9 Family peptidase | N/A | Pr1 (52.3%) of Metarhizium anisopliae |
Int only | M2ZK33 | 423 | Alpha/beta hydrolase family protein | FGSG_03846 of Fusarium graminearum (56.7%) | - |
Int+ Control | M3A2P3 | 354 | Aspergillopepsin-like | BbepnL-1 of Beauveria bassiana (36.4%) | Acp (27%) of Candida tropicalis and Sap1 (28.2%), Sap2 (26.6%) and Sap3 (25.4%) of Candida albicans |
Int+ Control | M2ZEM9 | 590 | GMC family oxidoreductase | GOX of Aspergillus carbonarius (30.28%) | - |
Int+ Control | M3AVS4 | 608 | GMC family oxidoreductase | BCIN_03g01540 of Botrytis cinerea (48.19%) | - |
Int+ Control | M3A5F8 | 581 | GMC family oxidoreductase | Bab2_0277 of Brucella abortus (25.5%) | - |
Int only | M3A9Y6 | 196 | - | BEC1040 of Blumeria graminis (30.5%) CEP2 avr effector of Magnaporthe oryzae (32.9%) | Bec1040 (30.5%) of Blumeria graminis |
Int+ Control | N1QC30 | 308 | Glycoside hydrolase family 17 protein (Scw11 domain) | BGL2 of Candida albicans (40.6%) | - |
Int+ Control | M2ZG05 | 548 | Carboxylesterase/lipase family protein (PnbA domain) | FGSG_03243 of Fusarium graminearum (39%) | - |
Int+ Control | M3B3X0 | 573 | Carboxylesterase/lipase family protein (PnbA domain) | FGSG_03243 of Fusarium graminearum (42.05%) | - |
Int only | M3ASU3 | 434 | Peroxidase | MoHPX1 of Magnaporthe oryzae (34.51%) | - |
Int only | A0A139IQP5 | 545 | Peptidase S10 superfamily protein | Rs-scp-1 of Radopholus similis (32.2%) | - |
Int+ Control | M3AEN1 | 328 | Alpha/beta hydrolase family esterase (LpqC domain) | FAED1 of Valsa mali (34.5%) | - |
Int+ Control | M3BB20 | 1011 | Glycosyl hydrolase family 31 | BcBGL5 of Botrytis cinerea (57.7%) | - |
Int+ Control | M3AMA8 | 461 | Glycoside hydrolase family protein | GEL2 of Aspergillus fumigatus (54.7%) | - |
Int only | M3AE52 | 1002 | Glycosyl hydrolase family 31 | BcBGL5 of Botrytis cinerea (35.3%) | - |
Int only | M2YTH3 | 569 | Beta-N-acetylhexosaminidase | HEX1 of Candida albicans (30%) | - |
Int only | M3B352 | 820 | Beta-glucosidase (Bglx) | BcBGL1 of Botrytis cinerea (57.6%) | - |
Int+ Control | N1QB78 | 878 | Beta-glucosidase (Bglx) | BcBGL3 of Botrytis cinerea (62.3%) | - |
Int only | M2ZWF9 | 761 | Beta-glucosidase (Bglx) | BcBGL1 of Botrytis cinerea (44.8%) | - |
Int+ Control | M2ZLK3 | 553 | GMC family oxidoreductase (BetA) | Bab2_0277 of Brucella abortus (23.9%) | - |
(A) Pseudocercospora fijiensis effector candidates identified in other interactions | |||||||
Condition | Uniprot ID | Size (aa) | Domain (CDD NCBI) | EffHunter | WideEffHunter | Interaction | Notes |
Int only | M3B352 | 820 | BglX | no | yes | P. fijiensis–Musa acuminata [70] | Upregulated in leaf tissue |
Int only | M3B2Z2 | 681 | Peptidases_S53 | no | yes | P. fijiensis–Musa acuminata [70] | Upregulated in leaf tissue |
Control + Int | M3A4I0 | 175 | - | no | yes | P. fijiensis–M. acuminata [70] | Upregulated in leaf tissue |
Control + Int | M3BB20 | 1011 | Glyco_hydro_31 | no | yes | P. fijiensis–M. acuminata [70] | Down regulated in leaf tissue vs. mycelium |
Int only | M2ZY96 | 195 | - | yes | no | P. fijiensis–M. acuminata [51] | Secreted in vitro and in planta by both avirulent and virulent P. fijiensis isolates |
(B) Trichoderma harzianum effector candidates identified in other interactions | |||||||
Condition | Uniprot ID | Size (aa) | Domain (CDD NCBI) | EffHunter | WideEffHunter | Interaction | Notes |
Control + Int | A0A0F9XHX6 | 429 | BglC superfamily | no | yes | T. harzianum TR274–S. sclerotiorum [71] | Upregulated in presence of S. sclerotiorum cell walls vs. glucose (12, 24, 36 h) |
Control + Int | A0A2N1LN60 | 118 | - | yes | no | T. harzianum TR274–S. sclerotiorum [71] | Upregulated in presence of S. sclerotiorum cell walls vs. glucose at 24 and 36 h |
Control + Int | A0A0F9WYR7 | 515 | Glyco_hydro_47 | no | yes | T. harzianum ALL42–F. solani [48] | Secreted in culture media with F. solani cell walls |
Control + Int | A0A0F9X6H8 | 689 | DUF4965 | no | yes | T. harzianum ALL42–F. solani [48] | Secreted in culture media with F. solani cell walls |
Control + Int | A0A0F9XM39 | 138 | Cerato-platanin superfamily | yes | no | T. harzianum ALL42–F. solani [48] T. virens–Zea mays [41] T. harzianum–Phaseolus vulgaris [31] | Secreted in culture media with F. solani cell walls and culture media with only glucose Secreted in similar proportions in interactions with maize and when alone; most abundantly secreted protein |
Control + Int | A0A0F9ZTU1 | 281 | NPP1 superfamily | yes | no | T. harzianum ALL42–F. solani [48] | Secreted in both culture media with F. solani cell walls |
Control + Int | A0A0G0A4H5 | 878 | Peptidases_S8_5 | no | yes | T. harzianum ALL42–F. solani [48] | Secreted in both culture media with F. solani cell walls |
Control + Int | A0A0F9ZZN6 | 541 | Glyco_hydro superfamily | no | yes | T. harzianum ALL42–F. solani [48] | Secreted in minimal medium with F. solani cell walls |
Control + Int | A0A0F9X6Z0 | 197 | CFEM | yes | yes | T. virens–Zea mays [41] T. harzianum–F. solani [77] | Up-accumulated in T. virens control secretome vs. T. virens–maize interaction secretome Upregulated in the presence of F. solani cell walls |
Control + Int | A0A0F9XF89 | 776 | GH55_beta13glucanase-like | no | yes | T. harzianum TR274–Phaseolus vulgaris [73] | Up-accumulated in interactions with Phaseolus vulgaris |
Control + Int | A0A1T3CKS4 | 154 | Sod_Cu | no | yes | T.virens–Zea mays [42] | Secreted by T. virens after 5 days in contact with maize roots |
Uniprot ID | Size (aa) | Peptide Signal | Localization | Molecular Function | Domain | PHI-Base | Effector Motif | Taxonomic Distribution |
---|---|---|---|---|---|---|---|---|
A0A0F9X6Z0 | 193 | Yes | Extracellular, Cell membrane | Metal ion binding | CFEM | FGSG_02077 of F. graminearum (51.22%) | YFWxC | Related species in the order Hypocreales |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Todd, J.N.A.; Carreón-Anguiano, K.G.; Iturriaga, G.; Vázquez-Euán, R.; Islas-Flores, I.; Tzec-Simá, M.; Canseco-Pérez, M.Á.; De Los Santos-Briones, C.; Canto-Canché, B. Proteomics-Based Prediction of Candidate Effectors in the Interaction Secretome of Trichoderma harzianum and Pseudocercospora fijiensis. Microbiol. Res. 2025, 16, 175. https://doi.org/10.3390/microbiolres16080175
Todd JNA, Carreón-Anguiano KG, Iturriaga G, Vázquez-Euán R, Islas-Flores I, Tzec-Simá M, Canseco-Pérez MÁ, De Los Santos-Briones C, Canto-Canché B. Proteomics-Based Prediction of Candidate Effectors in the Interaction Secretome of Trichoderma harzianum and Pseudocercospora fijiensis. Microbiology Research. 2025; 16(8):175. https://doi.org/10.3390/microbiolres16080175
Chicago/Turabian StyleTodd, Jewel Nicole Anna, Karla Gisel Carreón-Anguiano, Gabriel Iturriaga, Roberto Vázquez-Euán, Ignacio Islas-Flores, Miguel Tzec-Simá, Miguel Ángel Canseco-Pérez, César De Los Santos-Briones, and Blondy Canto-Canché. 2025. "Proteomics-Based Prediction of Candidate Effectors in the Interaction Secretome of Trichoderma harzianum and Pseudocercospora fijiensis" Microbiology Research 16, no. 8: 175. https://doi.org/10.3390/microbiolres16080175
APA StyleTodd, J. N. A., Carreón-Anguiano, K. G., Iturriaga, G., Vázquez-Euán, R., Islas-Flores, I., Tzec-Simá, M., Canseco-Pérez, M. Á., De Los Santos-Briones, C., & Canto-Canché, B. (2025). Proteomics-Based Prediction of Candidate Effectors in the Interaction Secretome of Trichoderma harzianum and Pseudocercospora fijiensis. Microbiology Research, 16(8), 175. https://doi.org/10.3390/microbiolres16080175