Gut Microbiome Profiles in Colorectal Cancer Patients in Iraq
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Standards
2.2. Including & Excluding Criteria for Diagnosis
2.3. Ethics Statement and Consent Form
2.4. Bacterial DNA Extraction and 16S rRNA Sequencing
2.5. Statistical Analysis
3. Results
3.1. Basic Statistics of Sequence Reads in Stool Samples
3.2. Phylogenetic Composition and Relative Abundance
3.3. Microbial Shifts Associated with Colorectal Cancer Detected by Metacoder Tree Analysis
3.4. The Diversity of the Bacterial Communities
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Relative Abundance of Bacterial Phyla in (A) Healthy Control Subjects and (B) CRC Subjects
A | |||||||||||||||
Healthy | Healthy1 | Healthy2 | Healthy3 | Healthy4 | Healthy5 | Healthy6 | Healthy7 | Healthy8 | Healthy9 | Mean | Standard Deviation | StandardError | |||
p__Actinobacteriota | 6.11 | 1.89 | 12.14 | 4.32 | 1.85 | 5.52 | 7.35 | 2.05 | 2.81 | 4.89 | 3.38 | 1.13 | |||
p__Bacteroidota | 21.50 | 49.40 | 20.26 | 31.54 | 39.00 | 45.48 | 50.33 | 37.03 | 31.69 | 36.25 | 11.07 | 3.69 | |||
p__Cyanobacteria | 0.11 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.08 | 0.18 | 0.16 | 0.35 | 0.12 | |||
p__Desulfobacterota | 0.00 | 0.00 | 0.00 | 0.71 | 0.04 | 0.08 | 0.02 | 2.14 | 0.61 | 0.40 | 0.71 | 0.24 | |||
p__Elusimicrobiota | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.35 | 0.06 | 0.05 | 0.12 | 0.04 | |||
p__Firmicutes | 71.77 | 47.76 | 66.21 | 61.76 | 56.97 | 45.91 | 40.22 | 47.98 | 62.56 | 55.68 | 10.68 | 3.56 | |||
p__Fusobacteriota | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.01 | |||
p__Patescibacteria | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |||
p__Proteobacteria | 0.49 | 0.86 | 1.39 | 1.57 | 2.13 | 3.02 | 2.07 | 9.36 | 2.10 | 2.55 | 2.66 | 0.89 | |||
p__Synergistota | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | |||
p__Verrucomicrobiota | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | |||
B | |||||||||||||||
CRC | CRC-1 | CRC-2 | CRC-3 | CRC-4 | CRC-5 | CRC-6 | CRC-7 | CRC-8 | CRC-9 | CRC-10 | CRC-11 | CRC-12 | Mean | Standard Deviation | StandardError |
p__Actinobacteriota | 9.76 | 15.55 | 1.34 | 8.31 | 2.57 | 4.15 | 5.22 | 13.14 | 24.32 | 16.96 | 6.25 | 3.95 | 9.29 | 6.93 | 2.00 |
p__Bacteroidota | 20.77 | 4.02 | 42.45 | 24.13 | 25.60 | 33.22 | 17.87 | 4.32 | 0.65 | 12.36 | 1.21 | 16.74 | 16.94 | 13.20 | 3.81 |
p__Cyanobacteria | 0.00 | 0.01 | 0.00 | 1.29 | 0.99 | 0.24 | 0.45 | 0.18 | 0.00 | 0.00 | 0.17 | 0.24 | 0.30 | 0.42 | 0.12 |
p__Desulfobacterota | 1.13 | 1.18 | 0.24 | 1.96 | 0.61 | 2.56 | 0.05 | 0.14 | 0.33 | 0.00 | 0.97 | 0.77 | 0.83 | 0.79 | 0.23 |
p__Elusimicrobiota | 0.00 | 0.01 | 0.00 | 0.00 | 0.15 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.12 | 0.03 | 0.05 | 0.02 |
p__Firmicutes | 58.15 | 68.96 | 53.53 | 61.25 | 69.06 | 52.88 | 75.84 | 81.66 | 59.03 | 52.09 | 60.84 | 51.77 | 62.09 | 9.81 | 2.83 |
p__Fusobacteriota | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.53 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.91 | 0.20 | 0.49 | 0.14 |
p__Patescibacteria | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
p__Proteobacteria | 4.81 | 10.18 | 2.44 | 2.74 | 0.83 | 3.39 | 0.56 | 0.57 | 4.32 | 18.59 | 2.22 | 25.32 | 6.33 | 7.88 | 2.27 |
p__Synergistota | 0.00 | 0.06 | 0.00 | 0.00 | 0.07 | 0.94 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.09 | 0.27 | 0.08 |
p__Verrucomicrobiota | 5.37 | 0.03 | 0.00 | 0.31 | 0.11 | 1.06 | 0.02 | 0.00 | 11.35 | 0.00 | 28.33 | 0.11 | 3.89 | 8.42 | 2.43 |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Pelizzer, T.; Dias, C.P.; Poeta, J.; Torriani, T.; Roncada, C. Colorectal Cancer Prevalence Linked to Human Papillomavirus: A Systematic Review with Meta-Analysis. Rev. Bras. Epidemiol. 2016, 19, 791–802. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Chan, A.T.; Sun, J. Influence of the Gut Microbiome, Diet, and Environment on Risk of Colorectal Cancer. Gastroenterology 2020, 158, 322–340. [Google Scholar] [CrossRef] [PubMed]
- Sawicki, T.; Ruszkowska, M.; Danielewicz, A.; Niedźwiedzka, E.; Arłukowicz, T.; Przybyłowicz, K.E. A Review of Colorectal Cancer in Terms of Epidemiology, Risk Factors, Development, Symptoms and Diagnosis. Cancers 2021, 13, 2025. [Google Scholar] [CrossRef]
- Saus Martínez, E.; Iraola Guzman, S.; Willis, J.R.; Brunet-Vega, A.; Gabaldón Estevan, J.A. Microbiome and Colorectal Cancer: Roles in Carcinogenesis and Clinical Potential. Mol. Asp. Med. 2019, 69, 93–106. [Google Scholar] [CrossRef]
- Loke, Y.L.; Chew, M.T.; Ngeow, Y.F.; Lim, W.W.D.; Peh, S.C. Colon Carcinogenesis: The Interplay between Diet and Gut Microbiota. Front. Cell. Infect. Microbiol. 2020, 10, 603086. [Google Scholar] [CrossRef]
- Pandey, H.; Tang, D.W.T.; Wong, S.H.; Lal, D. Gut Microbiota in Colorectal Cancer: Biological Role and Therapeutic Opportunities. Cancers 2023, 15, 866. [Google Scholar] [CrossRef]
- Sekirov, I.; Russell, S.L.; Antunes, L.C.M.; Finlay, B.B. Gut Microbiota in Health and Disease. Physiol. Rev. 2010, 90, 859–904. [Google Scholar] [CrossRef]
- Ibrahim, K.S. Biochemical Interactions Between the Gut Microbiome and Host in Obesity/Type II Diabetes. Ph.D. Thesis, Glasgow Caledonian University, Glasgow, UK, 2017. [Google Scholar]
- Ibrahim, K.S.; Bourwis, N.; Dolan, S.; Craft, J.A. In Silico Analysis of Bacterial Metabolism of Glutamate and GABA in the Gut in a Rat Model of Obesity and Type 2 Diabetes. Biosci. Microbiota Food Health 2022, 41, 195–199. [Google Scholar] [CrossRef]
- Ibrahim, K.S.; Bourwis, N.; Dolan, S.; Lang, S.; Spencer, J.; Craft, J.A. Characterisation of Gut Microbiota of Obesity and Type 2 Diabetes in a Rodent Model. Biosci. Microbiota Food Health 2021, 40, 65–74. [Google Scholar] [CrossRef]
- Lucas, C.; Barnich, N.; Nguyen, H.T.T. Microbiota, Inflammation and Colorectal Cancer. Int. J. Mol. Sci. 2017, 18, 1310. [Google Scholar] [CrossRef] [PubMed]
- Sherafat, S.J.; Alebouyeh, M.; Moghim, S.; Amoli, H.A.; Ghasemian-Safaei, H. Role of Gut Microbiota in the Pathogenesis of Colorectal Cancer. Gastroenterol. Hepatol. Bed Bench 2018, 11, 101–109. [Google Scholar]
- Hussain, A.M.A.; Lafta, R.K. Cancer Trends in Iraq 2000–2016. Oman Med. J. 2021, 36, e219. [Google Scholar] [CrossRef] [PubMed]
- Alhilfi, H.S.Q.; Almohammadawi, K.O.M.; Alsaad, R.K.A.; Ameen, N.A.; Aliedani, B.K.A.; Aldubaisi, H.J.I.; Alshewered, A.S.H. Colorectal Cancer Epidemiology and Clinical Study in Misan. J. Coloproctol. 2019, 39, 159–162. [Google Scholar] [CrossRef]
- Cao, Y.; Ibrahim, K.S.; Li, X.; Wong, A.; Wu, Y.; Yu, X.-D.; Zhou, X.; Tan, Z.; He, Z.; Craft, J.A. Chinese Medicine, Qijudihuang Pill, Mediates Cholesterol Metabolism and Regulates Gut Microbiota in High-Fat Diet-Fed Mice, Implications for Age-Related Macular Degeneration. Front. Immunol. 2023, 14, 1274401. [Google Scholar] [CrossRef]
- Ibrahim, K.S.; Craft, J.A.; Biswas, L.; Spencer, J.; Shu, X. Etifoxine Reverses Weight Gain and Alters the Colonic Bacterial Community in a Mouse Model of Obesity. Biochem. Pharmacol. 2020, 180, 114151. [Google Scholar] [CrossRef]
- Biswas, L.; Ibrahim, K.S.; Li, X.; Zhou, X.; Zeng, Z.; Craft, J.; Shu, X. Effect of a TSPO Ligand on Retinal Pigment Epithelial Cholesterol Homeostasis in High-Fat Fed Mice, Implication for Age-Related Macular Degeneration. Exp. Eye Res. 2021, 208, 108625. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Robeson, M.S.; O’Rourke, D.R.; Kaehler, B.D.; Ziemski, M.; Dillon, M.R.; Foster, J.T.; Bokulich, N.A. RESCRIPt: Reproducible Sequence Taxonomy Reference Database Management. PLoS Comput. Biol. 2021, 17, e1009581. [Google Scholar] [CrossRef]
- O’Hara, A.M.; Shanahan, F. The Gut Flora as a Forgotten Organ. EMBO Rep. 2006, 7, 688–693. [Google Scholar] [CrossRef]
- Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T. A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing. Nature 2010, 464, 59–65. [Google Scholar] [CrossRef]
- Wang, T.; Cai, G.; Qiu, Y.; Fei, N.; Zhang, M.; Pang, X.; Jia, W.; Cai, S.; Zhao, L. Structural Segregation of Gut Microbiota between Colorectal Cancer Patients and Healthy Volunteers. ISME J. 2012, 6, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Baxter, N.T.; Zackular, J.P.; Chen, G.Y.; Schloss, P.D. Structure of the Gut Microbiome Following Colonization with Human Feces Determines Colonic Tumor Burden. Microbiome 2014, 2, 20. [Google Scholar] [CrossRef] [PubMed]
- Weir, T.L.; Manter, D.K.; Sheflin, A.M.; Barnett, B.A.; Heuberger, A.L.; Ryan, E.P. Stool Microbiome and Metabolome Differences between Colorectal Cancer Patients and Healthy Adults. PloS ONE 2013, 8, e70803. [Google Scholar] [CrossRef]
- Wang, Z.; Dan, W.; Zhang, N.; Fang, J.; Yang, Y. Colorectal Cancer and Gut Microbiota Studies in China. Gut Microbes 2023, 15, 2236364. [Google Scholar] [CrossRef]
- Sun, J.; Kato, I. Gut Microbiota, Inflammation and Colorectal Cancer. Genes Dis. 2016, 3, 130–143. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, J.; Ma, Y.; Liu, J.; Cui, Y.; Yuan, Y.; Xiang, C.; Ma, D.; Liu, H. The Microbiome Types of Colorectal Tissue Are Potentially Associated with the Prognosis of Patients with Colorectal Cancer. Front. Microbiol. 2023, 14, 1100873. [Google Scholar] [CrossRef]
- Tamanai-Shacoori, Z.; Smida, I.; Bousarghin, L.; Loreal, O.; Meuric, V.; Fong, S.B.; Bonnaure-Mallet, M.; Jolivet-Gougeon, A. Roseburia Spp.: A Marker of Health? Future Microbiol. 2017, 12, 157–170. [Google Scholar] [CrossRef]
- Kang, X.; Liu, C.; Ding, Y.; Ni, Y.; Ji, F.; Lau, H.C.H.; Jiang, L.; Sung, J.J.Y.; Wong, S.H.; Yu, J. Roseburia Intestinalis Generated Butyrate Boosts Anti-PD-1 Efficacy in Colorectal Cancer by Activating Cytotoxic CD8+ T Cells. Gut 2023, 72, 2112–2122. [Google Scholar] [CrossRef]
- Hiippala, K.; Kainulainen, V.; Kalliomäki, M.; Arkkila, P.; Satokari, R. Mucosal Prevalence and Interactions with the Epithelium Indicate Commensalism of Sutterella Spp. Front. Microbiol. 2016, 7, 1706. [Google Scholar] [CrossRef]
- Sarhadi, V.; Lahti, L.; Saberi, F.; Youssef, O.; Kokkola, A.; Karla, T.; Tikkanen, M.; Rautelin, H.; Puolakkainen, P.; Salehi, R. Gut Microbiota and Host Gene Mutations in Colorectal Cancer Patients and Controls of Iranian and Finnish Origin. Anticancer Res. 2020, 40, 1325–1334. [Google Scholar] [CrossRef] [PubMed]
- Battal, B.; Akgun, V.; Karaman, B. Value of 3T 1H-Magnetic Resonance Spectroscopy in the Differentiation of Benign and Malignant Breast Tumors. Acta Radiol. 2014, 55, 416–417. [Google Scholar] [CrossRef]
- Ma, J.; Sun, L.; Liu, Y.; Ren, H.; Shen, Y.; Bi, F.; Zhang, T.; Wang, X. Alter Between Gut Bacteria and Blood Metabolites and the Anti-Tumor Effects of Faecalibacterium Prausnitzii in Breast Cancer. BMC Microbiol. 2020, 20, 82. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; McDowell, A.; Kim, E.K.; Seo, H.; Lee, W.H.; Moon, C.-M.; Kym, S.-M.; Lee, D.H.; Park, Y.S.; Jee, Y.-K. Development of a Colorectal Cancer Diagnostic Model and Dietary Risk Assessment through Gut Microbiome Analysis. Exp. Mol. Med. 2019, 51, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Xu, X.; Fu, D.; Gu, Y.; Fan, R.; Yi, H.; He, X.; Wang, C.; Ouyang, B.; Zhao, P. Butyrate-Producing Eubacterium Rectale Suppresses Lymphomagenesis by Alleviating the TNF-Induced TLR4/MyD88/NF-ΚB Axis. Cell Host Microbe 2022, 30, 1139–1150. [Google Scholar] [CrossRef]
- James, A. Focal Lesions of the Liver: Imaging Appearances and Management. Br. J. Hosp. Med. 2020, 81, 1–22. [Google Scholar] [CrossRef]
- Du, X.; Li, Q.; Tang, Z.; Yan, L.; Zhang, L.; Zheng, Q.; Zeng, X.; Chen, G.; Yue, H.; Li, J. Alterations of the Gut Microbiome and Fecal Metabolome in Colorectal Cancer: Implication of Intestinal Metabolism for Tumorigenesis. Front. Physiol. 2022, 13, 854545. [Google Scholar] [CrossRef]
- Yuan, L.; Zhang, S.; Li, H.; Yang, F.; Mushtaq, N.; Ullah, S.; Shi, Y.; An, C.; Xu, J. The Influence of Gut Microbiota Dysbiosis to the Efficacy of 5-Fluorouracil Treatment on Colorectal Cancer. Biomed. Pharmacother. 2018, 108, 184–193. [Google Scholar] [CrossRef]
- Cai, C.; Zhang, X.; Liu, Y.; Shen, E.; Feng, Z.; Guo, C.; Han, Y.; Ouyang, Y.; Shen, H. Gut Microbiota Imbalance in Colorectal Cancer Patients, the Risk Factor of COVID-19 Mortality. Gut Pathog. 2021, 13, 70. [Google Scholar] [CrossRef]
- Cuív, P.Ó.; De Wouters, T.; Giri, R.; Mondot, S.; Smith, W.J.; Blottière, H.M.; Begun, J.; Morrison, M. The Gut Bacterium and Pathobiont Bacteroides Vulgatus Activates NF-ΚB in a Human Gut Epithelial Cell Line in a Strain and Growth Phase Dependent Manner. Anaerobe 2017, 47, 209–217. [Google Scholar] [CrossRef]
- Xu, Z.; Lv, Z.; Chen, F.; Zhang, Y.; Xu, Z.; Huo, J.; Liu, W.; Yu, S.; Tuersun, A.; Zhao, J. Dysbiosis of Human Tumor Microbiome and Aberrant Residence of Actinomyces in Tumor-Associated Fibroblasts in Young-Onset Colorectal Cancer. Front. Immunol. 2022, 13, 1008975. [Google Scholar] [CrossRef] [PubMed]
- Nasir, N.; Jamil, B.; Siddiqui, S.; Talat, N.; Khan, F.A.; Hussain, R. Mortality in Sepsis and Its Relationship with Gender. Pak. J. Med. Sci. 2015, 31, 1201. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Cai, K.; Xiao, Q.; He, L.; Xie, L.; Liu, Z. Akkermansia Muciniphila Administration Exacerbated the Development of Colitis-Associated Colorectal Cancer in Mice. J. Cancer 2022, 13, 124. [Google Scholar] [CrossRef] [PubMed]
- Faghfuri, E.; Gholizadeh, P. The Role of Akkermansia Muciniphila in Colorectal Cancer: A Double-Edged Sword of Treatment or Disease Progression? Biomed. Pharmacother. 2024, 173, 116416. [Google Scholar] [CrossRef]
- Li, G.; Liu, H.; Yu, Y.; Wang, Q.; Yang, C.; Yan, Y.; Wang, F.; Mao, Y. Desulfovibrio Desulfuricans and Its Derived Metabolites Confer Resistance to FOLFOX through METTL3. EBioMedicine 2024, 102, 105041. [Google Scholar] [CrossRef]
- Yan, Y.; Drew, D.A.; Markowitz, A.; Lloyd-Price, J.; Abu-Ali, G.; Nguyen, L.H.; Tran, C.; Chung, D.C.; Gilpin, K.K.; Meixell, D. Structure of the Mucosal and Stool Microbiome in Lynch Syndrome. Cell Host Microbe 2020, 27, 585–600. [Google Scholar] [CrossRef]
- Kushkevych, I.; Dordević, D.; Vítězová, M. Possible Synergy Effect of Hydrogen Sulfide and Acetate Produced by Sulfate-Reducing Bacteria on Inflammatory Bowel Disease Development. J. Adv. Res. 2021, 27, 71–78. [Google Scholar] [CrossRef]
- Windey, K.; De Preter, V.; Verbeke, K. Relevance of Protein Fermentation to Gut Health. Mol. Nutr. Food Res. 2012, 56, 184–196. [Google Scholar] [CrossRef]
- Marchesi, J.R.; Adams, D.H.; Fava, F.; Hermes, G.D.A.; Hirschfield, G.M.; Hold, G.; Quraishi, M.N.; Kinross, J.; Smidt, H.; Tuohy, K.M. The Gut Microbiota and Host Health: A New Clinical Frontier. Gut 2016, 65, 330–339. [Google Scholar] [CrossRef]
(A) | ||||||||
---|---|---|---|---|---|---|---|---|
Sample ID | Input | Filtered | Percentage Input Passed Filter | Denoised | Merged | Percentage Input Merged | Non-Chimeric | Percentage of Input Non-Chimeric |
Healthy1 | 160,127 | 145,446 | 90.83 | 143,589 | 130,521 | 81.51 | 99,439 | 62.1 |
Healthy2 | 159,925 | 143,015 | 89.43 | 141,324 | 130,089 | 81.34 | 97,141 | 60.74 |
Healthy3 | 159,830 | 144,506 | 90.41 | 141,962 | 124,122 | 77.66 | 88,011 | 55.07 |
Healthy4 | 159,977 | 144,579 | 90.37 | 142,989 | 131,898 | 82.45 | 91,449 | 57.16 |
Healthy5 | 160,226 | 144,453 | 90.16 | 142,594 | 128,286 | 80.07 | 95,735 | 59.75 |
Healthy6 | 160,040 | 143,104 | 89.42 | 141,416 | 131,093 | 81.91 | 96,820 | 60.5 |
Healthy7 | 159,885 | 145,328 | 90.9 | 142,114 | 120,900 | 75.62 | 77,079 | 48.21 |
Healthy8 | 159,937 | 145,544 | 91 | 142,793 | 121,541 | 75.99 | 67,078 | 41.94 |
Healthy9 | 159,941 | 145,084 | 90.71 | 142,123 | 120,750 | 75.5 | 79,407 | 49.65 |
Total | 1,439,888 | 1,301,059 | 813.23 | 1,280,904 | 1,139,200 | 712.05 | 792,159 | 495.12 |
(B) | ||||||||
Sample ID | Input | Filtered | Percentage input passed filter | Denoised | Merged | Percentage input merged | Non-chimeric | Percentage of input non-chimeric |
CRC1 | 160,084 | 145,194 | 90.7 | 142,723 | 124,425 | 77.72 | 79,034 | 49.37 |
CRC2 | 160,113 | 144,421 | 90.2 | 142,331 | 127,580 | 79.68 | 88,626 | 55.35 |
CRC3 | 160,083 | 144,893 | 90.51 | 143,028 | 129,896 | 81.14 | 91,283 | 57.02 |
CRC4 | 159,890 | 144,458 | 90.35 | 141,600 | 121,880 | 76.23 | 91,015 | 56.92 |
CRC5 | 160,315 | 146,013 | 91.08 | 143,905 | 128,387 | 80.08 | 92,752 | 57.86 |
CRC6 | 159,862 | 140,863 | 88.12 | 138,053 | 119,340 | 74.65 | 93,431 | 58.44 |
CRC7 | 159,763 | 143,335 | 89.72 | 140,420 | 120,133 | 75.19 | 87,588 | 54.82 |
CRC8 | 160,123 | 144,814 | 90.44 | 142,761 | 129,111 | 80.63 | 82,967 | 51.81 |
CRC9 | 160,027 | 146,159 | 91.33 | 145,015 | 136,773 | 85.47 | 99,958 | 62.46 |
CRC10 | 160,289 | 145,110 | 90.53 | 143,694 | 135,141 | 84.31 | 88,555 | 55.25 |
CRC11 | 159,998 | 144,410 | 90.26 | 143,141 | 137,022 | 85.64 | 104,387 | 65.24 |
CRC12 | 160,134 | 145,168 | 90.65 | 141,412 | 117,442 | 73.34 | 83,281 | 52.01 |
Total | 1,920,681 | 1,734,838 | 1083.89 | 1,708,083 | 1,527,130 | 954.08 | 1,082,877 | 676.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadhim, F.J.; Aziz, Z.S.; Ibrahim, K.S. Gut Microbiome Profiles in Colorectal Cancer Patients in Iraq. Microbiol. Res. 2025, 16, 22. https://doi.org/10.3390/microbiolres16010022
Kadhim FJ, Aziz ZS, Ibrahim KS. Gut Microbiome Profiles in Colorectal Cancer Patients in Iraq. Microbiology Research. 2025; 16(1):22. https://doi.org/10.3390/microbiolres16010022
Chicago/Turabian StyleKadhim, Fatima J., Zahid S. Aziz, and Khalid S. Ibrahim. 2025. "Gut Microbiome Profiles in Colorectal Cancer Patients in Iraq" Microbiology Research 16, no. 1: 22. https://doi.org/10.3390/microbiolres16010022
APA StyleKadhim, F. J., Aziz, Z. S., & Ibrahim, K. S. (2025). Gut Microbiome Profiles in Colorectal Cancer Patients in Iraq. Microbiology Research, 16(1), 22. https://doi.org/10.3390/microbiolres16010022