Molecular Diversity of Arbuscular Mycorrhizal Fungi Associated with the Rhizosphere of Vachellia seyal Del. from Selected Saline Soils in Senegal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Soil and Root Sampling
2.3. AMF Trap Cultures and Spore Extraction
2.4. DNA Extraction from Soils
2.5. DNA Extraction from Roots
2.6. DNA Extraction from Spores
2.7. Nested PCR Amplification
2.8. Cloning and Sequencing
2.9. Phylogenetic Analysis
2.10. Diversity Indices Analysis
2.11. Rarefaction Indices
2.12. Statistical Analysis
3. Results
3.1. Molecular Diversity in the Three Sites
3.2. Phylogenetic Tree Analysis
- -
- Some OTUs whose lineages are in G. sp. 1. These lineages correspond to five clones belonging to the moderately saline soil of Ngane.
- -
- Some OTUs whose lineages belong to G. sp. 2. These lineages correspond to eight clones close to G. sp. 1 from the low-salinity soil (Bambey).
- -
- OTUs whose lineages were more distant from G. sp. 1 and G. sp. 2 and belonged to G. sp. 3, 4, and 5 were grouped in the first unspecified cluster. The sequences included in G. sp. 3, 4, and 5 were composed of OTUs belonging to 16 clones from the three soils studied. These OTUs were unequally distributed in the phylogenetic tree and showed no homologies with the sequences available in databases. Within G. sp. 3, the majority of lineages belonged mainly to the Ndiafate soil, with only one sequence from the Ngane soil. In contrast, G. sp. 4 and G. sp. 5 have 100% sequences from Bambey and Ngane soils, respectively.
- -
- The lineages of the second unspecified group were more distant from G. sp. 6 and 7. This group of 12 sequences consisted of G. sp. 8, 9, and 10.
3.3. AMF Phylotype Diversity
3.4. Relationships Between OTUs and Diversity Indices
3.5. Rarefaction Index
3.6. Statistical Analysis Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hall, J.B. A Quick Guide to Useful Nitrogen Fixing Trees from Around the World. Forest, Farm and Community Tree Network. NFT Highlights. 94-07. 1994. Available online: https://winrock.org/why-nitrogen-fixing-trees/ (accessed on 21 November 2024).
- Mohammed, H.M.; Rohle, H. Gum Talha from Acacia seyal Del. Variety seyal in South Kordofan, Sudan. Research. J. For. 2011, 5, 17–26. [Google Scholar] [CrossRef]
- Diouf, D.; Fall, D.; Chaintreuil, C.; Ba, A.T.; Dreyfus, B.; Neyra, M.; Ndoye, I.; Moulin, L. Phylogenetic analyses of symbiotic genes and characterization of functional traits of Mesorhizobium spp. strains associated to a promiscuous species Acacia seyal Del. J. Appl. Microbiol. 2010, 108, 818–830. [Google Scholar] [CrossRef] [PubMed]
- Jøoker, D. Acacia seyal Del. Danida Forest Seed Centre. In Seed Leaflet; N° 34; Danida Forest Seed Centre: Addis Ababa, Ethiopia, 2000. [Google Scholar]
- Manga, A.; Dalpé, Y.; Soumaré, A.; Diop, T.A. Diversity of Arbuscular mycorrhizal fungi associated to Acacia seyal (Delile) in semi-arid zone of Senegal. World J. Microbiol. 2017, 3, 120–127. [Google Scholar]
- Belay, Z.; Vestberg, M.; Assefa, F. Diversity and abundance of arbuscular mycorrhizal fungi associated with acacia trees from different land use systems in Ethiopia. Afr. J. Microbiol. Res. 2013, 7, 5503–5515. [Google Scholar] [CrossRef]
- Manga, A.G.B.; Ndiaye, M.; Ndiaye, M.A.F.; Sané, S.; Diop, T.A.; Diatta, A.A.; Bassene, C.; Min, D.; Battaglia, M.; Harrison, M.T. Arbuscular Mycorrhizal Fungi Improve Growth and Phosphate Nutrition of Acacia seyal (Delile) under Saline Conditions. Soil Syst. 2022, 6, 79. [Google Scholar] [CrossRef]
- Koegel, S.; Boller, T.; Lehmann, M.F.; Wiemken, A.; Courty, P.E. Rapid nitrogen transfer in the Sorghum bicolor-Glomus mosseae arbuscular mycorrhizal symbiosis. Plant Signal Behav. 2013, 8, e25229. [Google Scholar] [CrossRef]
- Wubet, T.; Wei, M.; Kottke, I.; Teketay, D.; Oberwinkler, K. Molecular diversity of arbuscular mycorrhizal fungi in Prunus africana, an endangered medicinal tree species in dry Afromontane forests of Ethiopia. New Phytol. 2003, 161, 517–528. [Google Scholar] [CrossRef]
- Krüger, M.; Krüger, C.; Walker, C.; Stockinger, H.; Schüßler, A. Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol. 2012, 193, 970–984. [Google Scholar] [CrossRef]
- Spruyt, A.; Buck, M.T.; Mia, A.; Straker, C.J. Arbuscular mycorrhiza (AM) status of rehabilitation plants of minewastes in South Africa and determination of AM fungal diversity by analysis of the small subunit rRNA gene sequences. S. Afr. J. Bot. 2014, 94, 231–237. [Google Scholar] [CrossRef]
- St John, T.V.; Koske, R.E. Statistical treatment of endogonaceous spore counts. Trans. Br. Mycol. Soc. 1988, 91, 117–121. [CrossRef]
- Picone, C. Abundance, diversity, and spatial heterogeneity of AM fungal spores in degraded pasture and lowland forest of Nicaragua. In Mycorrhizas in Integrated Systems: From Genes to Plant Development; Azcón-Aguilar, C., Barea, J.M., Eds.; European Commission: Brussel, Belgium, 1996; pp. 134–136. [Google Scholar]
- Hewitt, E.J. Sand and Water Culture Methods Used in the Study of Plant Nutrition, 2nd ed.; Commonwealth Agricultural Bureau, The Eastern Press: London, UK; Reading, UK, 1966; p. 547. [Google Scholar] [CrossRef]
- Gerdemann, J.W.; Nicolson, T.H. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 1963, 46, 235–244. [Google Scholar] [CrossRef]
- Martin-Laurent, F.; Philippot, L.; Hallet, S.; Chaussod, R.; Germon, J.C.; Soulas, G.; Catroux, G. DNA extraction from soils: Old bias for new microbial diversity analysis methods. Appl. Environ. Microbiol. 2001, 67, 2354–2359. [Google Scholar] [CrossRef]
- Mullis, K.; Faloona, F.; Scharf, S.; Saiki, R.; Horn, G.; Erlich, H. Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. 1986, 51, 263–273. [Google Scholar] [CrossRef]
- van Tuinen, D.; Jacquot, E.; Zhao, B.; Gollote, A.; Gianinazzi-Pearson, V. Characterisation of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA targeted nested PCR. Mol. Ecol. 1998, 7, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Gollotte, A.; Van Tuinen, D.; Atkinson, D. Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza 2004, 14, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Manga, A.; Diop, T.A.; van Tuinen, D.; Neyra, M. Variabilité génétique des champignons mycorhiziens associés à Acacia seyal en zone semi-aride du Sénégal. Sécheresse 2007, 18, 129–133. [Google Scholar]
- Rambaut, A. SE-AL Sequence Alignment Editor; Department of Zoology, University of Oxford: Oxford, UK, 1996. [Google Scholar]
- Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucl. Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef]
- Kimura, M.A. Simple Method for Estimating Evolutionary Rate of Base Substitutions through Comparative Studies of Nucleotide Sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef]
- Galtier, N.; Gouy, M.; Gautier, C. SEAVIEW and PHYLO_WIN: Two graphic tools for sequence alignment and molecular phylogeny. Comput. Appl. Biosci. 1996, 12, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Saitou, N.; Nei, M. The neighbour-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406425. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory for communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Pielou, E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966, 15, 131–144. [Google Scholar] [CrossRef]
- Husband, R.; Herre, A.; Turner, L.; Gallery, R.; Young, P.W. Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Mol. Ecol. 2002, 11, 2669–2678. [Google Scholar] [CrossRef]
- Claassen, V.P.; Zasoski, R.J.; Tyler, B.M. A method for direct soil extraction and PCR amplification of endomycorrhizal fungal DNA. Mycorrhiza 1996, 6, 447–450. [Google Scholar] [CrossRef]
- Öpik, M.; Vanatoa, A.; Vanatoa, E.; Moora, M.; Davison, J.; Kalwij, J.M.; Reier, U.; Zobel, M. The online databaseMaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol. 2010, 188, 223–241. [Google Scholar] [CrossRef]
- Holben, W.E. Isolation and purification of bacterial DNA from soil. In Methods of Soil Analysis Part 2; Microbiological and Biochemical Properties; Soil Society of America, Book Series 5; Weaver, R.W., Angle, S., Bottomley, P., Bezdicek, D., Smith, S., Tabatabai, A., Wollum, A., Eds.; Wise: Madison, WI, USA, 1994. [Google Scholar]
- Clapp, J.P.; Young, J.W.P.; Merryweather, J.W.; Fitter, A.H. Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytol. 1995, 130, 259–265. [Google Scholar] [CrossRef]
- Hegalson, T.; Merryweather, J.W.; Denison, J.; Wilson, P.; Young, J.P.W.; Fitter, A.H. Selectivity and functional diversity in arbuscular mycorrhizas of co-occuring fungi and plants from a temperate deciduous woodland. J. Ecol. 2002, 90, 371–384. [Google Scholar] [CrossRef]
- Kjøller, R.; Rosendahl, S. Detection of arbuscular mycorrhizal fungi (Glomales) in roots by nested PCR and SSCP (Single Stranded Conformation Polymorphism). Plant Soil 2000, 226, 189–196. [Google Scholar] [CrossRef]
- Diop, I.; Ndoye, F.; Kane, A.; Krasova-Wade, T.; Pontiroli, A.; Do Rego, F.; Noba, K.; Prin, Y. Arbuscular mycorrhizal fungi (AMF) communities associated with cowpea in two ecological site conditions in Senegal. Afr. J. Microbiol. Res. 2015, 9, 1409–1418. [Google Scholar] [CrossRef]
- Cuenca, G.; Meneses, E. Diversity patterns of arbuscular mycorrhizal fungi associated with cacao in Venezuela. Plant Soil 1996, 183, 315–322. [Google Scholar] [CrossRef]
- Pringle, A.; Moncalvo, J.M.; Vilgalys, R. High levels of variation in ribosomal DNA sequences within and among spores of a natural population of the arbuscular mycorrhizal fungus Acaulospora colossica. Mycologia 2000, 92, 259–268. [Google Scholar] [CrossRef]
- Manga, A.; Diop, A.; Diop, T.A. Functional Diversity of Mycorrhizal Fungi Has Differential Effects on Salinity Tolerance of Acacia seyal (Del.) Seedlings. Open J. Soil Sci. 2017, 7, 315–332. [Google Scholar] [CrossRef]
- Sène, G.; Thiao, M.; Manga, A.; Kane, A.; Samba-Mbaye, R.; Mbaye, M.S.; Khasa, D.; Sylla, S. Arbuscular mycorrhizal soil infectivity and spores distribution across plantations of tropical, subtropical and exotic tree species: A case study from the reserve forestry of Bandia, Senegal. Afr. J. Ecol. 2012, 50, 218–232. [Google Scholar] [CrossRef]
- Diop, T.A.; Guèye, M.; Dreyfus, B.L.; Plenchette, C.; Strullu, D.G. Indigenous arbuscular mycorrhizal fungi associated with Acacia albida Del. in different areas of Senegal. Appl. Environ. Microbiol. 1994, 60, 3433–3436. [Google Scholar] [CrossRef]
- Ndoye, F.; Kane, A.; Mangaptché, E.L.N.; Bakhoum, N.; Sanon, A.; Diouf, D.; Sy, M.O.; Baudoin, E.; Noba, K.; Prin, Y. Changes in land use system and environmental factors affect arbuscular mycorrhizal fungal density and diversity, and enzyme activities in rhizospheric soils of Acacia senegal (L.) Willd. ISRN Ecol. 2012, 2012, 563191. [Google Scholar] [CrossRef]
- Houngnandan, P.; Yemadje, R.G.H.; Kane, A.; Boeckx, P.; Van Cleemput, O. Les glomales indigènes de la forêt claire à Isoberlinia doka (Craibet Stapf) à Wari-Maro au centre du Bénin. Tropicultura 2009, 27, 83–87. [Google Scholar]
- Dalpé, Y.; Diop, T.A.; Plenchette, C.; Gueye, M. Glomales species associated with surface and deep rhizosphere of Faidherbia albida in Senegal. Mycorrhiza 2000, 10, 125–129. [Google Scholar] [CrossRef]
- Öpik, M.; Moora, M.; Liira, J.; Kõljalg, U.; Zobel, M.; Sen, R. Divergent arbuscular mycorrhizal fungal communities colonize roots of Pulsatilla spp. in boreal Scots pine forest and grassland soils. New Phytol. 2003, 160, 581–593. [Google Scholar] [CrossRef] [PubMed]
- Clapp, J.P.; Hegalson, T.; Daniell, T.J.; Young, J.P.W. Genetic studies of the structure and diversity of arbuscular mycorrhizal fungal communities. In Mycorrhizal Ecology; van der Heijden, M.G.A., Sanders, I.R., Eds.; Springler: Berlin/Heidelberg, Germany, 2002; pp. 201–224. [Google Scholar] [CrossRef]
- Zarei, M.; König, S.; Hempel, S.; Nekouei, M.K.; Savaghebi, G.; Buscot, F. Community structure of arbuscular mycorrhizal fungi associated to Veronica rechingeri at the Anguran zinc and lead mining region. Environ. Pollut. 2008, 156, 1277–1283. [Google Scholar] [CrossRef] [PubMed]
- Zarei, M.; Hempel, S.; Wubet, T.; Schäfer, T.; Savaghebi, G.; Jouzani, G.S.; Nekouei, M.K.; Buscot, F. Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environ. Pollut. 2010, 158, 2757–2765. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Castro, I.; Gianinazzi-Pearson, V.; Cleyet-Marel, J.C.; Baudoin, E.; van Tuinen, D. Glomeromycota communities survive extreme levels of metal toxicity in an orphan mining site. Sci. Total Environ. 2017, 598, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Öpik, M.; Moora, M.; Zobel, M.; Saks, U.; Wheatley, R.; Wright, F.; Danielli, T. High diversity of arbuscular mycorrhizal fungi in a boreal herb-rich coniferous forest. New Phytol. 2008, 179, 867–876. [Google Scholar] [CrossRef]
- KjØller, R.; Rosendahl, S. Molecular diversity of glomalean (arbuscular mycorrhizal) fungi determined as distinct Glomus specific DNA sequences from roots of field grown peas. Mycol. Res. 2001, 105, 1027–1032. [Google Scholar] [CrossRef]
- Redecker, D.; Schüßler, A.; Stockinger, H.; Stürmer, S.; Morton, J.; Walker, C. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 2013, 23, 515–531. [Google Scholar] [CrossRef]
- Juniper, S.; Abbott, L. Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza 1993, 4, 45–57. [Google Scholar] [CrossRef]
- Koske, R.E. Distribution of a mycorrhizal fungi along a latitudinal temperature-gradient. Mycologia 1987, 79, 55–68. [Google Scholar] [CrossRef]
- Porter, W.M.; Robson, A.D.; Abbott, L.K. Field survey of the distribution of vesicular arbuscular mycorrhizal fungi in relation to soil-pH. J. Appl. Ecol. 1987, 24, 659–662. [Google Scholar] [CrossRef]
- Kaumbu, J.K.; Sene, G.; Stefani, F.; Khasa, D.P. Characterization of the arbuscular mycorrhizal fungal community associated with rosewood in threatened Miombo forests. Mycorrhiza 2023, 33, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Sieverding, E. Ecology of VAM fungi in tropical agrosystems. Agric. Ecosyst. Environ. 1989, 29, 369–390. [Google Scholar] [CrossRef]
- Johnson, N.C.; Pfleger, F.L. Vesicular-arbuscular mycorrhizae and cultural stresses. In Mycorrhizae in Sustainable Agriculture; Wiley-Blackwell: Hoboken, NJ, USA, 2015; pp. 71–99. [Google Scholar] [CrossRef]
- An, Z.Q.; Hendrix, J.W.; Hershman, D.E.; Ferriss, R.S.; Henson, G.T. The influence of crop rotation and soil fumigation on a mycorrhizal fungal community associated with soybean. Mycorrhiza 1993, 3, 171–182. [Google Scholar] [CrossRef]
- Oehl, F.; Sieverding, E.; Ineichen, K.; Mäder, P.; Boller, T.; Wiemken, A. Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl. Environ. Microbiol. 2003, 69, 2816–2824. [Google Scholar] [CrossRef] [PubMed]
- Peña-Venegas, C.P.; Kuyper, T.W.; Davison, J.; Jairus, T.; Vasar, M.; Stomph, T.J.; Struik, P.C.; Öpik, M. Distinct arbuscular mycorrhizal fungal communities associate with different manioc landraces and Amazonian soils. Mycorrhiza 2019, 29, 263–275. [Google Scholar] [CrossRef]
- Johnson, D.; IJdo, M.; Genney, D.R.; Anderson, I.C.; Alexander, I.J. How do plants regulate the function, community structure, and diversity of mycorrhizal fungi? J. Exp. Bot. 2005, 56, 1751–1760. [Google Scholar] [CrossRef] [PubMed]
- Klironomos, J. Host-specificity and functional diversity among arbuscular mycorrhizal fungi. Microbial biosystems: Newfrontiers. Microb. Biosyst. New Front. 2000, 1, 845–851. [Google Scholar]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: London, UK, 2008. [Google Scholar] [CrossRef]
- Antunes, P.M.; Koch, A.M.; Morton, J.B.; Rillig, M.C.; Klironomos, J.N. Evidence for functional divergence in arbuscular mycorrhizal fungi from contrasting climatic origins. New Phytol. 2011, 189, 507–514. [Google Scholar] [CrossRef]
- Séry, D.J.M.; van Tuinen, D.; Drain, A.; Mounier, A.; Zézé, A. The genus Rhizophagus dominates arbuscular mycorrhizal fungi communities in contrasted cassava field soils in Côte d’Ivoire. Rhizosphere 2018, 7, 8–17. [Google Scholar] [CrossRef]
Ngane | Ndiafate | Bambey | |
---|---|---|---|
EC (mmho/cm) | 28.3 | 100.8 | 0.49 |
pH water | 5.6 | 3.6 | 5.5 |
pH KCl | 4.9 | 4.2 | 5.2 |
CEC | 2.42 | 4.26 | 1.78 |
C/N | 11 | 20 | 10 |
Assimilable Olsen P2O2 (ppm) | 13.7 | 16.0 | 11.5 |
Clay (%) | 4.95 | 5.67 | 3.86 |
Coarse silt 20–50 (%) | 7.88 | 8.57 | 5.52 |
Coarse sand > 200 (%) | 32.1 | 21.8 | 24.9 |
Texture | sandy | sandy | sandy |
Location | OTUs | H′ | D | J′ |
---|---|---|---|---|
Bambey | 22 | 1.417 | 0.234 | 0.881 |
Ngane | 18 | 1.798 | 0.137 | 0.924 |
Ndiafate | 35 | 1.433 | 0.235 | 0.890 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manga, A.G.B.; Sene, G.; Diatta, A.A.; Diop, T.A.; Barroso, G.; Tuinen, D.v. Molecular Diversity of Arbuscular Mycorrhizal Fungi Associated with the Rhizosphere of Vachellia seyal Del. from Selected Saline Soils in Senegal. Microbiol. Res. 2025, 16, 19. https://doi.org/10.3390/microbiolres16010019
Manga AGB, Sene G, Diatta AA, Diop TA, Barroso G, Tuinen Dv. Molecular Diversity of Arbuscular Mycorrhizal Fungi Associated with the Rhizosphere of Vachellia seyal Del. from Selected Saline Soils in Senegal. Microbiology Research. 2025; 16(1):19. https://doi.org/10.3390/microbiolres16010019
Chicago/Turabian StyleManga, Anicet Georges Bruno, Godar Sene, André Amakobo Diatta, Tahir Abdoulaye Diop, Gérard Barroso, and Diederik van Tuinen. 2025. "Molecular Diversity of Arbuscular Mycorrhizal Fungi Associated with the Rhizosphere of Vachellia seyal Del. from Selected Saline Soils in Senegal" Microbiology Research 16, no. 1: 19. https://doi.org/10.3390/microbiolres16010019
APA StyleManga, A. G. B., Sene, G., Diatta, A. A., Diop, T. A., Barroso, G., & Tuinen, D. v. (2025). Molecular Diversity of Arbuscular Mycorrhizal Fungi Associated with the Rhizosphere of Vachellia seyal Del. from Selected Saline Soils in Senegal. Microbiology Research, 16(1), 19. https://doi.org/10.3390/microbiolres16010019