Detection and Characterization of Escherichia coli and Escherichia coli O157:H7 in Human, Animal, and Food Samples from Kirkuk Province, Iraq
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
- Human Stool Specimens
- Animal Fecal Samples
- Animal products
2.2. Ethics and Consent Approval
2.3. Isolation and Identification of E. coli and E. coli O157:H7
2.3.1. Isolation and Identification Procedure
2.3.2. Serological Test for E. coli O157:H7 Screening
2.4. Antimicrobial Susceptibility of E. coli O157:H7 Isolates
2.5. Detection of Virulence Genes in E. coli O157:H7 Isolates
2.6. Statistical Analysis
3. Results
3.1. Occurrence of E. coli
3.2. Occurrence of E. coli O157:H7
3.3. Antimicrobial Susceptibility Testing of E. coli O157:H7 Isolates
3.4. Detection of Virulence Genes in E. coli O157:H7 Isolates
4. Discussion
4.1. Occurrence of E. coli
4.2. Occurrence of E. coli O157:H7
4.3. Antimicrobial Susceptibility Testing of E. coli O157:H7 Strains
4.4. Detection of stx1, stx2, eaeA, and hlyA Genes in E. coli O157:H7 Isolates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allocati, N.; Masulli, M.; Alexeyev, M.F.; Di Ilio, C. Escherichia coli in Europe: An overview. Int. J. Environ. Res. Public Health 2013, 10, 6235–6254. [Google Scholar] [CrossRef]
- Adzitey, F. Antibiotic Resistance of Escherichia coli Isolated from Beef and its Related Samples in Techiman Municipality of Ghana. Asian J. Anim. Sci. 2015, 9, 233–240. [Google Scholar] [CrossRef]
- Stromberg, Z.R.; Goor, A.V.; Redweik, G.A.J.; Brand, M.J.W.; Wannemuehler, M.J.; Mellata, M. Pathogenic and Non-Pathogenic Escherichia coli Colonization and Host Inflammatory Response in a Defined Microbiota Mouse Model. Dis. Model Mech. 2018, 11, dmm035063. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.; Tack, D.; Pindyck, T.; Griffin, P. Escherichia coli, Diarrheagenic. Centre for Disease Control and Prevention. Available online: https://wwwnc.cdc.gov/travel/yellowbook/2024/infections-diseases/escherichia-coli-diarrheagenic (accessed on 20 December 2024).
- Lee, W.; Kim, M.-H.; Sung, S.; Kim, E.; An, E.S.; Kim, S.H.; Kim, S.H.; Kim, H.-Y. Genome-Based Characterization of Hybrid Shiga Toxin-Producing and Enterotoxigenic Escherichia coli (STEC/ETEC) Strains Isolated in South Korea, 2016–2020. Microorganisms 2023, 11, 1285. [Google Scholar] [CrossRef]
- Croxen, M.A.; Finlay, B.B. Molecular mechanisms of Escherichia coli pathogenicity. Nat. Rev. Microbiol. 2010, 8, 26–38. [Google Scholar] [CrossRef]
- Melton-Celsa, A.R. Shiga toxin (Stx) classification, structure, and function. Microbiol. Spectr. 2014, 2, 10–1128. [Google Scholar] [CrossRef]
- Sandvig, K. Pathways Followed by Ricin and Shiga Toxin into Cells. Histochem. Cell Biol. 2002, 117, 131–141. [Google Scholar] [CrossRef]
- Dhaka, P.; Vijay, D.; Vergis, J.; Negi, M.; Kumar, M.; Mohan, V.; Doijad, S.; Poharkar, K.V.; Malik, S.S.; Barbuddhe, S.B.; et al. Genetic Diversity and Antibiogram Profile of Diarrhoeagenic Escherichia coli Pathotypes Isolated from Human, Animal, Foods, and Associated Environmental Sources. Infect. Ecol. Epidemiol. 2016, 6, 31055. [Google Scholar] [CrossRef] [PubMed]
- Fedorchuk, C. Enterohemhorrhagic Escherichia coli O157:H7 Initial Adherence Factors and the Role of the Polymeric Immunoglobulin Receptor during Adherence to Intestinal Epithelial Cells. Ph.D. Thesis, The Pennsylvania State University, University Park, PA, USA, 2018. [Google Scholar]
- Makhado, U.G.; Foka, F.E.T.; Tchatchouang, C.K.; Ateba, C.N.; Manganyi, M.C. Detection of virulence gene of Shiga toxin producing Escherichia coli (STEC) strains from animals with diarrhoea and water samples in the North-West Province, South Africa. Gene Rep. 2022, 27, 101617, ISSN 2452-0144. [Google Scholar] [CrossRef]
- Schwidder, M.; Heinisch, L.; Schmidt, H. Genetics, Toxicity, and Distribution of Enterohemorrhagic Escherichia coli Hemolysin. Toxins 2019, 11, 502. [Google Scholar] [CrossRef]
- Nataro, J.P.; Kaper, J.B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 1998, 11, 142–201. [Google Scholar] [CrossRef]
- Karch, H.; Tarr, P.I.; Bielaszewska, M. Enterohaemorrhagic Escherichia coli in human medicine. Int. J. Med. Microbiol. 2005, 295, 405–418. [Google Scholar] [CrossRef] [PubMed]
- Iguchi, A.; Shirai, H.; Seto, K.; Ooka, T.; Ogura, Y.; Hayashi, T.; Osawa, R. Wide distribution of O157-antigen biosynthesis gene clusters in Escherichia coli. PLoS ONE 2011, 6, e23250. [Google Scholar] [CrossRef] [PubMed]
- Goulart, D.B.; Mellata, M. Escherichia coli Mastitis in Dairy Cattle: Etiology, Diagnosis, and Treatment Challenges. Front. Microbiol. 2022, 13, 928346. [Google Scholar] [CrossRef]
- Rangel, J.M.; Sparling, P.H.; Crowe, C.; Griffin, P.M.; Swerdlow, D.L. Epidemiology of Escherichia coli O157 Outbreaks, United States, 1982–2002. Emerg. Infect. Dis. 2005, 11, 603–609. [Google Scholar] [CrossRef]
- Albuqami, S.A.; Dawoud, T.M.; Moussa, I.M.; Elbehiry, A.; Alsubki, R.A.; Hemeg, H.A.; Alhaji, J.H. The Molecular Detection and Antimicrobial Profiles of Selected Bacterial Pathogens in Slaughterhouses in Riyadh City, Saudi Arabia. Appl. Sci. 2023, 13, 13037. [Google Scholar] [CrossRef]
- Collobert, J.-F.; Dorey, F.; Dieuleveux, V.; Quillien, N. Qualité bactériologique de surface de carcasses de bovins. Sci. Des. Aliment. 2002, 22, 327–334. [Google Scholar] [CrossRef]
- Niyonzima, E.; Ongol, M.P.; Kimonyo, A.; Sindic, M. Risk Factors and Control Measures for Bacterial Contamination in the Bovine Meat Chain: A Review on Salmonella and Pathogenic E. coli. J. Food Res. 2015, 4, 98. [Google Scholar] [CrossRef]
- Verraes, C.; Vlaemynck, G.; Van Weyenberg, S.; De Zutter, L.; Daube, G.; Sindic, M.; Uyttendaele, M.; Herman, L. A review of the microbiological hazards of dairy products made from raw milk. Int. Dairy J. 2015, 50, 32–44. [Google Scholar] [CrossRef]
- Owusu-Kwarteng, J.; Akabanda, F.; Agyei, D.; Jespersen, L. Microbial safety of milk production and fermented dairy products in Africa. Microorganisms 2020, 8, 752. [Google Scholar] [CrossRef]
- Ababu, A.; Endashaw, D.; Fesseha, H. Isolation and antimicrobial susceptibility profile of Escherichia coli O157:H7 from raw milk of dairy cattle in Holeta district, Central Ethiopia. Int. J. Microbiol. 2020, 2020, 6626488. [Google Scholar] [CrossRef]
- Pakdel, M.; Olsen, A.; Bar, E.M.S. A review of food contaminants and their pathways within food processing facilities using open food processing equipment. J. Food Prot. 2023, 86, 100184. [Google Scholar] [CrossRef]
- Luna, S. Outbreak of E. coli O157 Infections Associated with Exposure to Animal Manure in a Rural Community—Arizona and Utah, June–July 2017. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 659–662. [Google Scholar] [CrossRef] [PubMed]
- Helke, K.L.; McCrackin, M.A.; Galloway, A.M.; Poole, A.Z.; Salgado, C.D.; Marriott, B.P. Effects of Antimicrobial Use in Agricultural Animals on Drug-Resistant Foodborne Salmonellosis in Humans: A Systematic Literature Review. Crit. Rev. Food Sci. Nutr. 2017, 57, 472–488. [Google Scholar] [CrossRef]
- Pornsukarom, S.; van Vliet, A.H.; Thakur, S. Whole Genome Sequencing Analysis of Multiple Salmonella Serovars Provides Insights into Phylogenetic Relatedness, Antimicrobial Resistance, and Virulence Markers Across Humans, Food Animals, and Agricultural Environmental Sources. BMC Genom. 2018, 19, 801. [Google Scholar] [CrossRef]
- Goncuoglu, M.; Bilir Ormanci, F.S.; Ayaz, N.D.; Erol, I. Antibiotic Resistance of Escherichia coli O157 Isolated from Cattle and Sheep. Ann. Microbiol. 2010, 60, 489–494. [Google Scholar] [CrossRef]
- Haile, A.F.; Alonso, S.; Berhe, N.; Atoma, T.B.; Boyaka, P.N.; Grace, D. Prevalence, Antibiogram, and Multidrug-Resistant Profile of E. coli O157 in Retail Raw Beef in Addis Ababa, Ethiopia. Front. Vet. Sci. 2022, 9, 734896. [Google Scholar] [CrossRef]
- Quinn, P.J.; Markey, B.K.; Carter, M.E.; Donnelly, W.J.; Leonard, F.C. Veterinary Microbiology and Microbial Disease; Blackwell Science Ltd.: Malden, MA, USA, 2002; pp. 465–475. [Google Scholar]
- Harrigan, W.F.; McCance, M.E. Laboratory Methods in Microbiology; Academic Press: London, UK, 2014. [Google Scholar]
- Abebe, E.; Gugsa, G.; Ahmed, M.; Awol, N.; Tefera, Y.; Abegaz, S.; Sisay, T. Occurrence and Antimicrobial Resistance Pattern of E. coli O157 isolated from Foods of Bovine Origin in Dessie and Kombolcha Towns, Ethiopia. PLoS Negl. Trop. Dis. 2023, 17, e0010706. [Google Scholar] [CrossRef] [PubMed]
- Abdulmajeed, M.A.; Jafar, N.B.; Hamada, Y.H. Investigation and Molecular Characterization of Shiga Toxin-Producing E. coli O157 from Meat and Dairy Products in Kirkuk Province, Iraq. J. Hyg. Eng. Des. 2023, 42, 65–74. [Google Scholar]
- Approved Standard M100-S13; Performance Standards for Antimicrobial Disk Susceptibility Testing. 13th Informational Supplement. National Committee for Clinical Laboratory Standards (NCCLS): Wayne, PA, USA, 2012.
- CLSI Document M100-S25; Performance Standards for Antimicrobial Susceptibility Testing. Twenty-Fifth Informational Supplement. Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2015.
- Basavaraju, M.; Gunashree, B.S. Escherichia coli: An Overview of Main Characteristics. In Escherichia coli; IntechOpen: London, UK, 2022; p. 21. [Google Scholar] [CrossRef]
- Meng, J.; LeJeune, J.T.; Zhao, T.; Doyle, M.P. Enterohemorrhagic Escherichia coli. In Food Microbiology: Fundamentals and Frontiers; ASM Press: Washington, DC, USA, 2012; pp. 287–309. [Google Scholar]
- Okeke, I.N.; Lamikanra, A.; Edelman, R. Socioeconomic and Behavioral Factors Leading to Acquired Bacterial Resistance to Antibiotics in Developing Countries. Emerg. Infect. Dis. 1999, 5, 18. [Google Scholar] [CrossRef] [PubMed]
- Robert, E.; Grippa, M.; Nikiema, D.E.; Kergoat, L.; Koudougou, H.; Auda, Y.; Rochelle-Newall, E. Environmental Determinants of E. coli, Link with Diarrheal Diseases, and Vulnerability Criteria in Tropical West Africa (Kapore, Burkina Faso). PLoS Negl. Trop. Dis. 2021, 15, e0009634. [Google Scholar] [CrossRef]
- Nji, E.; Kazibwe, J.; Hambridge, T.; Joko, C.A.; Larbi, A.A.; Damptey, L.A.O.; Nkansa-Gyamfi, N.A.; Stålsby Lundborg, C.; Lien, L.T.Q. High Prevalence of Antibiotic Resistance in Commensal Escherichia coli from Healthy Human Sources in Community Settings. Sci. Rep. 2021, 11, 3372. [Google Scholar] [CrossRef] [PubMed]
- Abdulmajeed, M.A.; Jafar, N.B.; Hamada, Y.H. Isolation and Identification of E. coli O157 Strains Among Diarrheal Samples in Relation with the Presence of Stx1, Stx2, Hlya, and Eaea Genes. HIV Nurs. 2022, 22, 2799–2806. [Google Scholar]
- Dah-Nouvlessounon, D.; Sina, H.; Yakoubou, A.; Boya, B.; Azatassou, S.; N’tcha, C.; Noumavo, A.D.P.; Assouma, F.F.; Adjanohoun, A.; Baba-Moussa, L. Potential Pathogenicity of Escherichia coli Isolated from the Stools of Healthy Children Suffering from Diarrhea Admitted to Hospitals in Southern Benin. J. Adv. Microbiol. 2023, 23, 15–29. [Google Scholar] [CrossRef]
- Jabur, S.G.; Abed, M.H. Genetic Survey of Enteroaggregative E. coli in Diarrheic Children Under 5 Years in Thi-Qar Governorate. Indian J. Forensic Med. Toxicol. 2020, 14, 1434–1439. [Google Scholar]
- Mulu, B.M.; Belete, M.A.; Demlie, T.B.; Tassew, H.; Sisay Tessema, T. Characteristics of Pathogenic Escherichia coli Associated with Diarrhea in Children Under Five Years in Northwestern Ethiopia. Trop. Med. Infect. Dis. 2024, 9, 65. [Google Scholar] [CrossRef] [PubMed]
- Shine, S.; Muhamud, S.; Adanew, S.; Demelash, A.; Abate, M. Prevalence and Associated Factors of Diarrhea Among Under-Five Children in Debre Berhan Town, Ethiopia, 2018: A Cross-Sectional Study. BMC Infect. Dis. 2020, 20, 174. [Google Scholar] [CrossRef]
- Dev, R.; Williams-Nguyen, J.; Adhikari, S.P.; Dev, U.; Deo, S.; Hillan, E. Impact of Maternal Decision-Making Autonomy and Self-Reliance in Accessing Health Care on Childhood Diarrhea and Acute Respiratory Tract Infections in Nepal. Public Health 2021, 198, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Keto, T.; Alemu, Y.; Mamo, A. Mothers’ Perception and Management Preference of Acute Diarrheal Disease. Int. J. Public Health 2020, 9, 338–346. [Google Scholar] [CrossRef]
- Sarker, A.R.; Sultana, M.; Mahumud, R.A.; Ali, N.; Huda, T.M.; Uzzaman, M.S.; Haider, S.; Rahman, H.; Islam, Z.; Khan, J.A.M.; et al. Economic Costs of Hospitalized Diarrheal Disease in Bangladesh: A Societal Perspective. Glob. Health Res. Policy 2018, 3, 1–12. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Nurturing Care for Early Childhood Development: A Framework for Helping Children Survive and Thrive to Transform Health and Human Potential; WHO: Geneva, Switzerland, 2018.
- Tadesse, A.; Walelign Fentaye, F.; Mekonen, A.M.; et Yasine, T. The Impact of Ethiopian Community-Based Health Extension Program on Diarrheal Diseases Among Under-Five Children and Factors Associated with Diarrheal Diseases in the Rural Community of Kalu District, Northeast Ethiopia: A Cross-Sectional Study. BMC Health Serv. Res. 2022, 22, 168. [Google Scholar] [CrossRef]
- Angasu, K.; Dame, K.T.; Negash, A. Diarrheal Morbidity and Associated Factors Among Under-Five Children in Southwest Ethiopia. Research Square 2022. [Google Scholar] [CrossRef]
- Blanco, M.; Blanco, J.E.; Mora, A.; Rey, J.; Alonso, J.M.; Hermoso, M.; Hermoso, J.; Alonso, M.P.; Dahbi, G.; González, E.A.; et al. Serotypes, Virulence Genes, and Intimin Types of Shiga Toxin (Verotoxin)-Producing Escherichia coli Isolates from Healthy Sheep in Spain. J. Clin. Microbiol. 2003, 41, 1351–1356. [Google Scholar] [CrossRef] [PubMed]
- Iweriebor, B.C.; Iwu, C.J.; Obi, L.C.; Nwodo, U.U.; Okoh, A.I. Multiple Antibiotic Resistances Among Shiga Toxin-Producing Escherichia coli O157 in Feces of Dairy Cattle Farms in Eastern Cape of South Africa. BMC Microbiol. 2015, 15, 213. [Google Scholar] [CrossRef] [PubMed]
- Renter, D.G.; Sargeant, J.M.; Oberst, R.D.; Samadpour, M. Diversity, Frequency, and Persistence of Escherichia coli O157 Strains from Range Cattle Environments. Appl. Environ. Microbiol. 2003, 69, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Tabaran, A.; Soulageon, V.; Chirila, F.; Reget, O.L.; Mihaiu, M.; Borzan, M.; Dan, S.D. Pathogenic E. coli from Cattle as a Reservoir of Resistance Genes to Various Groups of Antibiotics. Antibiotics 2022, 11, 404. [Google Scholar] [CrossRef] [PubMed]
- Bibbal, D.; Loukiadis, E.; Kérourédan, M.; Ferré, F.; Dilasser, F.; Peytavin de Garam, C.; Cartier, P.; Oswald, E.; Gay, E.; Auvray, F.; et al. Prevalence of Carriage of Shiga Toxin-Producing Escherichia coli Serotypes O157, O26, O103, O111, and O145 Among Slaughtered Adult Cattle in France. Appl. Environ. Microbiol. 2015, 81, 1397–1405. [Google Scholar] [CrossRef] [PubMed]
- Hale, C.R.; Scallan, E.; Cronquist, A.B.; Dunn, J.; Smith, K.; Robinson, T.; Lathrop, S.; Tobin-D’Angelo, M.; Clogher, P. Estimates of Enteric Illness Attributable to Contact with Animals and Their Environments in the United States. Clin. Infect. Dis. 2012, 54, S472–S479. [Google Scholar] [CrossRef]
- Beutin, L. Emerging Enterohaemorrhagic Escherichia coli, Causes and Effects of the Rise of a Human Pathogen. J. Vet. Med. Series B 2006, 53, 299–305. [Google Scholar] [CrossRef]
- Campos, J.; Gil, J.; Mourão, J.; Peixe, L.; Antunes, P. Ready-to-Eat Street-Vended Food as a Potential Vehicle of Bacterial Pathogens and Antimicrobial Resistance: An Exploratory Study in Porto Region, Portugal. Int. J. Food Microbiol. 2015, 206, 1–6. [Google Scholar] [CrossRef]
- Zelalem, A.; Sisay, M.; Vipham, J.L.; Abegaz, K.; Kebede, A.; Terefe, Y. The Prevalence and Antimicrobial Resistance Profiles of Bacterial Isolates from Meat and Meat Products in Ethiopia: A Systematic Review and Meta-Analysis. Int. J. Food Contam. 2019, 6, 1. [Google Scholar] [CrossRef]
- Abdel-Atty, N.S.; Abdulmalek, E.M.; Taha, R.M.; Hassan, A.H.; Adawy, A.A. Predominance and Antimicrobial Resistance Profiles of Salmonella and E. coli from Meat and Meat Products. J. Adv. Vet. Res. 2023, 13, 647–655. [Google Scholar]
- Rajaei, M.; Moosavy, M.H.; Gharajalar, S.N.; Khatibi, S.A. Antibiotic Resistance in the Pathogenic Foodborne Bacteria Isolated from Raw Kebab and Hamburger: Phenotypic and Genotypic Study. BMC Microbiol. 2021, 21, 272. [Google Scholar] [CrossRef]
- Adzitey, F. Incidence and Antimicrobial Susceptibility of Escherichia coli Isolated from Beef (Meat Muscle, Liver, and Kidney) Samples in Wa Abat Toir, Ghana. Cogent Food Agric. 2020, 6, 1718269. [Google Scholar] [CrossRef]
- González Gutiérrez, M.; García Fernández, C.; Alonso Calleja, C.; Capita, R. Microbial Load and Antibiotic Resistance in Raw Beef Preparations from Northwest Spain. Food Sci. Nutr. 2020, 8, 777–785. [Google Scholar] [CrossRef]
- Eisel, W.; Linton, R.; Muriana, P. A survey of microbial levels for incoming raw beef, environmental sources, and ground beef in a red meat processing plant. Food Microbiol. 1997, 14, 273–282. [Google Scholar] [CrossRef]
- Sulieman, A.M.E.; Abu Zeid, I.M.; Haddad, A. Contamination of Halal Beef Carcasses by Bacteria That Grow or Survive During Cold Storage. In Halal and Kosher Food: Integration of Quality and Safety for Global Market Trends; Springer: Berlin/Heidelberg, Germany, 2023; pp. 201–214. [Google Scholar]
- Korkmaz, B.; Maaz, D.; Reich, F.; Gremse, C.; Haase, A.; Mateus-Vargas, R.H.; Mader, A.; Rottenberger, I.; Schafft, H.A.; Bandick, N. Cause and effect analysis between influencing factors related to environmental conditions, hunting and handling practices, and the initial microbial load of game carcasses. Foods 2022, 11, 3726. [Google Scholar] [CrossRef] [PubMed]
- Nastasijevic, I.; Boskovic, M.; Glisic, M. Abattoir hygiene. In Present Knowledge in Food Safety; Elsevier: Amsterdam, The Netherlands, 2023; pp. 412–438. [Google Scholar]
- Kelbert, L.; Stephan, R. Knife Decontamination by Cold Water Treatment Supplemented with InspexxTM 210—A Validation Study in an Abattoir. Hygiene 2023, 3, 248–255. [Google Scholar] [CrossRef]
- Hauge, S.J.; Nafstad, O.; Røtterud, O.-J.; Nesbakken, T. The hygienic impact of categorisation of cattle by hide cleanliness in the abattoir. Food Control 2012, 27, 100–107. [Google Scholar] [CrossRef]
- Antic, D.; Houf, K.; Michalopoulou, E.; Blagojevic, B. Beef abattoir interventions in a risk-based meat safety assurance system. Meat Sci. 2021, 182, 108622. [Google Scholar] [CrossRef]
- Adebowale, O.; Alonge, D.; Agbede, S.; Adeyemo, O. Bacteriological assessment of quality of water used at the Bodija municipal abattoir, Ibadan, Nigeria. Sahel J. Vet. Sci. 2010, 9, 63–67. [Google Scholar]
- Ranjbar, R.; Dehkordi, F.S.; Shahreza, M.H.S.; Rahimi, E. Prevalence, identification of virulence factors, O-sero groups and antibiotic resistance properties of shiga-toxin producing Escherichia coli strains isolated from raw milk and traditional dairy products. Antimicrob. Resist. Infect. Control 2018, 7, 53. [Google Scholar] [CrossRef]
- Ombarak, R.A.; Hinenoya, A.; Awasthi, S.P.; Iguchi, A.; Shima, A.; Elbagory, A.R.M.; Yamasaki, S. Prevalence and Pathogenic Potential of Escherichia coli Isolates from Raw Milk and Raw Milk Cheese in Egypt. Int. J. Food Microbiol. 2016, 221, 69–76. [Google Scholar] [CrossRef]
- Stephan, R.; Schumacher, S.; Corti, S.; Krause, G.; Danuser, J.; Beutin, L. Prevalence and Characteristics of Shiga Toxin Producing Escherichia coli in Swiss Raw Milk Cheeses Collected at Producer Level. J. Dairy Sci. 2008, 91, 2561–2565. [Google Scholar] [CrossRef]
- Mohammadi, P.; Abiri, R.; Rezaei, M.; Salmanzadeh Ahrabi, S. Isolation of Shiga Toxin-Producing Escherichia coli from Raw Milk in Kermanshah, Iran. Iran. J. Microbiol. 2013, 5, 233. [Google Scholar]
- Nobili, G.; Franconieri, I.; Basanisi, M.G.; La Bella, G.; Tozzoli, R.; Caprioli, A.; La Salandra, G. Isolation of Shiga Toxin-Producing Escherichia coli in Raw Milk and Mozzarella Cheese in Southern Italy. J. Dairy Sci. 2016, 99, 7877–7880. [Google Scholar] [CrossRef] [PubMed]
- Zeinhom, M.M.A.; Abdel-Latef, G.K. Public Health Risk of Some Milk-Borne Pathogens. Beni-Suef Univ. J. Basic Appl. Sci. 2014, 3, 209–215. [Google Scholar] [CrossRef]
- Öksüz, Ö.; Arici, M.; Kurultay, S.; Gümüs, T. Incidence of Escherichia coli O157 in Raw Milk and White Pickled Cheese Manufactured from Raw Milk in Turkey. Food Control 2004, 15, 453–456. [Google Scholar] [CrossRef]
- Xi, M.; Feng, Y.; Li, Q.; Yang, Q.; Zhang, B.; Li, G.; Shi, C.; Xia, X. Prevalence, Distribution, and Diversity of Escherichia coli in Plants Manufacturing Goat Milk Powder in Shaanxi, China. J. Dairy Sci. 2015, 98, 2260–2267. [Google Scholar] [CrossRef] [PubMed]
- Quinto, E.J.; Cepeda, A. Incidence of Toxigenic Escherichia coli in Soft Cheese Made with Raw or Pasteurized Milk. Lett. Appl. Microbiol. 1997, 24, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.L.; Fratamico, P.M.; Gunther, N.W., IV. Shiga Toxin-Producing Escherichia coli. Adv. Appl. Microbiol. 2014, 86, 145–197. [Google Scholar]
- da Silva, Z.N.; da Cunha, A.S.; Lins, M.C.; Carneiro, L.D.A.; Almeida, A.C.D.F.; Queiroz, M.L. Isolation and Serological Identification of Enteropathogenic Escherichia coli in Pasteurized Milk in Brazil. Revista de Saúde Pública 2001, 35, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Jaradat, Z.W.; Abulaila, S.; Al-Rousan, E.; Ababneh, Q.O. Prevalence of Escherichia coli O157 in Foods in the MENA Region Between Years 2000 and 2022: A Review. Arab J. Basic Appl. Sci. 2024, 31, 104–120. [Google Scholar] [CrossRef]
- Abdel-Aziz, M.A.; Eid, R.A. Detection of Escherichia coli O157 from Patients with Gastroenteritis. Egypt. J. Med. Microbiol. 2024, 33, 145–152. [Google Scholar] [CrossRef]
- Bonyadian, M.; Haidari, F.I.; Sami, M. Virulence Genes and Pulsed-Field Gel Electrophoresis Profiles of Shiga Toxin-Producing Escherichia coli Isolated from Different Food Samples and Patients with Acute Diarrhea. Iran. J. Microbiol. 2024, 16, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Esumeh, F.; Isibor, J.; Egbagbe, I. Screening for E. coli O157 in Diarrheic Patients in Zarya City, Nigeria. J. Microbiol. Biotech. Res. 2011, 1, 1–4. [Google Scholar]
- Shah, M.; Kathiiko, C.; Wada, A.; Odoyo, E.; Bundi, M.; Miringu, G.; Guyo, S.; Karama, M.; Ichinose, Y. Prevalence, Seasonal Variation, and Antibiotic Resistance Pattern of Enteric Bacterial Pathogens Among Hospitalized Diarrheic Children in Suburban Regions of Central Kenya. Trop. Med. Health 2016, 44, 39. [Google Scholar] [CrossRef]
- Heiman, K.E.; Mody, R.K.; Johnson, S.D.; Griffin, P.M.; Gould, L.H. Escherichia coli O157 Outbreaks in the United States, 2003–2012. Emerg. Infect. Dis. 2015, 21, 1293. [Google Scholar] [CrossRef] [PubMed]
- Muloi, D.M.; Hassell, J.M.; Wee, B.A.; Ward, M.J.; Bettridge, J.M.; Kivali, V.; Kiyong’a, A.; Ndinda, C.; Gitahi, N.; Ouko, T.; et al. Genomic Epidemiology of Escherichia coli: Antimicrobial Resistance Through a One Health Lens in Sympatric Humans, Livestock, and Peri-Domestic Wildlife in Nairobi, Kenya. BMC Med. 2022, 20, 471. [Google Scholar] [CrossRef]
- Adugna, A.; Kibret, M.; Abera, B.; Nibret, E.; Adal, M. Antibiogram of E. coli Serotypes Isolated from Children Aged Under Five with Acute Diarrhea in Bahir Dar Town. Afr. Health Sci. 2015, 15, 656–664. [Google Scholar] [CrossRef]
- Sanchez, S.; Lee, M.D.; Harmon, B.G.; Maurer, J.J.; Doyle, M.P. Animal Issues Associated with Escherichia coli O157. J. Am. Vet. Med. Assoc. 2002, 221, 1122–1126. [Google Scholar] [CrossRef]
- Atnafie, B.; Paulos, D.; Abera, M.; Tefera, G.; Hailu, D.; Kasaye, S.; Amenu, K. Occurrence of Escherichia coli O157 in Cattle Feces and Contamination of Carcass and Various Contact Surfaces in Abattoir and Butcher Shops of Hawassa, Ethiopia. BMC Microbiol. 2017, 17, 24. [Google Scholar] [CrossRef]
- Mesele, F.; Leta, S.; Amenu, K.; Abunna, F. Occurrence of Escherichia coli O157 in Lactating Cows and Dairy Farm Environment and the Antimicrobial Susceptibility Pattern at Adami Tulu Jido Kombolcha District, Ethiopia. BMC Vet. Res. 2023, 19, 6. [Google Scholar] [CrossRef] [PubMed]
- Matthews, R.; Sapers, M.; Gerba, P. The Produce Contamination Problem: Causes and Solutions, 2nd ed.; Elsevier: London, UK, 2014; ISBN 978-0-12-404611-5. [Google Scholar]
- Al-Zogibi, O.G.; Mohamed, M.I.; Hessain, A.M.; El-Jakee, J.K.; Kabli, S.A. Molecular and Serotyping Characterization of Shiga Toxogenic Escherichia coli Associated with Food Collected from Saudi Arabia. Saudi J. Biol. Sci. 2015, 22, 438–442. [Google Scholar] [CrossRef]
- Daood, N. Detection and Antimicrobial Susceptibility of E. coli O157 in Raw Bovine Milk, Some Dairy Products and Water Samples. Damascus Univ. J. Basic Sci. 2007, 23, 21–35. [Google Scholar]
- Gökmen, M.; İlhan, Z.; Tavşanlı, H.; Önen, A.; Ektik, N.; Göçmez, E.B. Prevalence and Molecular Characterization of Shiga Toxin-Producing Escherichia coli in Animal Source Foods and Green Leafy Vegetables. Food Sci. Technol. Int. 2024, 30, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Sancak, Y.C.; Sancak, H.; Isleyici, O. Presence of Escherichia coli O157 and O157 in Raw Milk and Van Herby Cheese. Bull. Vet. Inst. Pulawy 2015, 59, 511–514. [Google Scholar] [CrossRef]
- Noveir, M.R.; Dogan, H.B.; Halkman, A.K. A Note on Escherichia coli O157 Serotype in Turkish Meat Products. Meat Sci. 2000, 56, 331–335. [Google Scholar] [CrossRef]
- Dontorou, C.; Papadopoulou, C.; Filioussis, G.; Economou, V.; Apostolou, I.; Zakkas, G.; Salamoura, A.; Kansouzidou, A.; Levidiotou, S. Isolation of Escherichia coli O157 from Foods in Greece. Int. J. Food Microbiol. 2003, 82, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Sallam, K.I.; Mohammed, M.A.; Ahdy, A.M.; Tamura, T. Prevalence, Genetic Characterization and Virulence Genes of Sorbitol-Fermenting Escherichia coli O157:H- and E. coli O157 Isolated from Retail Beef. Int. J. Food Microbiol. 2013, 165, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Hessain, A.M.; Al-Arfaj, A.A.; Zakri, A.M.; El-Jakee, J.K.; Al-Zogibi, O.G.; Hemeg, H.A.; Ibrahim, I.M. Molecular Characterization of Escherichia coli O157 Recovered from Meat and Meat Products Relevant to Human Health in Riyadh, Saudi Arabia. Saudi J. Biol. Sci. 2015, 22, 725–729. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.; Ezzatpanah, H.; Aminlari, M.; Mazaheri, A.M. Investigating the Contamination of E. coli O157 in Processed Meat Products Produced in Two Factories at Shiraz and Tehran. J. Food Technol. Nutr. 2011, 8, 37–45. [Google Scholar]
- Miri, A.; Rahimi, E.; Mirlohi, M.; Mahaki, B.; Jalali, M.; Safaei, H.G. Isolation of Shiga Toxin-Producing Escherichia coli O157/NM from Hamburger and Chicken Nugget. Int. J. Environ. Health Eng. 2014, 3, 20. [Google Scholar]
- Sheikh, A.F.; Rostami, S.; Amin, M.; Abbaspour, A.; Goudarzi, H.; Hashemzadeh, M. Isolation and Identification of Escherichia coli O157 from Ground Beef Hamburgers in Khuzestan Province, Iran. Afr. J. Microbiol. Res. 2013, 7, 413–417. [Google Scholar]
- El Shrek, Y.M.; Madi, N.S.; El Bakoush, E.A.A.; El Tawil, A.M. Microbiological Studies of Spiced Beef Burgers in Tripoli City, Libyan Arab Jamahiriya. East. Mediterr. Health J. 2008, 14, 172–178. [Google Scholar]
- Ferens, W.A.; Hovde, C.J. Escherichia coli O157:H7: Animal Reservoir and Sources of Human Infection. Foodborne Pathog. Dis. 2011, 8, 465–487. [Google Scholar] [CrossRef]
- Momtaz, H.; Farzan, R.; Rahimi, E.; Safarpoor Dehkordi, F.; Souod, N. Molecular Characterization of Shiga Toxin-Producing Escherichia coli Isolated from Ruminant and Donkey Raw Milk Samples and Traditional Dairy Products in Iran. Sci. World J. 2012, 2012, 231342. [Google Scholar] [CrossRef] [PubMed]
- Welde, N.; Abunna, F.; Wodajnew, B. Isolation, identification, and antimicrobial susceptibility profiles of E. coli O157 from raw cow milk in and around Modjo Town, Ethiopia. J. Am. Sci. 2020, 16, 62–79. [Google Scholar]
- Bedasa, S.; Shiferaw, D.; Abraha, A.; Moges, T. Occurrence and antimicrobial susceptibility profile of Escherichia coli O157 from food of animal origin in Bishoftu town, central Ethiopia. Int. J. Food Contam. 2018, 5, 2. [Google Scholar] [CrossRef]
- Haile, F.A.; Kebede, D.; Wubshet, K.A. Prevalence and antibiogram of Escherichia coli O157 isolated from bovine in Jimma, Ethiopia: Abattoir-based survey. Ethiop. Vet. J. 2017, 21, 109–120. [Google Scholar] [CrossRef]
- Bekele, T.; Zewde, G.; Tefera, G.; Feleke, A.; Zerom, K. Escherichia coli O157 in raw meat in Addis Ababa, Ethiopia: Prevalence at an abattoir and retailers and antimicrobial susceptibility. Int. J. Food Contam. 2014, 1, 4. [Google Scholar] [CrossRef]
- Osaili, T.M.; Alaboudi, A.R.; Rahahlah, M. Prevalence and antimicrobial susceptibility of Escherichia coli O157 on beef cattle slaughtered in Amman abattoir. Meat Sci. 2013, 93, 463–468. [Google Scholar] [CrossRef]
- Reuben, R.C.; Owuna, G. Antimicrobial resistance patterns of Escherichia coli O157 from Nigerian fermented milk samples in Nasarawa State, Nigeria. Int. J. Pharm. Sci. Inven. 2013, 2, 38–44. [Google Scholar]
- Mahanti, A.; Samanta, I.; Bandopaddhay, S.; Joardar, S.N.; Dutta, T.K.; Batabyal, S.; Sar, T.K.; Isore, D.P. Isolation, molecular characterization and antibiotic resistance of Shiga Toxin-producing Escherichia coli (STEC) from buffalo in India. Lett. Appl. Microbiol. 2013, 56, 291–298. [Google Scholar] [CrossRef]
- Msolo, L.; Igbinosa, E.O.; Okoh, A.I. Prevalence and antibiogram profiles of Escherichia coli O157 isolates recovered from three selected dairy farms in the Eastern Cape Province, South Africa. Asian Pac. J. Trop. Dis. 2016, 6, 990–995. [Google Scholar] [CrossRef]
- Mashak, Z. Virulence genes and phenotypic evaluation of the antibiotic resistance of Vero toxin-producing Escherichia coli recovered from milk, meat, and vegetables. Jundishapur J. Microbiol. 2018, 11, e62288. [Google Scholar] [CrossRef]
- Bumunang, E.W.; Zaheer, R.; Stanford, K.; Laing, C.; Niu, D.; Guan, L.L.; Chui, L.; Tarr, G.A.M.; McAllister, T.A. Genomic analysis of Shiga toxin-producing E. coli O157 cattle and clinical isolates from Alberta, Canada. Toxins 2022, 14, 603. [Google Scholar] [CrossRef] [PubMed]
- Akomoneh, E.A.; Esemu, S.N.; Kfusi, J.; Ndip, R.N.; Ndip, L.M. Prevalence and virulence gene profiles of Escherichia coli O157 from cattle slaughtered in Buea, Cameroon. PLoS ONE 2020, 15, e0235583. [Google Scholar] [CrossRef] [PubMed]
- Irshad, H.; Ahsan, A.; Yousaf, A.; Kanchanakhan, N.; Pumpaibool, T.; Siriwong, W.; Salman, M. Genetic Diversity and Zoonotic Potential of Shiga Toxin-Producing E. coli (STEC) in Cattle and Buffaloes from Islamabad, Pakistan. Agriculture 2024, 14, 1537. [Google Scholar] [CrossRef]
- Sapountzis, P.; Segura, A.; Desvaux, M.; Forano, E. An Overview of the Elusive Passenger in the Gastrointestinal Tract of Cattle: The Shiga Toxin-Producing Escherichia coli. Microorganisms 2020, 8, 877. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, J.; Hua, Y.; Jernberg, C.; Xiong, Y.; French, N.; Löfgren, S.; Hedenström, I.; Ambikan, A.; Mernelius, S.; et al. Genomic insights into clinical Shiga toxin-producing Escherichia coli strains: A 15-year period survey in Jönköping, Sweden. Front. Microbiol. 2021, 12, 627861. [Google Scholar] [CrossRef]
- Lee, W.; Ha, J.; Choi, J.; Jung, Y.; Kim, E.; An, E.S.; Kim, H.Y. Genetic and virulence characteristics of hybrid Shiga toxin-producing and atypical enteropathogenic Escherichia coli strains isolated in South Korea. Front. Microbiol. 2024, 15, 1398262. [Google Scholar] [CrossRef]
- Huang, C.-R.; Kuo, C.-J.; Huang, C.-W.; Chen, Y.-T.; Liu, B.-Y.; Lee, C.-T.; Chen, P.-L.; Chang, W.-T.; Chen, Y.-W.; Lee, T.-M. Host CDK-1 and formin mediate microvillar effacement induced by enterohemorrhagic Escherichia coli. Nat. Commun. 2021, 12, 90. [Google Scholar] [CrossRef] [PubMed]
- Donnenberg, M.S.; Tzipori, S.; McKee, M.L.; O’Brien, A.D.; Alroy, J.; Kaper, J.B. The role of the eae gene of enterohemorrhagic Escherichia coli in intimate attachment in vitro and in a porcine model. J. Clin. Investig. 1993, 92, 1418–1424. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.R.; Brooks, H.J.L.; O’Brien, R. Prevalence of Shiga toxin-producing and enteropathogenic Escherichia coli marker genes in diarrhoeic stools in a New Zealand catchment area. J. Clin. Pathol. 2017, 70, 81–84. [Google Scholar] [CrossRef]
- Ferdous, M.; Friedrich, A.W.; Grundmann, H.; de Boer, R.F.; Croughs, P.D.; Islam, M.A.; Kluytmans-van den Bergh, M.F.; Kooistra-Smid, A.M.; Rossen, J.W. Molecular characterization and phylogeny of Shiga toxin–producing Escherichia coli isolates obtained from two Dutch regions using whole genome sequencing. Clin. Microbiol. Infect. 2016, 22, 642.e1–642.e9. [Google Scholar] [CrossRef]
- Lim, J.Y.; Yoon, J.W.; Hovde, C.J. A brief overview of Escherichia coli O157 and its plasmid O157. J. Microbiol. Biotechnol. 2010, 20, 5. [Google Scholar] [CrossRef]
- Islam, M.A.; Mondol, A.S.; De Boer, E.; Beumer, R.R.; Zwietering, M.H.; Talukder, K.A.; Heuvelink, A.E. Prevalence and genetic characterization of shiga toxin-producing Escherichia coli isolates from slaughtered animals in Bangladesh. Appl. Environ. Microbiol. 2008, 74, 5414–5421. [Google Scholar] [CrossRef]
- Adamu, M.S.; Ugochukwu, I.C.I.; Idoko, S.I.; Kwabugge, Y.A.; Abubakar, N.S.; Ameh, J.A. Virulent gene profile and antibiotic susceptibility pattern of Shiga toxin-producing Escherichia coli (STEC) from cattle and camels in Maiduguri, north-eastern Nigeria. Trop. Anim. Health Prod. 2018, 50, 1327–1341. [Google Scholar] [CrossRef] [PubMed]
- Ateba, C.N.; Bezuidenhout, C.C. Characterisation of Escherichia coli O157 strains from humans, cattle and pigs in the North-West Province, South Africa. Int. J. Food Microbiol. 2008, 128, 181–188. [Google Scholar] [CrossRef]
- Burgos, Y.; Beutin, L. Common origin of plasmid encoded alpha-hemolysin genes in Escherichia coli. BMC Microbiol. 2010, 10, 193. [Google Scholar] [CrossRef]
Antimicrobial Agent | Concentration (µg) | Interpretation Categories Zone Diameter (mm) | ||
---|---|---|---|---|
R | I | S | ||
Tetracycline | 30 | ≤11 | 12–14 | ≥15 |
Ampicillin | 10 | ≤13 | 14–16 | ≥17 |
Amikacin | 30 | ≤14 | 15–16 | ≥17 |
Sulfamethoxazole | 100 | ≤12 | 13–16 | ≥17 |
Ciprofloxacin | 5 | ≤15 | 16–20 | ≥21 |
Gentamycin | 10 | ≤12 | 13–14 | >15 |
Ceftriaxone | 30 | ≤19 | 20–22 | ≥23 |
Streptomycin | 10 | ≤11 | 12–14 | ≥15 |
Targeted Gene | Primer Name | Sequence 5′–3′ | Annealing Temp. (°C) | Product Size (bp) | Reference |
---|---|---|---|---|---|
stx1 | Stx1-F | AGTTAATGTGGTGGCGAAGG | 58 | 347 | [33] |
Stx1-R | CACCAGACAATGTAACCGC | ||||
stx2 | Stx2-F | TTCGGTATCCTATTCCCGG | 58 | 592 | |
Stx2-R | CGTCATCGTATACACAGGAG | ||||
eaeA | eaeA-F | CACACGAATAAACTGACTAAAATG | 55 | 376 | |
eaeA-R | AAAAACGCTGACCCGCACCTAAAT | ||||
hlyA | hlyA-F | ACGATGTGGTTTATTCTGGA | 50 | 167 | |
hlyA-R | CTTCACGTGACCATACATAT |
Samples Sources | No. of Samples Tested | No. Positive/Sample Tested (%) | |
---|---|---|---|
Human stool | Diarrheic | 75 | 40/75 (53.3%) |
Apparently healthy | 25 | 2/25 (8%) | |
Sub-total N (%) | 100 | 42/100 (42%) | |
Animal fecal | Cow | 35 | 4/35 (11.4%) |
Sheep | 35 | 2/35 (5.7%) | |
Goat | 30 | 1/30 (3.33%) | |
Sub-total N (%) | 100 | 7/100 (7%) | |
Animal product | Raw cow milk | 50 | 9/50 (18%) |
Raw sheep milk | 35 | 4/35 (11.42%) | |
Pasteurized milk | 33 | 1/33 (3.03%) | |
Hamburger beef | 35 | 9/35 (25.7%) | |
Sub-total N (%) | 153 | 23/153 (15.03%) | |
Total N (%) | 353 | 72/353 (20.4%) |
Gender | Number of Examined Samples | No. Positive E. coli (%) | ||||
---|---|---|---|---|---|---|
Diarrheic | Apparently Healthy | Total | Diarrheic | Apparently Healthy | Total | |
Male | 35 | 15 | 50 | 22 (62.8%) | 1 (6.6%) | 23 (46%) |
Female | 40 | 10 | 50 | 18 (45%) | 1 (10%) | 19 (38%) |
Total | 75 | 25 | 100 | 40 (53.3%) | 2 (8%) | 42 (42%) |
Age Range | Number of Diarrheic Patients | No. Positive E. coli (%) |
---|---|---|
From 1 to 10 years | 20 | 17/20 (85%) |
From 11 to 25 years | 20 | 12/20 (60%) |
From 26 to 40 years | 15 | 3/15 (20%) |
From 41 to 60 years | 20 | 8/20 (40%) |
Total | 75 | 40 (53.3%) |
Samples Sources | No. of Samples Tested | No. of Positive Samples | Positive/ Sample Tested | ||
---|---|---|---|---|---|
Other E. coli Serotype N (%) | E. coli O157: H7 N (%) | ||||
Human stool | Diarrheic | 75 | 24 (32%) | 16 (21.33%) | 40/75 |
Apparently healthy | 25 | 1 (4%) | 1 (4%) | 2/25 | |
Sub-total N (%) | 100 | 25 (25%) | 17 (17%) | 42/100 (42%) | |
Animal fecal | Cow | 35 | 3 (8.57%) | 1 (2.85%) | 4/35 |
Sheep | 35 | 1 (2.85%) | 1 (2.85%) | 2/35 | |
Goat | 30 | 0 (0.0%) | 1 (3.33%) | 1/30 | |
Sub-total N (%) | 100 | 4 (4%) | 3 (3%) | 7/100 (7%) | |
Animal product | Raw cow milk | 50 | 5 (10%) | 4 (8%) | 9/50 |
Raw sheep milk | 35 | 3 (8.57%) | 1 (2.85%) | 4/35 | |
Pasteurized milk | 33 | 1 (3.03%) | 0 (0.0%) | 1/33 | |
Hamburger beef | 35 | 6 (17.14%) | 3 (8.57%) | 9/35 | |
Sub-total N (%) | 153 | 15 (9.8%) | 8 (5.22%) | 23/153 (15.03%) | |
Total N (%) | 353 | 44 (12.5%) | 28 (7.9%) | 72/353 (20.4%) |
Antimicrobial Agent | No. of Strains (%) | ||
---|---|---|---|
Susceptible | Intermediate | Resistant | |
Tetracycline | 2 (7.14%) | 2 (7.14%) | 24 (85.71%) |
Ampicillin | 3 (10.71%) | 4 (14.29%) | 21 (75.00%) |
Amikacin | 18 (64.29%) | 5 (17.86%) | 5 (17.86%) |
Sulfamethoxazole | 0 (0.00%) | 8 (28.57%) | 20 (71.43%) |
Ciprofloxacin | 26 (92.86%) | 2 (7.14%) | 0 (0.00%) |
Gentamicin | 28 (100.00%) | 0 (0.00%) | 0 (0.00%) |
Ceftriaxone | 24 (85.71%) | 3 (10.71%) | 1 (3.57%) |
Streptomycin | 2 (7.14%) | 7 (25.00%) | 19 (67.86%) |
Virulence Profiles | stx1 | stx2 | eaeA | hlyA | No. (%) of Strains |
---|---|---|---|---|---|
I | + | + | + | + | 8 |
II | + | − | + | + | 1 |
III | − | + | + | + | 10 |
IV | + | + | + | − | 1 |
V | + | − | + | − | 8 |
Samples Sources | No. EHEC E. coli O157:H7 Strains | No. of Strains Belonging to Each Virulence Profile | |||||
---|---|---|---|---|---|---|---|
I | II | III | IV | V | |||
Human stool | Diarrheic | 16 | 6 | - | 10 | - | - |
Apparently healthy | 1 | - | - | - | 1 | - | |
Sub-total N | 17 | 6 | - | 10 | 1 | ||
Animal fecal | Cow | 1 | - | 1 | - | - | - |
Sheep | 1 | - | - | - | - | 1 | |
Goat | 1 | - | - | - | - | 1 | |
Sub-total N | 3 | - | 1 | - | 2 | ||
Animal product | Raw cow milk | 4 | 1 | - | - | - | 3 |
Raw sheep milk | 1 | - | - | - | - | 1 | |
Pasteurized milk | 0 | - | - | - | - | - | |
Hamburger Beef | 3 | 1 | - | - | - | 2 | |
Sub-total N | 8 | 2 | - | - | - | 6 | |
Total N (%) | 28 (100%) | 8 (28.57%) | 1 (3.57%) | 10 (35.71%) | 1 (3.57%) | 8 (28.57%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altaie, H.A.A.; Gdoura Ben Amor, M.; Mohammed, B.A.; Gdoura, R. Detection and Characterization of Escherichia coli and Escherichia coli O157:H7 in Human, Animal, and Food Samples from Kirkuk Province, Iraq. Microbiol. Res. 2025, 16, 20. https://doi.org/10.3390/microbiolres16010020
Altaie HAA, Gdoura Ben Amor M, Mohammed BA, Gdoura R. Detection and Characterization of Escherichia coli and Escherichia coli O157:H7 in Human, Animal, and Food Samples from Kirkuk Province, Iraq. Microbiology Research. 2025; 16(1):20. https://doi.org/10.3390/microbiolres16010020
Chicago/Turabian StyleAltaie, Hayman Abdullah Ameen, Maroua Gdoura Ben Amor, Burhan Ahmed Mohammed, and Radhouane Gdoura. 2025. "Detection and Characterization of Escherichia coli and Escherichia coli O157:H7 in Human, Animal, and Food Samples from Kirkuk Province, Iraq" Microbiology Research 16, no. 1: 20. https://doi.org/10.3390/microbiolres16010020
APA StyleAltaie, H. A. A., Gdoura Ben Amor, M., Mohammed, B. A., & Gdoura, R. (2025). Detection and Characterization of Escherichia coli and Escherichia coli O157:H7 in Human, Animal, and Food Samples from Kirkuk Province, Iraq. Microbiology Research, 16(1), 20. https://doi.org/10.3390/microbiolres16010020