Inhibition of Salmonella enterica and Enterohemorrhagic Escherichia coli by Ethanolic Extracts of Pomegranate Peels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Pomegranate Peel Extracts
2.2. Quantification of Hydrolyzable Tannins in Peel Extracts
2.3. Targeted Bacterial Strains
2.4. Antibacterial Activity Testing
2.5. Statistical Analysis
3. Results
3.1. Overall Mean Reductions in Bacterial Cell Population Caused by Phenolic Treatments
3.2. Effects of Individual Extracts on the Reduction in Salmonella Cell Population
3.3. Effects of Individual Extracts in the Reduction in E. coli Cell Population
3.4. Identification and Quantification of Hydrolyzable Tannins in the Extracts
3.5. The Analysis of Antimicrobial Activity at Different Sampling Points
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bintsis, T. Foodborne Pathogens. AIMS Microbiol. 2017, 3, 529–563. [Google Scholar] [CrossRef]
- CDC. Preventing Salmonella Infection. (Salmonellosis). Available online: https://www.cdc.gov/salmonella/prevention/index.html (accessed on 6 December 2024).
- Fatima, R.; Aziz, M. Enterohemorrhagic Escherichia coli. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Ramirez, D.; Giron, M. Enterobacter Infections. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Winfield, M.D.; Groisman, E.A. Role of Nonhost Environments in the Lifestyles of Salmonella and Escherichia coli. Appl. Environ. Microbiol. 2003, 69, 3687–3694. [Google Scholar] [CrossRef]
- Samtiya, M.; Matthews, K.R.; Dhewa, T.; Puniya, A.K. Antimicrobial Resistance in the Food Chain: Trends, Mechanisms, Pathways, and Possible Regulation Strategies. Foods 2022, 11, 2966. [Google Scholar] [CrossRef]
- Ayala-Zavala, J.F.; Rosas-Domínguez, C.; Vega-Vega, V.; González-Aguilar, G.A. Antioxidant Enrichment and Antimicrobial Protection of Fresh-Cut Fruits Using Their Own Byproducts: Looking for Integral Exploitation. J. Food Sci. 2010, 75, R175–R181. [Google Scholar] [CrossRef]
- Howell, A.B.; D′Souza, D.H. The Pomegranate: Effects on Bacteria and Viruses That Influence Human Health. Evid. Based Complement. Altern. Med. 2013, 2013, 606212. [Google Scholar] [CrossRef]
- Eghbali, S.; Askari, S.F.; Avan, R.; Sahebkar, A. Therapeutic Effects of Punica granatum (Pomegranate): An Updated Review of Clinical Trials. J. Nutr. Metab. 2021, 2021, 5297162. [Google Scholar] [CrossRef]
- Dahham, S.; Ali, M.N.; Tabassum, H.; Khan, M. Studies on Antibacterial and Antifungal Activity of Pomegranate (Punica granatum L.). Am. Eurasian J. Agric. Environ. Sci. 2010, 9, 273–281. [Google Scholar]
- Wu, W.; Mis Solval, K.; Chen, J. Inhibitory Activity of Aqueous Extracts of Pomegranate Peel Products and Juice Powder against Salmonella enterica. LWT 2022, 155, 112934. [Google Scholar] [CrossRef]
- Manso, T.; Lores, M.; de Miguel, T. Antimicrobial Activity of Polyphenols and Natural Polyphenolic Extracts on Clinical Isolates. Antibiotics 2022, 11, 46. [Google Scholar] [CrossRef]
- Daglia, M. Polyphenols as Antimicrobial Agents. Curr. Opin. Biotechnol. 2012, 23, 174–181. [Google Scholar] [CrossRef]
- Jain, K.; Desai, N. Pomegranate the Cash Crop of India: A Comprehensive Review on Agricultural Practices and Diseases. Int. J. Health Sci. 2018, 8, 315–336. [Google Scholar]
- Khan, N.; Fahad, S.; Naushad, M.; Faisal, S. Pomegrantes Economics and Medicinal Aspects in the World; Social Science Research Network: Rochester, NY, USA, 2020. [Google Scholar] [CrossRef]
- Wu, W.; Mis Solval, K.; Chen, J. Ellagitannin Content and Anti-Enterohemorrhagic Escherichia coli Activity of Aqueous Extracts Derived from Commercial Pomegranate Products. Heliyon 2024, 10, e29700. [Google Scholar] [CrossRef]
- Miller, S.I.; Salama, N.R. The Gram-Negative Bacterial Periplasm: Size Matters. PLOS Biol. 2018, 16, e2004935. [Google Scholar] [CrossRef]
- Bush, K.; Jacoby, G.A. Updated Functional Classification of Beta-Lactamases. Antimicrob. Agents Chemother. 2010, 54, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Delcour, A.H. Outer Membrane Permeability and Antibiotic Resistance. Biochim. Biophys. Acta 2009, 1794, 808–816. [Google Scholar] [CrossRef]
- Cetin-Karaca, H.; Newman, M.C. Antimicrobial Efficacy of Plant Phenolic Compounds against Salmonella and Escherichia coli. Food Biosci. 2015, 11, 8–16. [Google Scholar] [CrossRef]
- Taguri, T.; Tanaka, T.; Kouno, I. Antimicrobial Activity of 10 Different Plant Polyphenols against Bacteria Causing Food-Borne Disease. Biol. Pharm. Bull. 2004, 27, 1965–1969. [Google Scholar] [CrossRef]
- Choi, J.-G.; Kang, O.-H.; Lee, Y.-S.; Chae, H.-S.; Oh, Y.-C.; Brice, O.-O.; Kim, M.-S.; Sohn, D.-H.; Kim, H.-S.; Park, H.; et al. In Vitro and In Vivo Antibacterial Activity of Punica granatum Peel Ethanol Extract against Salmonella. Evid. Based Complement. Altern. Med. 2011, 2011, 690518. [Google Scholar] [CrossRef]
- Dey, D.; Debnath, S.; Hazra, S.; Ghosh, S.; Ray, R.; Hazra, B. Pomegranate Pericarp Extract Enhances the Antibacterial Activity of Ciprofloxacin against Extended-Spectrum β-Lactamase (ESBL) and Metallo-β-Lactamase (MBL) Producing Gram-Negative Bacilli. Food Chem. Toxicol. 2012, 50, 4302–4309. [Google Scholar] [CrossRef]
- Tariq, A.; Sana, M.; Shaheen, A.; Ismat, F.; Mahboob, S.; Rauf, W.; Mirza, O.; Iqbal, M.; Rahman, M. Restraining the Multidrug Efflux Transporter STY4874 of Salmonella Typhi by Reserpine and Plant Extracts. Lett. Appl. Microbiol. 2019, 69, 161–167. [Google Scholar] [CrossRef]
- Schwartz, E.; Tzulker, R.; Glazer, I.; Bar-Ya’akov, I.; Wiesman, Z.; Tripler, E.; Bar-Ilan, I.; Fromm, H.; Borochov-Neori, H.; Holland, D.; et al. Environmental Conditions Affect the Color, Taste, and Antioxidant Capacity of 11 Pomegranate Accessions’ Fruits. J. Agric. Food Chem. 2009, 57, 9197–9209. [Google Scholar] [CrossRef]
- Gautier, H.; Diakou-Verdin, V.; Bénard, C.; Reich, M.; Buret, M.; Bourgaud, F.; Poëssel, J.L.; Caris-Veyrat, C.; Génard, M. How Does Tomato Quality (Sugar, Acid, and Nutritional Quality) Vary with Ripening Stage, Temperature, and Irradiance? J. Agric. Food Chem. 2008, 56, 1241–1250. [Google Scholar] [CrossRef]
- Climate of India. Available online: https://en.wikipedia.org/wiki/Climate_of_India#:~:text=India%20is%20home%20to%20an,Himalayas%20and%20the%20Thar%20Desert (accessed on 11 November 2024).
- Abid, M.; Yaich, H.; Cheikhrouhou, S.; Khemakhem, I.; Bouaziz, M.; Attia, H.; Ayadi, M.A. Antioxidant Properties and Phenolic Profile Characterization by LC–MS/MS of Selected Tunisian Pomegranate Peels. J. Food Sci. Technol. 2017, 54, 2890–2901. [Google Scholar] [CrossRef]
- Gosset-Erard, C.; Zhao, M.; Lordel-Madeleine, S.; Ennahar, S. Identification of Punicalagin as the Bioactive Compound behind the Antimicrobial Activity of Pomegranate (Punica granatum L.) Peels. Food Chem. 2021, 352, 129396. [Google Scholar] [CrossRef]
- Parashar, A.; Gupta, C.; Gupta, S.K.; Kumar, A. Antimicrobial Ellagitannin From Pomegranate (Punica granatum) Fruits. Int. J. Fruit Sci. 2009, 9, 226–231. [Google Scholar] [CrossRef]
- Seeram, N.; Lee, R.; Hardy, M.; Heber, D. Rapid Large Scale Purification of Ellagitannins from Pomegranate Husk, a by-Product of the Commercial Juice Industry. Sep. Purif. Technol. 2005, 41, 49–55. [Google Scholar] [CrossRef]
- Xu, Y.; Shi, C.; Wu, Q.; Zheng, Z.; Liu, P.; Li, G.; Peng, X.; Xia, X. Antimicrobial Activity of Punicalagin Against Staphylococcus aureus and Its Effect on Biofilm Formation. Foodborne Pathog. Dis. 2017, 14, 282–287. [Google Scholar] [CrossRef]
- Santos, S.A.O.; Martins, C.; Pereira, C.; Silvestre, A.J.D.; Rocha, S.M. Current Challenges and Perspectives for the Use of Aqueous Plant Extracts in the Management of Bacterial Infections: The Case-Study of Salmonella enterica Serovars. Int. J. Mol. Sci. 2019, 20, 940. [Google Scholar] [CrossRef]
- Widsten, P.; Cruz, C.D.; Fletcher, G.C.; Pajak, M.A.; McGhie, T.K. Tannins and Extracts of Fruit Byproducts: Antibacterial Activity against Foodborne Bacteria and Antioxidant Capacity. J. Agric. Food Chem. 2014, 62, 11146–11156. [Google Scholar] [CrossRef]
- Salih, E.Y.A.; Julkunen-Tiitto, R.; Luukkanen, O.; Fahmi, M.K.M.; Fyhrquist, P. Hydrolyzable Tannins (Ellagitannins), Flavonoids, Pentacyclic Triterpenes and Their Glycosides in Antimycobacterial Extracts of the Ethnopharmacologically Selected Sudanese Medicinal Plant Combretum hartmannianum Schweinf. Biomed. Pharmacother. 2021, 144, 112264. [Google Scholar] [CrossRef]
- Man, G.; Xu, L.; Wang, Y.; Liao, X.; Xu, Z. Profiling Phenolic Composition in Pomegranate Peel From Nine Selected Cultivars Using UHPLC-QTOF-MS and UPLC-QQQ-MS. Front. Nutr. 2022, 8, 807447. [Google Scholar] [CrossRef]
- Baylis, C.L.; MacPhee, S.; Robinson, A.J.; Griffiths, R.; Lilley, K.; Betts, R.P. Survival of Escherichia coli O157:H7, O111:H− and O26:H11 in Artificially Contaminated Chocolate and Confectionery Products. Int. J. Food Microbiol. 2004, 96, 35–48. [Google Scholar] [CrossRef]
Dependent Variable | Reduction in Salmonella enterica Cell Population (Log CFU/mL) | ||||
---|---|---|---|---|---|
Source | DF | Type III SS | Mean Square | F Value | Pr > F |
TSA | |||||
Strain | 1 | 18.91 | 18.91 | 202.55 | <0.0001 |
Time | 2 | 338.36 | 169.18 | 1811.90 | <0.0001 |
Extract | 3 | 5.82 | 1.94 | 20.76 | <0.0001 |
Concentration | 1 | 0.02 | 0.02 | 0.24 | 0.6257 |
Strain*extract | 3 | 1.27 | 0.42 | 4.53 | 0.0072 |
Time*extract | 6 | 6.03 | 1.01 | 10.77 | <0.0001 |
Concentration*extract | 3 | 0.88 | 0.29 | 3.13 | 0.0343 |
BSA | |||||
Strain | 1 | 43.04 | 43.04 | 167.50 | <0.0001 |
Time | 2 | 547.52 | 273.76 | 1065.36 | <0.0001 |
Extract | 3 | 4.13 | 1.38 | 5.36 | 0.0029 |
Concentration | 1 | 6.98 | 6.98 | 27.15 | <0.0001 |
Strain*extract | 3 | 1.61 | 0.54 | 2.08 | 0.1149 |
Time*extract | 6 | 3.05 | 0.51 | 1.98 | 0.0876 |
Concentration*extract | 3 | 1.27 | 0.42 | 1.65 | 0.1901 |
Dependent Variable | Reduction in Enterohemorrhagic Escherichia coli Cell Population (Log CFU/mL) | ||||
---|---|---|---|---|---|
Source | DF | Type III SS | Mean Square | F Value | Pr > F |
TSA | |||||
Strain | 1 | 9.27 | 9.27 | 59.10 | <0.0001 |
Time | 2 | 175.35 | 87.68 | 559.01 | <0.0001 |
Extract | 3 | 3.83 | 1.28 | 8.13 | 0.0002 |
Concentration | 1 | 21.48 | 21.48 | 136.95 | <0.0001 |
Strain*extract | 3 | 6.42 | 2.14 | 13.65 | <0.0001 |
Time*extract | 6 | 2.42 | 0.40 | 2.57 | 0.0311 |
Concentration*extract | 3 | 9.88 | 3.29 | 21.01 | <0.0001 |
SMAC | |||||
Strain | 1 | 15.99 | 15.99 | 55.45 | <0.0001 |
Time | 2 | 318.91 | 159.45 | 552.98 | <0.0001 |
Extract | 3 | 9.93 | 3.31 | 11.47 | <0.0001 |
Concentration | 1 | 41.95 | 41.95 | 145.48 | <0.0001 |
Strain*extract | 3 | 4.25 | 1.42 | 4.91 | 0.0047 |
Time*extract | 6 | 9.66 | 1.61 | 5.58 | 0.0002 |
Concentration*extract | 3 | 21.23 | 7.08 | 24.54 | <0.0001 |
Reduction in Bacteria Cell Population (Log CFU/mL) | |||||
---|---|---|---|---|---|
Salmonella enterica | Escherichia coli | ||||
TSA | BSA | TSA | SMAC | ||
Peel product | |||||
(n = 24) | I | 2.57B | 3.31B | 2.96A | 3.34A |
II | 2.98A | 3.64A | 2.81A(B) | 3.17A | |
III | 2.82A | 3.30B | 2.62C(B) | 3.10A | |
IV | 2.34C | 3.06B | 2.43C | 2.49B | |
Extract conc. (%) | |||||
(n = 48) | 0 | 0.00C | 0.00C | 0.00C | 0.00C |
1 | 2.66A | 3.06B | 2.23B | 2.36B | |
2 | 2.70A | 3.60A | 3.18A | 3.69A | |
Treatment time (h) | |||||
(n = 32) | 5 | 0.61B | 0.90C | 1.11C | 1.06C |
10 | 2.26A | 2.50B | 2.59B | 2.56B | |
24 | 5.16A | 6.57A | 4.41A | 5.45A | |
Bacterial strain | |||||
(n = 48) | S. Tennessee/F4546 | 2.24B | 2.66B | 3.02A | 3.43A |
S. Enteritidis/K4492 | 3.12A | 4.00A | 2.40B | 2.62B |
Reduction in Salmonella enterica Cell Population (Log CFU/mL) | ||||||||
---|---|---|---|---|---|---|---|---|
TSA | BSA | |||||||
I | II | III | IV | I | II | III | IV | |
Time | ||||||||
5 h | 0.60Cab | 0.61Ca | 0.69Cab | 0.55Cb | 0.86Ca | 0.94Ca | 0.98Ca | 0.83Ca |
10 h | 2.20Bab | 2.38Ba | 2.36Bab | 2.11Bb | 2.48Bab | 2.71Ba | 2.54Bab | 2.28Bb |
24 h | 4.91Ac | 5.96Aa | 5.41Ab | 4.37Ad | 6.61Aab | 7.27Aa | 6.37Ab | 6.06Ab |
Conc. | ||||||||
Control | 0.00Ba | 0.00Ba | 0.00Ba | 0.00Ba | 0.00Ca | 0.00Ba | 0.00Ca | 0.00Ba |
1% | 2.46Abc | 3.06Aa | 2.70Ab | 2.41Ac | 2.93Bb | 3.52Aa | 2.91Bb | 2.87Ab |
2% | 2.68Ab | 2.90Aab | 2.94Aa | 2.27Ac | 3.69Aa | 3.76Aa | 3.68Aa | 3.25Ab |
Strain | ||||||||
Enteritidis | 3.03Ab | 3.32Aab | 3.44Aa | 2.68Ac | 4.04Aa | 4.09Aa | 4.04Aa | 3.82Aa |
Tennessee | 2.11Bbc | 2.64Ba | 2.20Bb | 2.00Bc | 2.59Bb | 3.19Ba | 2.55Bb | 2.30Bb |
Reduction in Escherichia coli Cell Population (Log CFU/mL) | ||||||||
---|---|---|---|---|---|---|---|---|
TSA | SMAC | |||||||
I | II | III | IV | I | II | III | IV | |
Time | ||||||||
5 h | 1.20Ca | 1.09Cab | 1.14Ca | 1.01Cb | 1.06Ca | 1.02Ca | 1.19Ca | 0.98Ca |
10 h | 2.78Ba | 2.64Bab | 2.53Bab | 2.43Bb | 2.81Ba | 2.61Bab | 2.51Bbc | 2.30Bc |
24 h | 4.91Aa | 4.71Aab | 4.20Abc | 3.85Ac | 6.15Aa | 5.89Aa | 5.59Aa | 4.19Ab |
Conc. | ||||||||
Control | 0.00Ca | 0.00Ca | 0.00Ca | 0.00Ba | 0.00Ca | 0.00Ca | 0.00Ca | 0.00Ba |
1% | 2.66Ba | 2.08Bb | 1.80Bb | 2.39Aa | 2.78Ba | 2.11Bb | 2.01Bb | 2.56Aa |
2% | 3.26Aa | 3.55Aa | 3.44Aa | 2.47Ab | 3.90Aa | 4.24Aa | 4.18Aa | 2.42Ab |
Strain | ||||||||
F4546 | 3.62Aa | 3.09Ab | 2.56Ac | 2.80Abc | 4.01Aa | 3.47Ab | 3.22Ab | 3.02Ab |
K4492 | 2.30Bb | 2.54Ba | 2.68Aa | 2.06Bc | 2.67Ba | 2.88Ba | 2.97Aa | 1.96Bb |
Pearson’s Correlation Coefficients (R2) | ||||||||
---|---|---|---|---|---|---|---|---|
TSA | BSA/SMAC | |||||||
I | II | III | IV | I | II | III | IV | |
S. Enteritidis | ||||||||
Time (h) | ||||||||
5 | 0.97 | 0.97 | 0.98 | 0.98 | 0.86 | 0.89 | 0.85 | 0.81 |
10 | 0.82 | 0.81 | 0.87 | 0.83 | 0.71 | 0.74 | 0.78 | 0.82 |
24 | 0.75 | 0.77 | 0.67 | 0.65 | 0.89 | 0.89 | 0.88 | 0.86 |
S. Tennessee | ||||||||
Time (h) | ||||||||
5 | 0.69 | 0.75 | 0.79 | 0.66 | 0.68 | 0.70 | 0.72 | 0.66 |
10 | 0.76 | 0.81 | 0.88 | 0.80 | 0.82 | 0.85 | 0.86 | 0.81 |
24 | 0.97 | 0.93 | 0.94 | 0.99 | 0.95 | 0.96 | 0.95 | 0.97 |
F4546 | ||||||||
Time (h) | ||||||||
5 | 0.71 | 0.85 | 0.72 | 0.76 | 0.76 | 0.88 | 0.77 | 0.85 |
10 | 0.75 | 0.73 | 0.82 | 0.57 | 0.86 | 0.75 | 0.79 | 0.77 |
24 | 0.91 | 0.98 | 0.94 | 0.88 | 0.92 | 0.98 | 0.95 | 0.76 |
K4492 | ||||||||
Time (h) | ||||||||
5 | 0.79 | 0.74 | 0.89 | 0.74 | 0.68 | 0.80 | 0.86 | 0.80 |
10 | 0.77 | 0.82 | 0.86 | 0.73 | 0.69 | 0.77 | 0.80 | 0.44 |
24 | 0.94 | 0.94 | 0.93 | 0.98 | 0.91 | 0.94 | 0.94 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Mis Solval, K.; Chen, J. Inhibition of Salmonella enterica and Enterohemorrhagic Escherichia coli by Ethanolic Extracts of Pomegranate Peels. Microbiol. Res. 2025, 16, 13. https://doi.org/10.3390/microbiolres16010013
Wu W, Mis Solval K, Chen J. Inhibition of Salmonella enterica and Enterohemorrhagic Escherichia coli by Ethanolic Extracts of Pomegranate Peels. Microbiology Research. 2025; 16(1):13. https://doi.org/10.3390/microbiolres16010013
Chicago/Turabian StyleWu, Weifan, Kevin Mis Solval, and Jinru Chen. 2025. "Inhibition of Salmonella enterica and Enterohemorrhagic Escherichia coli by Ethanolic Extracts of Pomegranate Peels" Microbiology Research 16, no. 1: 13. https://doi.org/10.3390/microbiolres16010013
APA StyleWu, W., Mis Solval, K., & Chen, J. (2025). Inhibition of Salmonella enterica and Enterohemorrhagic Escherichia coli by Ethanolic Extracts of Pomegranate Peels. Microbiology Research, 16(1), 13. https://doi.org/10.3390/microbiolres16010013