Urinary Tract Infections in a Single Hospital in Central Portugal, a 5-Year Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Foxman, B. Epidemiology of urinary tract infections: Incidence, morbidity, and economic costs. Dis. Mon. 2003, 49, 53–70. [Google Scholar] [CrossRef] [PubMed]
- Foxman, B. Urinary tract infection syndromes: Occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect. Dis. Clin. N. Am. 2014, 28, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R. Symptoms, risk factors, diagnosis and treatment of urinary tract infections. Postgrad. Med. J. 2021, 97, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Hickling, D.R.; Sun, T.T.; Wu, X.R. Anatomy and Physiology of the Urinary Tract: Relation to Host Defense and Microbial Infection. Urin. Tract Infect. Mol. Pathog. Clin. Manag. 2015, 3, 10.1128. [Google Scholar] [CrossRef] [PubMed]
- Murray, B.O.; Flores, C.; Williams, C. Recurrent Urinary Tract Infection: A Mystery in Search of Better Model Systems. Front. Cell. Infect. Microbiol. 2021, 11, 691210. [Google Scholar] [CrossRef] [PubMed]
- Harb, A.; Yassine, V.; Ghssein, G.; Salami, A.; Fakih, H. Prevalence and Clinical Significance of Urinary Tract Infection among Neonates Presenting with Unexplained Hyperbilirubinemia in Lebanon: A Retrospective Study. Infect. Chemother. 2023, 55, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Lacerda Mariano, L.; Ingersoll, M.A. The immune response to infection in the bladder. Nat. Rev. Urol. 2020, 17, 439–458. [Google Scholar] [CrossRef]
- Clemens, J.Q. Infection and Inflammation of the Genitourinary Tract. J. Urol. 2022, 208, 716–717. [Google Scholar] [CrossRef] [PubMed]
- Best, J.; Kitlowski, A.D.; Ou, D.; Bedolla, J. Diagnosis and management of urinary tract infections in the emergency department. Emerg. Med. Pract. 2014, 16, 1–24. [Google Scholar]
- Covino, M.; Manno, A.; Merra, G.; Simeoni, B.; Piccioni, A.; Carbone, L.; Forte, E.; Ojetti, V.; Franceschi, F.; Murri, R. Reduced utility of early procalcitonin and blood culture determination in patients with febrile urinary tract infections in the emergency department. Intern. Emerg. Med. 2020, 15, 119–125. [Google Scholar] [CrossRef]
- Sokhn, E.S.; Salami, A.; El Roz, A.; Salloum, L.; Bahmad, H.F.; Ghssein, G. Antimicrobial Susceptibilities and Laboratory Profiles of Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis Isolates as Agents of Urinary Tract Infection in Lebanon: Paving the Way for Better Diagnostics. Med. Sci. 2020, 8, 32. [Google Scholar] [CrossRef] [PubMed]
- Jean, S.S.; Coombs, G.; Ling, T.; Balaji, V.; Rodrigues, C.; Mikamo, H.; Kim, M.-J.; Rajasekaram, D.G.; Mendoza, M.; Tan, T.Y.; et al. Epidemiology and antimicrobial susceptibility profiles of pathogens causing urinary tract infections in the Asia-Pacific region: Results from the Study for Monitoring Antimicrobial Resistance Trends (SMART), 2010–2013. Int. J. Antimicrob. Agents 2016, 47, 328–334. [Google Scholar] [CrossRef]
- Gravey, F.; Loggia, G.; de La Blanchardière, A.; Cattoir, V. Bacterial epidemiology and antimicrobial resistance profiles of urinary specimens of the elderly. Med. Mal. Infect. 2017, 47, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Gormley, E.A. Recurrent urinary tract infection in women: Emerging concepts regarding etiology and treatment considerations. Curr. Urol. Rep. 2003, 4, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, F.; Exeni, A.; Alconcher, L.; Coccia, P.; García Chervo, L.; Suarez, Á.; Martin, S.; Caminiti, A.; Santiago, A.; Colaboradores. Guía para el diagnóstico, estudio y tratamiento de la infección urinaria: Actualización 2022 [Clinical practice guideline for the diagnosis and management of urinary tract infections: 2022 update]. Arch. Argent. Pediatr. 2022, 120, S69–S87. [Google Scholar] [PubMed]
- Smith, A.L.; Brown, J.; Wyman, J.F.; Berry, A.; Newman, D.K.; Stapleton, A.E. Treatment and Prevention of Recurrent Lower Urinary Tract Infections in Women: A Rapid Review with Practice Recommendations. J. Urol. 2018, 200, 1174–1191. [Google Scholar] [CrossRef] [PubMed]
- PorData Portugal. Available online: https://www.pordata.pt/censos/resultados/emdestaque-beira+baixa-538 (accessed on 8 January 2024).
- Hansen, M.A.; Valentine-King, M.; Zoorob, R.; Schlueter, M.; Matas, J.L.; Willis, S.E.; Danek, L.C.K.; Muldrew, K.L.; Zare, M.; Hudson, F.; et al. Prevalence and predictors of urine culture contamination in primary care: A cross-sectional study. Int. J. Nurs. Stud. 2022, 134, 104325. [Google Scholar] [CrossRef] [PubMed]
- Foxman, B. Epidemiology of urinary tract infections: Incidence, morbidity, and economic costs. Am. J. Med. 2002, 113 (Suppl. 1A), 5S–13S. [Google Scholar] [CrossRef] [PubMed]
- Ansaldi, Y.; Martinez de Tejada Weber, B. Urinary tract infections in pregnancy. Clin. Microbiol. Infect. 2023, 29, 1249–1253. [Google Scholar] [CrossRef]
- Taghavi Zahedkalaei, A.; Kazemi, M.; Zolfaghari, P.; Rashidan, M.; Sohrabi, M.B. Association Between Urinary Tract Infection in the First Trimester and Risk of Preeclampsia: A Case-Control Study. Int. J. Womens Health 2020, 12, 521–526. [Google Scholar] [CrossRef]
- Laari, J.L.; Anab, M.; Jabong, D.P.; Abdulai, K.; Alhassan, A.R. Maternal Age and Stage of Pregnancy as Determinants of UTI in Pregnancy: A Case of Tamale, Ghana. Infect. Dis. Obstet. Gynecol. 2022, 2022, 3616028. [Google Scholar] [CrossRef] [PubMed]
- Rosana, Y.; Ocviyanti, D.; Halim, M.; Harlinda, F.Y.; Amran, R.; Akbar, W.; Billy, M.; Akhmad, S.R.P. Urinary Tract Infections among Indonesian Pregnant Women and Its Susceptibility Pattern. Infect. Dis. Obstet. Gynecol. 2020, 2020, 9681632. [Google Scholar] [CrossRef] [PubMed]
- Dube, R.; Al-Zuheiri, S.T.S.; Syed, M.; Harilal, L.; Zuhaira, D.A.L.; Kar, S.S. Prevalence, Clinico-Bacteriological Profile, and Antibiotic Resistance of Symptomatic Urinary Tract Infections in Pregnant Women. Antibiotics 2022, 12, 33. [Google Scholar] [CrossRef] [PubMed]
- Sabbuba, N.A.; Mahenthiralingam, E.; Stickler, D.J. Molecular epidemiology of Proteus mirabilis infections of the catheterized urinary tract. J. Clin. Microbiol. 2003, 41, 4961–4965. [Google Scholar] [CrossRef] [PubMed]
- Clarke, K.; Hall, C.L.; Wiley, Z.; Tejedor, S.C.; Kim, J.S.; Reif, L.; Witt, L.; Jacob, J.T. Catheter-Associated Urinary Tract Infections in Adults: Diagnosis, Treatment, and Prevention. J. Hosp. Med. 2020, 15, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Gauron, G.; Bigand, T. Implementation of evidence-based strategies to reduce catheter-associated urinary tract infections among hospitalized, post-surgical adults. Am. J. Infect. Control 2021, 49, 843–845. [Google Scholar] [CrossRef] [PubMed]
- Fink, R.; Gilmartin, H.; Richard, A.; Capezuti, E.; Boltz, M.; Wald, H. Indwelling urinary catheter management and catheter-associated urinary tract infection prevention practices in Nurses Improving Care for Healthsystem Elders hospitals. Am. J. Infect. Control 2012, 40, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Foong, K.S.; Munigala, S.; Jackups, R., Jr.; Yarbrough, M.L.; Burnham, C.A.; Warren, D.K. Incidence and Diagnostic Yield of Repeat Urine Culture in Hospitalized Patients: An Opportunity for Diagnostic Stewardship. J. Clin. Microbiol. 2019, 57, e00910-19. [Google Scholar] [CrossRef]
- Ganzeboom, K.M.J.; Uijen, A.A.; Teunissen, D.T.A.M.; Assendelft, W.J.; Peters, H.J.; Hautvast, J.L.; Van Jaarsveld, C.H. Urine cultures and antibiotics for urinary tract infections in Dutch general practice. Prim. Health Care Res. Dev. 2018, 20, e41. [Google Scholar] [CrossRef]
- Shimoni, Z.; Avdiaev, R.; Froom, P. Urine Cultures in Hospitalized Geriatric Patients Presenting with Fever. Am. J. Med. Sci. 2017, 353, 17–21. [Google Scholar] [CrossRef]
- Piñeiro Pérez, R.; Cilleruelo Ortega, M.J.; Ares Álvarez, J.; Baquero-Artigao, F.; Rico, J.C.S.; Zúñiga, R.V.; Campos, L.M.; Gallego, B.C.; Fernández, A.J.C.; Calvo, C.; et al. Recomendaciones sobre el diagnóstico y tratamiento de la infección urinaria [Recommendations on the diagnosis and treatment of urinary tract infection]. An. Pediatría (Engl. Ed.) 2019, 90, e1–e400. [Google Scholar]
- Al-Mendalawi, M.D. Antibiotic resistance pattern and empirical therapy for urinary tract infections in children. Saudi. Med. J. 2008, 29, 1520. [Google Scholar] [PubMed]
- Gökçe, İ.; Çiçek, N.; Güven, S.; Altuntaş, Ü.; Bıyıklı, N.; Yıldız, N.; Alpay, H. Changes in Bacterial Resistance Patterns of Pediatric Urinary Tract Infections and Rationale for Empirical Antibiotic Therapy. Balk. Med. J. 2017, 34, 432–435. [Google Scholar] [CrossRef] [PubMed]
- Bhowmik, D.; Singh, S. Complicated urinary tract infections. J. Indian Med. Assoc. 2013, 111, 545–549. [Google Scholar] [PubMed]
- Mittal, R.; Aggarwal, S.; Sharma, S.; Chhibber, S.; Harjai, K. Urinary tract infections caused by Pseudomonas aeruginosa: A minireview. J. Infect. Public Health 2009, 2, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Muder, R.R.; Brennen, C.; Rihs, J.D.; Wagener, M.M.; Obman, A.; Stout, J.E.; Yu, V.L. Isolation of Staphylococcus aureus from the urinary tract: Association of isolation with symptomatic urinary tract infection and subsequent staphylococcal bacteremia. Clin. Infect. Dis. 2006, 42, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Kot, B. Antibiotic Resistance Among Uropathogenic Escherichia coli. Pol. J. Microbiol. 2019, 68, 403–415. [Google Scholar] [CrossRef] [PubMed]
- Moreira da Silva, R.C.R.; de Oliveira Martins Júnior, P.; Gonçalves, L.F.; de Paulo Martins, V.; de Melo, A.B.F.; Pitondo-Silva, A.; de Campos, T.A. Ciprofloxacin resistance in uropathogenic Escherichia coli isolates causing community-acquired urinary infections in Brasília, Brazil. J. Glob. Antimicrob. Resist. 2017, 9, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Gobernado, M.; Valdés, L.; Alós, J.I.; García-Rey, C.; Dal-Ré, R.; García-de-Lomas, J.; Spanish Surveillance Group for Urinary Pathogens. Antimicrobial susceptibility of clinical Escherichia coli isolates from uncomplicated cystitis in women over a 1-year period in Spain. Rev. Esp. Quimioter. 2007, 20, 68–76. [Google Scholar]
- López-Sampedro, I.; Hernández-Chico, I.; Gómez-Vicente, E.; Expósito-Ruiz, M.; Navarro-Marí, J.M.; Gutiérrez-Fernández, J. Evolution of Antibiotic Resistance in Escherichia coli and Klebsiella pneumoniae from Urine Cultures. Arch. Esp. Urol. 2023, 76, 203–214. [Google Scholar] [CrossRef]
- Oteo, J.; Delgado-Iribarren, A.; Vega, D.; Bautista, V.; Rodríguez, M.C.; Velasco, M.; Saavedra, J.M.; Pérez-Vázquez, M.; García-Cobos, S.; Martínez-Martínez, L.; et al. Emergence of imipenem resistance in clinical Escherichia coli during therapy. Int. J. Antimicrob. Agents. 2008, 32, 534–537. [Google Scholar] [CrossRef]
- Hayakawa, K.; Matsumura, Y.; Uemura, K.; Tsuzuki, S.; Sakurai, A.; Tanizaki, R.; Shinohara, K.; Hashimoto, T.; Hase, R.; Matono, T.; et al. Effectiveness of cefmetazole versus meropenem for invasive urinary tract infections caused by extended-spectrum β-lactamase-producing Escherichia coli. Antimicrob. Agents Chemother. 2023, 67, e0051023. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Y.; Wang, F.; Wang, C.; Chen, L.; Liu, H.; Lu, H.; Wen, H.; Zhou, T. Unravelling mechanisms of nitrofurantoin resistance and epidemiological characteristics among Escherichia coli clinical isolates. Int. J. Antimicrob. Agents 2018, 52, 226–232. [Google Scholar] [CrossRef]
- Sandegren, L.; Lindqvist, A.; Kahlmeter, G.; Andersson, D.I. Nitrofurantoin resistance mechanism and fitness cost in Escherichia coli. J. Antimicrob. Chemother. 2008, 62, 495–503. [Google Scholar] [CrossRef]
- Mahdizade Ari, M.; Dashtbin, S.; Ghasemi, F.; Shahroodian, S.; Kiani, P.; Bafandeh, E.; Darbandi, T.; Ghanavati, R.; Darbandi, A. Nitrofurantoin: Properties and potential in treatment of urinary tract infection: A narrative review. Front. Cell. Infect. Microbiol. 2023, 13, 1148603. [Google Scholar] [CrossRef]
- Zhong, Z.X.; Cui, Z.H.; Li, X.J.; Tang, T.; Zheng, Z.-J.; Ni, W.-N.; Fang, L.-X.; Zhou, Y.-F.; Yu, Y.; Liu, Y.-H.; et al. Nitrofurantoin Combined with Amikacin: A Promising Alternative Strategy for Combating MDR Uropathogenic Escherichia coli. Front. Cell. Infect. Microbiol. 2020, 10, 608547. [Google Scholar] [CrossRef] [PubMed]
- Abavisani, M.; Bostanghadiri, N.; Ghahramanpour, H.; Kodori, M.; Akrami, F.; Fathizadeh, H.; Hashemi, A.; Rastegari-Pouyani, M. Colistin resistance mechanisms in Gram-negative bacteria: A Focus on Escherichia coli. Lett. Appl. Microbiol. 2023, 76, ovad023. [Google Scholar] [CrossRef]
- Anyanwu, M.U.; Jaja, I.F.; Okpala, C.O.R.; Njoga, E.O.; Okafor, N.A.; Oguttu, J.W. Mobile Colistin Resistance (mcr) Gene-Containing Organisms in Poultry Sector in Low- and Middle-Income Countries: Epidemiology, Characteristics, and One Health Control Strategies. Antibiotics 2023, 12, 1117. [Google Scholar] [CrossRef] [PubMed]
- Hatlen, T.J.; Flor, R.; Nguyen, M.H.; Lee, G.H.; Miller, L.G. Oral fosfomycin use for pyelonephritis and complicated urinary tract infections: A 1 year review of outcomes and prescribing habits in a large municipal healthcare system. J. Antimicrob. Chemother. 2020, 75, 1993–1997. [Google Scholar] [CrossRef]
- Burgos, R.M.; Rodvold, K.A. ZTI-01 (fosfomycin for injection) in the treatment of hospitalized patients with complicated urinary tract infections. Future Microbiol. 2019, 14, 461–475. [Google Scholar] [CrossRef]
- Rodrigues, D.; Baldissera, G.S.; Mathos, D.; Sartori, A.; Zavascki, A.P.; Rigatto, M.H. Amikacin for the treatment of carbapenem-resistant Klebsiella pneumoniae infections: Clinical efficacy and toxicity. Braz. J. Microbiol. 2021, 52, 1913–1919. [Google Scholar] [CrossRef] [PubMed]
- Abbas, R.; Chakkour, M.; Zein El Dine, H.; Obaseki, E.F.; Obeid, S.T.; Jezzini, A.; Ghssein, G.; Ezzeddine, Z. General Overview of Klebsiella pneumonia: Epidemiology and the Role of Siderophores in Its Pathogenicity. Biology 2024, 13, 78. [Google Scholar] [CrossRef] [PubMed]
- Ballén, V.; Gabasa, Y.; Ratia, C.; Ortega, R.; Tejero, M.; Soto, S. Antibiotic Resistance and Virulence Profiles of Klebsiella pneumoniae Strains Isolated from Different Clinical Sources. Front. Cell. Infect. Microbiol. 2021, 11, 738223. [Google Scholar] [CrossRef] [PubMed]
- Urbaniec, J.; Getino, M.; McEwan, T.B.; Sanderson-Smith, M.L.; McFadden, J.; Hai, F.; La Ragione, R.; Hassan, M.M.; Hingley-Wilson, S. Anti-persister efficacy of colistin and meropenem against uropathogenic Escherichia coli is dependent on environmental conditions. Microbiology 2023, 169, 001403. [Google Scholar] [CrossRef]
- Ezzeddine, Z.; Ghssein, G. Towards new antibiotics classes targeting bacterial metallophores. Microb. Pathog. 2023, 182, 106221. [Google Scholar] [CrossRef]
- Zampaloni, C.; Mattei, P.; Bleicher, K.; Winther, L.; Thäte, C.; Bucher, C.; Adam, J.M.; Alanine, A.; Amrein, K.E.; Baidin, V.; et al. A novel antibiotic class targeting the lipopolysaccharide transporter. Nature 2024, 625, 566–571. [Google Scholar] [CrossRef]
Incidence (%) | Age (Years) |
---|---|
2.9 | 89 |
2.9 | 84 |
3 | 86 |
3 | 83 |
3.4 | 85 |
3.5 | 87 |
E. coli | K. pneumoniae | P. mirabillis | P. aeruginosa | E. faecalis | Others | |
---|---|---|---|---|---|---|
Emergency (N = 3603) | 58.5% | 12.9% | 7.7% | -- | -- | 20.9% |
Hospitalized (N = 2585) | 39.9% | 16.9% | -- | 8.2% | -- | 35% |
Day hospital (N = 25) | 65.2% | 8.7% | -- | 26.1% | ||
Consultation (N = 2127) | 60.4% | 11.3% | -- | -- | 5.9% | 22.4% |
Origin | N = 351 |
---|---|
Emergency | 19.1% |
Hospitalized | 73.4% |
Day hospital | 0.3% |
Consultation | 7.2% |
Escherichia coli | 2018 | 2019 | 2020 | 2021 | 2022 |
Ampicillin | |||||
48.7% | 49.3% | 46.1% | NA | NA | |
Amoxicillin | |||||
NA | NA | NA | 0% | NA | |
Amoxicillin/Clavulanic Acid | |||||
36.2% | 41.8% | 37.3% | 35% | 32.6% | |
Piperacillin/Tazobactam | |||||
6.3% | 7.2% | 6.3% | NA | NA | |
Cefuroxime Axetil | |||||
20.6% | 18.0% | 16.0% | 14.6% | 18.2% | |
Cefotaxim3 | |||||
13.1% | 11.6% | 11% | NA | NA | |
Ceftazidime | |||||
13.1% | 7.5% | 6.8% | NA | NA | |
Ceftazidime/Avibactam | |||||
NA | NA | NA | 4.8% | 7.2% | |
Cefepime | |||||
12.8% | 4.6% | 5.2% | NA | NA | |
Gentamicin | |||||
8.3% | 10.2% | 6.1% | NA | NA | |
Amikacin | |||||
0% | 0.4% | 0.4% | NA | NA | |
Ciprofloxacin | |||||
23.1% | 24.2% | 20.6% | NA | NA | |
Nitrofurantoin | |||||
0.8% | 2.0% | 0.9% | 20.4% | 24.4% | |
Fosfomycin | |||||
1.4% | 3.6% | 2.0% | NA | NA | |
Trimethoprim/Sulfamethoxazole | |||||
27.7% | 28.7% | 24.2% | 24.3% | 26.7% | |
Meropenem | |||||
0.1% | 0.1% | 0% | NA | NA | |
Ertapenem | |||||
0.4% | 0.1% | 0.1% | 0.1% | 0.0% | |
Colistin | |||||
0.1% | 0.3% | 1.5% | NA | NA |
Klebsiella pneumoniae | 2018 | 2019 | 2020 | 2021 | 2022 |
Ampicillin | |||||
26.8% | 37.4% | 35.8% | NA | NA | |
Amoxicillin | |||||
NA | NA | NA | 100% | 100% | |
Amoxicillin/Clavulanic Acid | |||||
41.0% | 51.8% | 47.5% | 38.5% | 35.8% | |
Piperacillin/Tazobactam | |||||
20.9% | 20.6% | 19.5% | NA | NA | |
Cefuroxime Axetil | |||||
30.9% | 39.4% | 35.7% | 22.1% | 24.6% | |
Cefotaxime | |||||
23.0% | 35.3% | 32.8% | NA | ||
Ceftazidime | |||||
23.6% | 35.7% | 30.7% | 100.0% | 100.0% | |
Clotrimazole | |||||
100.0% | 100.0% | ||||
Cefepime | |||||
23.0% | 28.1% | 19.7% | |||
Gentamicin | |||||
18.5% | 29.7% | 24.8% | |||
Amikacin | |||||
3.9% | 2.4% | 1.3% | 100.0% | 100.0% | |
Ciprofloxacin | |||||
25.3% | 41.8% | 37.4% | |||
Nitrofurantoin | |||||
18.5% | 18.2% | 100.0% | 27.2% | 25.9% | |
Fosfomycin | |||||
19.1% | 21.7% | 21.0% | 33.3% | 7.7% | |
Trimethoprim/Sulfamethoxazole | |||||
27.0% | 34.5% | 27.7% | 24.1% | 22.8% | |
Meropenem | |||||
40.0% | 26.7% | 33.3% | |||
Ertapenem | |||||
2.8% | 3.6% | 3.8% | 4.3% | 4.3% | |
Colistin | |||||
0.0% | 0.4% | 0.8% | |||
Metronidazole | |||||
100.0% | 100.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Branco, M.C.; Coelho, P.; Rodrigues, F. Urinary Tract Infections in a Single Hospital in Central Portugal, a 5-Year Analysis. Microbiol. Res. 2024, 15, 850-863. https://doi.org/10.3390/microbiolres15020055
Branco MC, Coelho P, Rodrigues F. Urinary Tract Infections in a Single Hospital in Central Portugal, a 5-Year Analysis. Microbiology Research. 2024; 15(2):850-863. https://doi.org/10.3390/microbiolres15020055
Chicago/Turabian StyleBranco, Miguel Castelo, Patrícia Coelho, and Francisco Rodrigues. 2024. "Urinary Tract Infections in a Single Hospital in Central Portugal, a 5-Year Analysis" Microbiology Research 15, no. 2: 850-863. https://doi.org/10.3390/microbiolres15020055
APA StyleBranco, M. C., Coelho, P., & Rodrigues, F. (2024). Urinary Tract Infections in a Single Hospital in Central Portugal, a 5-Year Analysis. Microbiology Research, 15(2), 850-863. https://doi.org/10.3390/microbiolres15020055