Control of Biofilm and Virulence in Pseudomonas aeruginosa by Green-Synthesized Titanium–Cerium Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Ocimum tenuiflorum Leaf Extract and Synthesis of Ti–Ce–NCs
2.2. Characterization of Ti–Ce–NCs
2.2.1. X-ray Diffraction Analysis
2.2.2. Fourier Transform Infrared Spectroscopy
2.2.3. Transmission Electron Microscopy (TEM) Analysis
2.2.4. Scanning Electron Microscopy (SEM) and Elemental Composition Analysis
2.3. Bacterial Strain and Determination of Minimum Inhibitory Concentration
2.4. Assays for Inhibition of QS-Controlled Virulence Factors in P. aeruginosa PAO1
2.4.1. Evaluation of Exoprotease Activity
2.4.2. Evaluation of Elastase Activity
2.4.3. Evaluation of Pyocyanin Pigment Production
2.4.4. Evaluation of Pyoverdin Production
2.4.5. Evaluation of Rhamnolipid Production
2.4.6. Evaluation of Swarming Motility
2.5. Evaluation of Biofilm Formation
2.6. Microscopic Examination of Biofilm
2.7. Eradication of Biofilm
2.8. Statistical Analysis of Data
3. Results and Discussion
3.1. Characterization of Ti–Ce–NCs
3.2. Ti–Ce–NCs Inhibits the Virulent Enzymes of P. aeruginosa PAO1
3.3. Inhibition of Virulent Pigments of P. aeruginosa PAO1 by Ti–Ce–NCs
3.4. Ti–Ce–NCs Inhibits Rhamnolipid Production and Motility in P. aeruginosa PAO1
3.5. Ti–Ce–NCs Inhibits the Biofilm of P. aeruginosa PAO1
3.6. Ti–Ce–NCs Eradicates the Biofilm of P. aeruginosa PAO1
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMR | Antimicrobial resistance |
FTIR | Fourier transform infrared |
MIC | Minimum inhibitory concentration |
SEM | Scanning electron microscopy |
XRD | X-ray diffraction |
ECR | Elastin congo red |
MDR | Multidrug resistance |
QS | Quorum sensing |
TEM | Transmission electron microscopy |
Ti–Ce–NCs | Titanium–cerium nanocomposites |
References
- Maillard, J.-Y.; Bloomfield, S.F.; Courvalin, P.; Essack, S.Y.; Gandra, S.; Gerba, C.P.; Rubino, J.R.; Scott, E.A. Reducing Antibiotic Prescribing and Addressing the Global Problem of Antibiotic Resistance by Targeted Hygiene in the Home and Everyday Life Settings: A Position Paper. Am. J. Infect. Control 2020, 48, 1090–1099. [Google Scholar] [CrossRef]
- O’Neil, J. Review on Antimicrobial Resistance: Tackling Drug-Resistant Infections Globally. Available online: https://amr-review.org/Publications.html (accessed on 4 September 2023).
- Serra-Burriel, M.; Keys, M.; Campillo-Artero, C.; Agodi, A.; Barchitta, M.; Gikas, A.; Palos, C.; López-Casasnovas, G. Impact of Multi-Drug Resistant Bacteria on Economic and Clinical Outcomes of Healthcare-Associated Infections in Adults: Systematic Review and Meta-Analysis. PLoS ONE 2020, 15, e0227139. [Google Scholar] [CrossRef]
- Collignon, P.; Beggs, J.J.; Walsh, T.R.; Gandra, S.; Laxminarayan, R. Anthropological and Socioeconomic Factors Contributing to Global Antimicrobial Resistance: A Univariate and Multivariable Analysis. Lancet Planet. Health 2018, 2, e398–e405. [Google Scholar] [CrossRef]
- Gellatly, S.L.; Hancock, R.E.W. Pseudomonas Aeruginosa: New Insights into Pathogenesis and Host Defenses. Pathog. Dis. 2013, 67, 159–173. [Google Scholar] [CrossRef]
- Silby, M.W.; Winstanley, C.; Godfrey, S.A.C.; Levy, S.B.; Jackson, R.W. Pseudomonas Genomes: Diverse and Adaptable. FEMS Microbiol. Rev. 2011, 35, 652–680. [Google Scholar] [CrossRef]
- Vincent, J.-L. Nosocomial Infections in Adult Intensive-Care Units. Lancet 2003, 361, 2068–2077. [Google Scholar] [CrossRef] [PubMed]
- Oliver, A.; Mulet, X.; López-Causapé, C.; Juan, C. The Increasing Threat of Pseudomonas Aeruginosa High-Risk Clones. Drug Resist. Updates 2015, 21–22, 41–59. [Google Scholar] [CrossRef] [PubMed]
- Oliver, A.; Mena, A.; Maciá, M.D. Evolution of Pseudomonas Aeruginosa Pathogenicity: From Acute to Chronic Infections. In Evolutionary Biology of Bacterial and Fungal Pathogens; ASM Press: Washington, DC, USA, 2014; pp. 433–444. [Google Scholar]
- Livermore, D.M. Has the Era of Untreatable Infections Arrived? J. Antimicrob. Chemother. 2009, 64, i29–i36. [Google Scholar] [CrossRef] [PubMed]
- Peña, C.; Suarez, C.; Gozalo, M.; Murillas, J.; Almirante, B.; Pomar, V.; Aguilar, M.; Granados, A.; Calbo, E.; Rodríguez-Baño, J.; et al. Prospective Multicenter Study of the Impact of Carbapenem Resistance on Mortality in Pseudomonas Aeruginosa Bloodstream Infections. Antimicrob. Agents Chemother. 2012, 56, 1265–1272. [Google Scholar] [CrossRef] [PubMed]
- Sim, S.; Wong, N. Nanotechnology and Its Use in Imaging and Drug Delivery (Review). Biomed. Rep. 2021, 14, 42. [Google Scholar] [CrossRef] [PubMed]
- Drexler, K. Nanosystems: Molecular Machinery, Manufacturing, and Computation; John Wiley & Sons, Inc.: New York, NY, USA, 1992. [Google Scholar]
- Belkin, A.; Hubler, A.; Bezryadin, A. Self-Assembled Wiggling Nano-Structures and the Principle of Maximum Entropy Production. Sci. Rep. 2015, 5, 8323. [Google Scholar] [CrossRef] [PubMed]
- Allhoff, F.; Lin, P.; Moore, D. What Is Nanotechnology and Why Does It Matter?: From Science to Ethics; John Wiley & Sons: New York, NY, USA, 2010. [Google Scholar]
- Haleem, A.; Javaid, M.; Singh, R.P.; Rab, S.; Suman, R. Applications of Nanotechnology in Medical Field: A Brief Review. Glob. Health J. 2023, 7, 70–77. [Google Scholar] [CrossRef]
- Farokhzad, O.; Langer, R. Nanomedicine: Developing Smarter Therapeutic and Diagnostic Modalities. Adv. Drug Deliv. Rev. 2006, 58, 1456–1459. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Amiji, M.M. Application of Nanotechnology in Medical Diagnosis and Imaging. Curr. Opin. Biotechnol. 2022, 74, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, D.; Kiselev, M.A.; Caccamo, M.T. Smart Nanoparticles for Drug Delivery Application: Development of Versatile Nanocarrier Platforms in Biotechnology and Nanomedicine. J. Nanomater. 2019, 2019, 3702518. [Google Scholar] [CrossRef]
- Mani, U.; kumar Ponnala, A.; Jayabharathi, T.; Shanmugavel, M.; Sujatha, D.; Ezhilarasan, D. Antibacterial Properties of Metal and Metal Oxide Nanoparticles-An Overview. Appl. Microbiol. Theory Technol. 2023, 4, 33–49. [Google Scholar] [CrossRef]
- Qais, F.A.; Samreen; Ahmad, I. Broad-Spectrum Inhibitory Effect of Green Synthesised Silver Nanoparticles from Withania somnifera (L.) on Microbial Growth, Biofilm and Respiration: A Putative Mechanistic Approach. IET Nanobiotechnol. 2018, 12, 325–335. [Google Scholar] [CrossRef]
- Qais, F.A.; Khan, M.S.; Ahmad, I.; Husain, F.M.; Khan, R.A.; Hassan, I.; Shahzad, S.A.; AlHarbi, W. Coumarin Exhibits Broad-Spectrum Antibiofilm and Antiquorum Sensing Activity against Gram-Negative Bacteria: In Vitro and In Silico Investigation. ACS Omega 2021, 6, 18823–18835. [Google Scholar] [CrossRef]
- Qais, F.A.; Ahmad, I.; Husain, F.M.; Arshad, M.; Khan, A.; Adil, M. Umbelliferone Modulates the Quorum Sensing and Biofilm of Gram−ve Bacteria: In Vitro and in Silico Investigations. J. Biomol. Struct. Dyn. 2023, 1–14. [Google Scholar] [CrossRef]
- Qais, F.A.; Khan, M.S.; Ahmad, I. Broad-Spectrum Quorum Sensing and Biofilm Inhibition by Green Tea against Gram-Negative Pathogenic Bacteria: Deciphering the Role of Phytocompounds through Molecular Modelling. Microb. Pathog. 2019, 126, 379–392. [Google Scholar] [CrossRef]
- Kurachi, M. Studies on the Biosynthesis of Pyocyanine. II. Isolation and Determination of Pyocyanine. Bull. Inst. Chem. Res. Kyoto Univ. 1958, 36, 174–187. [Google Scholar]
- Qais, F.A.; Khan, M.S.; Ahmad, I.; Husain, F.M.; Al-kheraif, A.A.; Arshad, M.; Alam, P. Plumbagin Inhibits Quorum Sensing-Regulated Virulence and Biofilms of Gram-Negative Bacteria: In Vitro and in Silico Investigations. Biofouling 2021, 37, 724–739. [Google Scholar] [CrossRef] [PubMed]
- Qais, F.A.; Shafiq, A.; Ahmad, I.; Husain, F.M.; Khan, R.A.; Hassan, I. Green Synthesis of Silver Nanoparticles Using Carum Copticum: Assessment of Its Quorum Sensing and Biofilm Inhibitory Potential against Gram Negative Bacterial Pathogens. Microb. Pathog. 2020, 144, 104172. [Google Scholar] [CrossRef] [PubMed]
- Qais, F.A.; Ahmad, I.; Husain, F.M.; Alomar, S.Y.; Ahmad, N.; Albalawi, F.; Alam, P.; Albalawi, T. Interference of Quorum Sensing Regulated Bacterial Virulence Factors and Biofilms by Plumbago zeylanica Extract. Microsc. Res. Tech. 2021, 84, 3150–3160. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, A.; Karthikeyan, C.; Haja Hameed, A.S.; Gopinath, K.; Gowri, S.; Karthika, V. Synthesis of Cerium Oxide Nanoparticles Using Gloriosa superba L. Leaf Extract and Their Structural, Optical and Antibacterial Properties. Mater. Sci. Eng. C 2015, 49, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.S.; Iqbal, A.; Shafi, A.; Qais, F.A.; Ahamad, T.; Srivastava, S. Enhanced Removal of Crystal Violet Dye and Anti-Biofilm Activity of Ti Doped CeO2 Nanoparticles Synthesized by Phoenix Dactylifera Mediated Green Method. J. Clust. Sci. 2020, 32, 1723–1737. [Google Scholar] [CrossRef]
- Wattanathana, W.; Suetrong, N.; Kongsamai, P.; Chansaenpak, K.; Chuanopparat, N.; Hanlumyuang, Y.; Kanjanaboos, P.; Wannapaiboon, S. Crystallographic and Spectroscopic Investigations on Oxidative Coordination in the Heteroleptic Mononuclear Complex of Cerium and Benzoxazine Dimer. Molecules 2021, 26, 5410. [Google Scholar] [CrossRef]
- León, A.; Reuquen, P.; Garín, C.; Segura, R.; Vargas, P.; Zapata, P.; Orihuela, P. FTIR and Raman Characterization of TiO2 Nanoparticles Coated with Polyethylene Glycol as Carrier for 2-Methoxyestradiol. Appl. Sci. 2017, 7, 49. [Google Scholar] [CrossRef]
- Ngoepe, N.M.; Mbita, Z.; Mathipa, M.; Mketo, N.; Ntsendwana, B.; Hintsho-Mbita, N.C. Biogenic Synthesis of ZnO Nanoparticles Using Monsonia Burkeana for Use in Photocatalytic, Antibacterial and Anticancer Applications. Ceram. Int. 2018, 44, 16999–17006. [Google Scholar] [CrossRef]
- Ganapuram, B.R.; Alle, M.; Dadigala, R.; Dasari, A.; Maragoni, V.; Guttena, V. Catalytic Reduction of Methylene Blue and Congo Red Dyes Using Green Synthesized Gold Nanoparticles Capped by Salmalia Malabarica Gum. Int. Nano Lett. 2015, 5, 215–222. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, J.-J.; Zhu, J.-M.; Liao, X.-H.; Xu, S.; Ding, T.; Chen, H.-Y. Preparation of Nanocrystalline Ceria Particles by Sonochemical and Microwave Assisted Heating Methods. Phys. Chem. Chem. Phys. 2002, 4, 3794–3799. [Google Scholar] [CrossRef]
- Yan, B.; Zhu, H. Controlled Synthesis of CeO2 Nanoparticles Using Novel Amphiphilic Cerium Complex Precursors. J. Nanoparticle Res. 2008, 10, 1279–1285. [Google Scholar] [CrossRef]
- Ravi, S.; Karthikeyan, A. Effect of Calcination Temperature on La0.7Sr0.3MnO3 Nanoparticles Synthesized with Modified Sol-Gel Route. Phys. Procedia 2014, 54, 45–54. [Google Scholar] [CrossRef]
- Phoka, S.; Laokul, P.; Swatsitang, E.; Promarak, V.; Seraphin, S.; Maensiri, S. Synthesis, Structural and Optical Properties of CeO2 Nanoparticles Synthesized by a Simple Polyvinyl Pyrrolidone (PVP) Solution Route. Mater. Chem. Phys. 2009, 115, 423–428. [Google Scholar] [CrossRef]
- Altaf, M.; Zeyad, M.T.; Hashmi, M.A.; Manoharadas, S.; Hussain, S.A.; Ali Abuhasil, M.S.; Almuzaini, M.A.M. Effective Inhibition and Eradication of Pathogenic Biofilms by Titanium Dioxide Nanoparticles Synthesized Using Carum Copticum Extract. RSC Adv. 2021, 11, 19248–19257. [Google Scholar] [CrossRef] [PubMed]
- Holder, I.A.; Haidaris, C.G. Experimental Studies of the Pathogenesis of Infections Due to Pseudomonas Aeruginosa: Extracellular Protease and Elastase as in Vivo Virulence Factors. Can. J. Microbiol. 1979, 25, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.S.; Iglewski, B.H.; Barbara, H.P. Aeruginosa Quorum-Sensing Systems and Virulence. Curr. Opin. Microbiol. 2003, 6, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Bandara, M.B.K.; Zhu, H.; Sankaridurg, P.R.; Willcox, M.D.P. Salicylic Acid Reduces the Production of Several Potential Virulence Factors of Pseudomonas Aeruginosa Associated with Microbial Keratitis. Investig. Opthalmology Vis. Sci. 2006, 47, 4453. [Google Scholar] [CrossRef] [PubMed]
- Al-Shabib, N.A.; Husain, F.M.; Ahmad, N.; Qais, F.A.; Khan, A.; Khan, A.; Khan, M.S.; Khan, J.M.; Shahzad, S.A.; Ahmad, I. Facile Synthesis of Tin Oxide Hollow Nanoflowers Interfering with Quorum Sensing-Regulated Functions and Bacterial Biofilms. J. Nanomater. 2018, 2018, 1–11. [Google Scholar] [CrossRef]
- Lau, G.W.; Hassett, D.J.; Ran, H.; Kong, F. The Role of Pyocyanin in Pseudomonas Aeruginosa Infection. Trends Mol. Med. 2004, 10, 599–606. [Google Scholar] [CrossRef]
- Mavrodi, D.V.; Bonsall, R.F.; Delaney, S.M.; Soule, M.J.; Phillips, G.; Thomashow, L.S. Functional Analysis of Genes for Biosynthesis of Pyocyanin and Phenazine-1-Carboxamide from Pseudomonas Aeruginosa PAO1. J. Bacteriol. 2001, 183, 6454–6465. [Google Scholar] [CrossRef] [PubMed]
- Das, T.; Kutty, S.K.; Tavallaie, R.; Ibugo, A.I.; Panchompoo, J.; Sehar, S.; Aldous, L.; Yeung, A.W.S.; Thomas, S.R.; Kumar, N.; et al. Phenazine Virulence Factor Binding to Extracellular DNA Is Important for Pseudomonas Aeruginosa Biofilm Formation. Sci. Rep. 2015, 5, 8398. [Google Scholar] [CrossRef] [PubMed]
- Ran, H.; Hassett, D.J.; Lau, G.W. Human Targets of Pseudomonas Aeruginosa Pyocyanin. Proc. Natl. Acad. Sci. USA 2003, 100, 14315–14320. [Google Scholar] [CrossRef] [PubMed]
- Fothergill, J.L.; Panagea, S.; Hart, C.A.; Walshaw, M.J.; Pitt, T.L.; Winstanley, C. Widespread Pyocyanin Over-Production among Isolates of a Cystic Fibrosis Epidemic Strain. BMC Microbiol. 2007, 7, 45. [Google Scholar] [CrossRef] [PubMed]
- Hunter, R.C.; Klepac-Ceraj, V.; Lorenzi, M.M.; Grotzinger, H.; Martin, T.R.; Newman, D.K. Phenazine Content in the Cystic Fibrosis Respiratory Tract Negatively Correlates with Lung Function and Microbial Complexity. Am. J. Respir. Cell Mol. Biol. 2012, 47, 738–745. [Google Scholar] [CrossRef]
- Peek, M.E.; Bhatnagar, A.; McCarty, N.A.; Zughaier, S.M. Pyoverdine, the Major Siderophore in Pseudomonas Aeruginosa, Evades NGAL Recognition. Interdiscip. Perspect. Infect. Dis. 2012, 2012, 843509. [Google Scholar] [CrossRef] [PubMed]
- Stintzi, A.; Evans, K.; Meyer, J.; Poole, K. Quorum-Sensing and Siderophore Biosynthesis in Pseudomonas Aeruginosa: LasRllasI Mutants Exhibit Reduced Pyoverdine Biosynthesis. FEMS Microbiol. Lett. 1998, 166, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.M.; Neely, A.; Stintzi, A.; Georges, C.; Holder, I.A. Pyoverdin Is Essential for Virulence of Pseudomonas Aeruginosa. Infect. Immun. 1996, 64, 518–523. [Google Scholar] [CrossRef]
- Gupta, P.; Gupta, R.; Harjai, K. Multiple Virulence Factors Regulated by Quorum Sensing May Help in Establishment and Colonisation of Urinary Tract by Pseudomonas Aeruginosa during Experimental Urinary Tract Infection. Indian J. Med. Microbiol. 2013, 31, 29–33. [Google Scholar] [CrossRef]
- Zulianello, L.; Canard, C.; Kohler, T.; Caille, D.; Lacroix, J.-S.; Meda, P. Rhamnolipids Are Virulence Factors That Promote Early Infiltration of Primary Human Airway Epithelia by Pseudomonas Aeruginosa. Infect. Immun. 2006, 74, 3134–3147. [Google Scholar] [CrossRef]
- O’May, C.; Tufenkji, N. The Swarming Motility of Pseudomonas Aeruginosa Is Blocked by Cranberry Proanthocyanidins and Other Tannin-Containing Materials. Appl. Environ. Microbiol. 2011, 77, 3061–3067. [Google Scholar] [CrossRef] [PubMed]
- Newman, J.W.; Floyd, R.V.; Fothergill, J.L. The Contribution of Pseudomonas Aeruginosa Virulence Factors and Host Factors in the Establishment of Urinary Tract Infections. FEMS Microbiol. Lett. 2017, 364, fnx124. [Google Scholar] [CrossRef] [PubMed]
- Qais, F.A.; Ahmad, I.; Altaf, M.; Manoharadas, S.; Al-Rayes, B.F.; Ali Abuhasil, M.S.; Almaroai, Y.A. Biofabricated Silver Nanoparticles Exhibit Broad-Spectrum Antibiofilm and Antiquorum Sensing Activity against Gram-Negative Bacteria. RSC Adv. 2021, 11, 13700–13710. [Google Scholar] [CrossRef]
- Pompilio, A.; Crocetta, V.; De Nicola, S.; Verginelli, F.; Fiscarelli, E.; Di Bonaventura, G. Cooperative Pathogenicity in Cystic Fibrosis: Stenotrophomonas Maltophilia Modulates Pseudomonas Aeruginosa Virulence in Mixed Biofilm. Front. Microbiol. 2015, 6, 951. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.-C.; Wingender, J. The Biofilm Matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Al-Shabib, N.A.; Husain, F.M.; Hassan, I.; Khan, M.S.; Ahmed, F.; Qais, F.A.; Oves, M.; Rahman, M.; Khan, R.A.; Khan, A.; et al. Biofabrication of Zinc Oxide Nanoparticle from Ochradenus Baccatus Leaves: Broad-Spectrum Antibiofilm Activity, Protein Binding Studies, and In Vivo Toxicity and Stress Studies. J. Nanomater. 2018, 2018, 8612158. [Google Scholar] [CrossRef]
- Roy, R.; Tiwari, M.; Donelli, G.; Tiwari, V. Strategies for Combating Bacterial Biofilms: A Focus on Anti-Biofilm Agents and Their Mechanisms of Action. Virulence 2018, 9, 522–554. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, P.; Wang, Y.; Hao, Y. Mechanisms and Control Measures of Mature Biofilm Resistance to Antimicrobial Agents in the Clinical Context. ACS Omega 2020, 5, 22684–22690. [Google Scholar] [CrossRef]
- Karygianni, L.; Ren, Z.; Koo, H.; Thurnheer, T. Biofilm Matrixome: Extracellular Components in Structured Microbial Communities. Trends Microbiol. 2020, 28, 668–681. [Google Scholar] [CrossRef]
- Høiby, N.; Ciofu, O.; Johansen, H.K.; Song, Z.; Moser, C.; Jensen, P.Ø.; Molin, S.; Givskov, M.; Tolker-Nielsen, T.; Bjarnsholt, T. The Clinical Impact of Bacterial Biofilms. Int. J. Oral Sci. 2011, 3, 55–65. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altaf, M.; Parveen, N.; Qais, F.A.; Abdullah, K.M.; Ahmad, I. Control of Biofilm and Virulence in Pseudomonas aeruginosa by Green-Synthesized Titanium–Cerium Nanocomposites. Microbiol. Res. 2023, 14, 1653-1669. https://doi.org/10.3390/microbiolres14040114
Altaf M, Parveen N, Qais FA, Abdullah KM, Ahmad I. Control of Biofilm and Virulence in Pseudomonas aeruginosa by Green-Synthesized Titanium–Cerium Nanocomposites. Microbiology Research. 2023; 14(4):1653-1669. https://doi.org/10.3390/microbiolres14040114
Chicago/Turabian StyleAltaf, Mohammad, Nagma Parveen, Faizan Abul Qais, K. M. Abdullah, and Iqbal Ahmad. 2023. "Control of Biofilm and Virulence in Pseudomonas aeruginosa by Green-Synthesized Titanium–Cerium Nanocomposites" Microbiology Research 14, no. 4: 1653-1669. https://doi.org/10.3390/microbiolres14040114
APA StyleAltaf, M., Parveen, N., Qais, F. A., Abdullah, K. M., & Ahmad, I. (2023). Control of Biofilm and Virulence in Pseudomonas aeruginosa by Green-Synthesized Titanium–Cerium Nanocomposites. Microbiology Research, 14(4), 1653-1669. https://doi.org/10.3390/microbiolres14040114