Sporulation, Structure Assembly, and Germination in the Soil Bacterium Bacillus thuringiensis: Survival and Success in the Environment and the Insect Host
Abstract
:1. Introduction
2. The Soil Spore-Forming Bacterium Bacillus thuringiensis
The Plasmid-Encoded Bt Crystalline Proteins
3. The General Sporulation Mechanism in the Genus Bacillus
3.1. Sporulation Program in B. thuringiensis
The Sporulation Mechanism in B. thuringiensis, a Multistep Process
3.2. Routing the Regulatory Metabolism at Transcriptional and Translational Level for Sporulation and Insecticidal Crystal Protein Synthesis (ICPs) Production
4. The General Spore Germination Program in the Genus Bacillus
The Molecular Components of the Germination of B. thuringiensis
5. Implication of the Knowledge of Sporulation Structural Assembly and Germination in the Soil Bacterium B. thuringiensis
6. Conclusions and Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, S.; Moayeri, M.; Leppla, S.H. Anthrax lethal and edema toxins in anthrax pathogenesis. Trends Microbiol. 2014, 22, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Kokilaramani, S.; AlSalhi, M.S.; Devanesan, S.; Narenkuma, J.; Rajasekar, A.; Govarthanan, M. Bacillus megaterium-induced biocorrosion on mild steel and the effect of Artemisia pallens methanolic extract as a natural corrosion inhibitor. Arch. Microbiol. 2020, 202, 2311–2321. [Google Scholar] [CrossRef]
- Melo, A.L.D.A.; Soccol, V.T.; Soccol, C.R. Bacillus thuringiensis: Mechanism of action, resistance, and new applications: A review. Crit. Rev. Biotechnol. 2016, 36, 317–326. [Google Scholar] [CrossRef]
- Wang, C.; Li, W.; Kessenich, C.R.; Petrick, J.S.; Rydel, T.J.; Sturman, E.J.; Lee, T.C.; Glenn, K.C.; Edrington, T.C. Safety of the Bacillus thuringiensis-derived Cry1A.105 protein: Evidence that domain exchange preserves mode of action and safety. Regul.Toxicol. Pharmacol. 2018, 99, 50–60. [Google Scholar] [CrossRef]
- Malovichko, Y.V.; Nizhnikov, A.A. Repertoire of the Bacillus thuringiensis virulence factors unrelated to major classes of protein toxins and its role in specificity of host-pathogen interactions. Antonets KS. Toxins 2019, 11, 347. [Google Scholar] [CrossRef] [Green Version]
- Bach, E.; Rangel, C.P.; Ribeiro, I.D.A.; Passaglia, L.M.P. Pangenome analyses of Bacillus pumilus, Bacillus safensis, and Priestia megaterium exploring the plant-associated features of bacilli strains isolated from canola. Mol. Genet. Genom. 2022, 297, 1063–1079. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, Z.; Luo, X.; Zhang, X.; Chou, S.H.; Wang, J.; He, J. Which is stronger? A continuing battle between Cry toxins and insects. Front. Microbiol. 2021, 12, 665101. [Google Scholar] [CrossRef] [PubMed]
- Stenfois Arnesen, L.P.; Fagerlund, A.; Granum, P.E. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 2008, 32, 579–606. [Google Scholar] [CrossRef] [Green Version]
- Logan, N.A. Bacillus and relatives in foodborne illness. J. Appl. Microbiol. 2012, 112, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Dalla-Vecchia, E.; Visser, M.; Stams, A.J.; Bernier-Latmani, R. Investigation of sporulation in the Desulfotomaculum genus: A genomic comparison with the genera Bacillus and Clostridium. Environ. Microbiol. Rep. 2014, 6, 756–766. [Google Scholar] [CrossRef] [Green Version]
- Talukdar, P.K.; Sarker, M.R. Characterization of putative sporulation and germination genes in Clostridium perfringens Food-Poisoning Strain SM101. Microorganisms 2022, 10, 1481. [Google Scholar] [CrossRef]
- Chakraborty, A.; Jayne ERattray, S.; Matthews, D.S.; Li, C.; Barker, B.; Jørgensen, B.B.; Hubert, C.R.J. Metabolic responses of thermophilic endospores to sudden heat-induced perturbation in marine sediment samples. Front. Microbiol. 2022, 13, 958417. [Google Scholar] [CrossRef] [PubMed]
- Burke, K.E.; Lamont, J.T. Clostridium difficile infections: A worldwide disease. Gut Liver 2014, 8, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandhu, B.K.; McBride, S.H.M. Clostridioides difficile. Trends Microbiol. 2018, 26, 1049–1050. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, R.; Song, J.A. Terbium chloride influences Clostridium difficile spore germination. Anaerobe 2019, 58, 80–88. [Google Scholar] [CrossRef]
- Diallo, M.; Kengen, S.W.M.; López-Contreras, A.M. Sporulation in solventogenic and acetogenic clostridia. Appl. Microbiol. Biotechnol. 2021, 105, 3533–3557. [Google Scholar] [CrossRef]
- Setlow, P.; Johnson, E.A. Spores and their significance. In Food Microbiology, Fundamentals and Frontiers, 4th ed.; Doyle, M.P., Buchanan, R., Eds.; ASM Press: Washington, WA, USA, 2012; pp. 45–79. [Google Scholar]
- Bertuso, P.C.; Marangon, C.A.; Nitschke, M. Susceptibility of Vegetative Cells and Endospores of Bacillus cereus to Rhamnolipid Biosurfactants and Their Potential Application in Dairy. Microorganisms 2022, 10, 1860. [Google Scholar] [CrossRef]
- Auger, S.; Ramarao, N.; Faille, C.; Fouet, A.; Aymerich, S.; Gohar, M. Biofilm formation and cell surface properties among pathogenic and nonpathogenic strains of the Bacillus cereus group. Appl. Environ. Microbiol. 2009, 75, 6616–6618. [Google Scholar] [CrossRef] [Green Version]
- Vary, P.S.; Biedendieck, R.; Fuerch, T.; Meinhardt, F.; Rohde, M.; Deckwer, D.W.; Jahn, D. Bacillus megaterium--from simple soil bacterium to industrial protein production host. Appl. Microbiol. Biotechnol. 2007, 76, 957–967. [Google Scholar] [CrossRef]
- Mallozzi, M.; Viswanathan, V.K.; Vedantam, G. Spore-forming bacilli and clostridia in human disease. Future Microbiol. 2010, 5, 1109–1123. [Google Scholar] [CrossRef]
- Chi, Y.; Wang, D.; Jiang, M.; Chu Sh Wang, B.; Zhi, Y.; Zhou, P.; Zhang, D. Microencapsulation of Bacillus megaterium NCT-2 and its effect on remediation of secondary salinization soil. J. Microencapsul. 2020, 37, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhu, G.; Korza, G.; Sun, X.; Setlow, P.; Li, J. Engineering Bacillus subtilis as a versatile and stable platform for production of nanobodies. Appl. Environ. Microbiol. 2020, 86, e02938-19. [Google Scholar] [CrossRef] [PubMed]
- Galperin, M.Y.; Yutin, N.; Wolf, Y.I.; Vera-Álvarez, R.; Koonin, E.V. Conservation and evolution of the sporulation gene set in diverse members of the Firmicutes. J. Bacteriol. 2022, 204, e0007922. [Google Scholar] [CrossRef]
- Hutchison, E.A.; Miller, D.A.; Angert, E.R. Sporulation in bacteria: Beyond the standard model. Microbiol. Spectr. 2014, 2, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Bate, A.R.; Bonneau, R.; Eichenberger, P. Bacillus subtilis Systems Biology: Applications of- Omics Techniques to the Study of Endospore Formation. Microbiol. Spectr. 2014, 2, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolek, J.; Diallo, M.; Vasylkivska, M.; Branska, B.; Sedlar, K.; López-Contreras, A.M.; Patakova, P. Comparison of expression of key sporulation, solventogenic and acetogenic genes in C. beijerinckii NRRL B-598 and its mutant strain overexpressing spo0A. Appl Microbiol Biotechnol. 2017, 101, 8279–8291. [Google Scholar] [CrossRef]
- Al-Hinai, M.A.; Jones, S.W.; Papoutsakis, E.T. σK of Clostridium acetobutylicum is the first known sporulation-specific sigma factor with two developmentally separated roles, one early and one late in sporulation. J. Bacteriol. 2014, 196, 287–299. [Google Scholar] [CrossRef] [Green Version]
- Al-Hinai, M.A.; Jones, S.W.; Papoutsakis, E.T. The Clostridium sporulation programs: Diversity and preservation of endospore differentiation. Microbiol. Mol. Biol. Rev. 2015, 79, 19–37. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Choi, Y.L.; Sun, M.; Yu, Z. Novel roles of Bacillus thuringiensis to control plant diseases. Appl. Microbiol. Biotechnol. 2008, 80, 563–572. [Google Scholar] [CrossRef]
- Tocheva, E.I.; Ortega, D.R.; Jensen, G.J. Sporulation, bacterial cell envelopes and the origin of life. Nat. Rev. Microbiol. 2016, 14, 535–542. [Google Scholar] [CrossRef] [Green Version]
- Wolska, K.I.; Grudniak, A.M.; Kraczkiewicz-Dowjat, A. Genetic and physiological regulation of bacterial endospore development. Pol. J. Microbiol. 2007, 56, 11–17. [Google Scholar] [PubMed]
- Gupta, R.S. Origin of diderm (Gram-negative) bacteria: Antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes. Antonie Van Leeuwenhoek 2011, 100, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Tu, Z.; Dekker, H.L.; Roseboom, W.; Swarge, B.N.; Setlow, P.; Brul, S.; Kramer, G. High resolution analysis of proteome dynamics during Bacillus subtilis sporulation. Int. J. Mol. Sci. 2021, 22, 9345. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Mei, H.; Qian, H.; Tang, Q.; Liu, X.; Yu, Z.; He, J. Expression profile and regulation of spore and parasporal crystal formation-associated genes in Bacillus thuringiensis. J. Proteome Res. 2013, 12, 5487–5501. [Google Scholar] [CrossRef]
- Wang, J.; Mei, H.; Zheng, C.; Qian, H.; Cui, C.; Fu, Y.; Su, J.; Liu, Z.; Yu, Z.; He, J. The metabolic regulation of sporulation and parasporal crystal formation in Bacillus thuringiensis revealed by transcriptomics and proteomics. Mol. Cell. Proteomics. 2013, 12, 1363–1376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Vischer, N.O.E.; Wekking, D.; Boggian, A.; Setlow, P.; Brul, S. Visualization of SpoVAEa protein dynamics in dormant spores of Bacillus cereus and dynamic changes in their germinosomes and SpoVAEa during germination. Microbiol. Spectr. 2022, 10, e0066622. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Barajas-Ornelas, R.C.; Damon, J.; Ramírez, G.F.H.; Alon, A.; Brock, K.P.; Marks, D.S.; Kruse, A.C.; Rudner, D. The SpoVA membrane complex is required for dipicolinic acid import during sporulation and export during germination. Genes. Dev. 2022, 36, 634–646. [Google Scholar] [CrossRef]
- Koopman, N.; Remijas, L.; Seppen, J.; Setlow, P.; Brul, S. Mechanisms and applications of bacterial sporulation and germination in the intestine. Int. J. Mol. Sci. 2022, 23, 3405. [Google Scholar] [CrossRef]
- Ultee, E.; Ramijan, K.; Dame, R.T.; Briegel, A.; Claessen, D. Stress-induced adaptive morphogenesis in bacteria. Adv. Microb. Physiol. 2019, 74, 97–141. [Google Scholar] [CrossRef] [Green Version]
- De Maagd, R.A.; Bravo, A.; Berry, N.; Crickmore, N.; Schnepf, H.E. Structure, diversity, and evolution of proteins toxins from spore-forming entomopathogenic bacteria. Annu. Rev. Genet. 2003, 37, 409–433. [Google Scholar] [CrossRef]
- Bel, Y.; Ferré, J.; Hernández-Martínez, P. Bacillus thuringiensis toxins: Functional characterization and mechanism of action. Toxins 2020, 12, 785. [Google Scholar] [CrossRef] [PubMed]
- Jurat-Fuentes, J.L.; Crickmore, N. Specificity determinants for Cry insecticidal proteins: Insights from their mode of action. J. Invertebr. Pathol. 2017, 142, 5–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aronson, A.I.; Shai, Y. Why Bacillus thuringiensis insecticidal toxins are so effective: Unique features of their mode of action. FEMS Microbiol. Lett. 2001, 195, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bravo, A.; Gill, S.; Soberón, M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 2007, 49, 423–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bravo, A.; Likitvivatanavong, S.; Gill, S.S.; Soberón, M. Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 2011, 41, 423–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardo-López, L.; Soberón, M.; Bravo, A. Bacillus thuringiensis insecticidal three-domain Cry toxins: Mode of action, insect resistance and consequences for crop protection. FEMS Microbiol Rev. 2012, 37, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Fimlaid, K.A.; Shen, A. Diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes. Curr. Opin. Microbiol. 2015, 24, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Wilcks, A.; Jayaswal, N.; Lereclus, D.; Andrup, L. Characterization of plasmid pAW63, a second self-transmissible plasmid in Bacillus thuringiensis subsp. kurstaki HD73. Microbiology 1998, 144, 1263–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilcks, A.; Smidt, L.; Økstad, O.A.; Kolstø, A.B.; Mahillon, J.; Andrup, L. Replication mechanism and sequence analysis of the replicon of pAW63, a conjugative plasmid from Bacillus thuringiensis. J. Bacteriol. 1999, 181, 3193–3200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Auwera, G.; Andrup, L.; Mahillon, J. Conjugative plasmid pAW63 brings new insights into the genesis of the Bacillus anthracis virulence plasmid pXO2 and of the Bacillus thuringiensis plasmid pBT9727. BMC Genom. 2005, 6, 103–114. [Google Scholar] [CrossRef] [Green Version]
- Beuls, E.; Modrie, P.; Deserranno, C.; Mahillon, J. High-salt stress conditions increase the pAW63 transfer frequency in Bacillus thuringiensis. Appl. Environ. Microbiol. 2012, 78, 7128–7131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fazion, F.; Perchat, S.; Buisson, C.; Vilas-Bôas, G.; Lereclus, D. A plasmid-borne Rap-Phr system regulates sporulation of Bacillus thuringiensis in insect larvae. Environ. Microbiol. 2018, 20, 145–155. [Google Scholar] [CrossRef]
- Cardoso, P.; Fazion, F.; Perchat, S.; Buisson, C.; Vilas-Bôas, G.; Lereclus, D. RapPhr systems from plasmids pAW63 and pHT8-1 act together to regulate sporulation in the Bacillus thuringiensis serovar kurstaki HD73 strain. Appl. Environ. Microbiol. 2020, 86, e01238–e20. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.H.; Zhang, R.; Lereclus, D.; Peng, Q.; Zhang, J.; Slamti, L.; Song, F. The transcription factor CpcR determines cell fate by modulating the initiation of sporulation in Bacillus thuringiensis. Appl. Environ. Microbiol. 2022, 88, e0237421. [Google Scholar] [CrossRef]
- Gastélum, G.; de la Torre, M.; Rocha, J. Rap protein paralogs of Bacillus thuringiensis: A multifunctional and redundant regulatory repertoire for the control of collective functions. J. Bacteriol. 2019, 202, e00747-19. [Google Scholar] [CrossRef]
- Li, J.D.; Carroll, J.; Ellar, D.J. Crystal structure of insecticidal delta-endotoxin from Bacillus thurigiensis at 2.5 Ǻ resolution. Nature 1991, 352, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Bravo, A. Phylogenetic relationships of Bacillus thuringiensis δ-endotoxin family proteins and their functional domains. J. Bacteriol. 1997, 179, 2793–2801. [Google Scholar] [CrossRef] [Green Version]
- Grochulski, P.; Masson, L.; Borisova, S.; Pusztai-Carey, M.; Schwartz, J.L.; Brousseau, R.; Cygler, M. Bacillus thuringiensis Cry1A(a) insecticidal toxin: Crystal structure and channel formation. J. Mol. Biol. 1995, 254, 447–464. [Google Scholar] [CrossRef]
- Derbyshire, D.J.; Ellar, D.J.; Li, J. Crystallization of the Bacillus thuringiensis toxin Cry2Ac and its complex with the receptor ligand N-Acetylgalactosamine. Acta Cryst. Sect. 2001, 57, 1938–1944. [Google Scholar] [CrossRef] [Green Version]
- Morse, R.J.; Yamamoto, T.; Stroud, R.M. Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure 2001, 9, 409–417. [Google Scholar] [CrossRef]
- Galistsky, N.; Cody, V.; Wojtczak, D.; Ghosh, J.R.; Luft, W.P.; English, L. Structure of the insecticidal bacterial δ-endotoxin Cry3Bb1 of Bacillus thuringiensis. Acta Crystallogr. Sect. D 2001, 57, 1101–1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boonserm, P.; Davis, P.; Ellar, D.J.; Li, J. Crystal structure of the mosquito-larvacidal toxin Cry4Ba and its biological implications. J. Mol. Biol. 2005, 348, 363–382. [Google Scholar] [CrossRef] [PubMed]
- Boonserm, P.; Mo, M.; Angsuthanasombat, A.; Lescar, J. Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8 angstrom resolution. J. Bacteriol. 2006, 188, 3391–3401. [Google Scholar] [CrossRef] [Green Version]
- Garczynski, S.F.; Crim, J.W.; Adang, M.J. Identification of putative insect brush border membrane-binding molecules specific to Bacillus thuringiensis δ-endotoxin by protein blot analysis. Appl. Environ. Microbiol. 1991, 57, 2816–2820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, E.; Aimanova, K.G.; Gill, S.S.; Bravo, A.; Soberón, M. A GPI-anchored alkaline phosphatase is a functional midgut receptor of Cry1Aa toxin in Aedes aegypti larvae. Biochem. J. 2006, 394, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Flannagan, R.D.; Yu, C.G.; Mathis, J.P.; Meyer, T.E.; Shi, X.; Siqueira, H.A.A.; Siegfried, B.D. Identification, cloning and expression of Cry1Ab cadherin receptor from European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae). Insect Biochem. Mol. Biol. 2005, 35, 33–40. [Google Scholar] [CrossRef]
- Burton, S.L.; Ellar, D.J.; Li, J.; Derbyshire, D.J. N-acetylgalactosamine on the putative insect receptor aminopeptidase N is recognized by a site on the domain III lectin-like fold of a Bacillus thuringiensis insecticidal toxin. J. Mol. Biol. 1999, 287, 1011–1022. [Google Scholar] [CrossRef]
- De Maagd, R.A.; Bakker, P.L.; Masson, L.; Adang, M.J.; Sangadala, W.S.; Bosch, D. Domain III of the Bacillus thuringiensis δ-endotoxin Cry1Ac is involved in binding to Manduca sexta brush border membranes and its purifies aminopeptidases N. Mol. Microbiol. 1999, 31, 463–471. [Google Scholar] [CrossRef] [Green Version]
- Kitami, M.; Kadotani, T.; Nakanishi, K.; Atsumi, S.; Higurashi, S.; Ishizaka, T.; Watanabe, A.; Sato, R. Bacillus thuringiensis Cry toxins bound specifically to various proteins via domain III, which had a galactose-binding domain-like fold. Biosci. Biotechnol. Biochem. 2011, 75, 305–312. [Google Scholar] [CrossRef]
- Hernández-Martínez, P.; Khorramnejad, A.; Prentice, K.; Andrés-Garrido, A.; Vera-Velasco, N.M.; Smagghe, G.; Escriche, B. The independent biological activity of Bacillus thuringiensis Cry23Aa protein against Cylas puncticollis. Front. Microbiol. 2020, 11, 1734. [Google Scholar] [CrossRef]
- Jenkins, J.I.; Lee, M.K.; Valaitis, A.P.; Curtiss, A.; Dean, D.H. Bivalent sequential binding model of a Bacillus thuringiensis toxin to gypsy moth aminopeptidase N receptor. J. Biol. Chem. 2000, 275, 14423–14443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bravo, A.; Gómez, I.; Conde, J.; Munoz-Garay, C.; Sánchez, J.; Miranda, R.; Zhuang, M.; Gill, S.S.; Soberón, M. Oligomerization triggers. Binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochim. Biophys. Acta. 2004, 1667, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Juárez, N.; Muñoz-Caray, C.; Gómez, I.; Gill, S.S.; Soberón, M.; Bravo, A. The pre-pore from Bacillus thuringiensis Cry1Ab toxin is necessary to induce insect death in Manduca sexta. Peptides 2008, 29, 318–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vechon, V.; Laprade, R.; Schwartz, J.L. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: A critical review. J. Invertebr. Pathol. 2012, 111, 1–12. [Google Scholar] [CrossRef]
- Sánchez, J.; Holmgren, J. Cholera toxin structure, gene regulation and pathophysiological and immunological aspects. Cell. Mol. Life Sci. 2008, 65, 1347–1360. [Google Scholar] [CrossRef] [PubMed]
- Wernick, N.L.; Chinnapen, D.J.; Cho, J.A.; Lencer, W.I. Cholera toxin: An intracellular journey into the cytosol by way of the endoplasmic reticulum. Toxins 2010, 2, 310–325. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Yang, J.; Ji, M.; Chen, Y.; Chen, Y.; Li, H.; Wang, H. A potential delivery system based on cholera toxin: A macromolecule carrier with multiple activities. J. Control. Release 2022, 343, 551–563. [Google Scholar] [CrossRef]
- Setlow, P. I will survive: DNA protection in bacterial spores. Trends Microbiol. 2007, 15, 172–180. [Google Scholar] [CrossRef]
- Yutin, N.; Galperin, M.Y. A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. Environ. Microbiol. 2013, 15, 2631–2641. [Google Scholar] [CrossRef]
- Veering, J.W.; Stewart, E.J.; Berngruber, T.W.; Taddei, F.; Kuipens, O.; Hamoen, L.W. Bet hedging and epigenetic inheritance in bacterial cell development. Proc. Natl. Acad. Sci. USA 2008, 105, 4393–4398. [Google Scholar] [CrossRef] [Green Version]
- Tan, I.S.; Ramamurthi, K.S. Spore formation in Bacillus subtilis. Environ. Microbiol. Rep. 2014, 6, 212–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigden, D.J.; Galperin, M.Y. Sequence analysis of GerM and SpoVS, uncharacterized bacterial sporulation’ proteins with widespread phylogenetic distribution. Bioinformatics 2018, 24, 1793–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Traag, B.A.; Pugliese, A.; Eisen, J.A.; Losick, R. Gene conservation among endospore-forming bacteria reveals additional sporulation genes in Bacillus subtilis. J. Bacteriol. 2013, 195, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Dworkin, J. Protein targeting during Bacillus subtilis sporulation. Microbiol. Spectr. 2014, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Perego, M.; Hoch, J.A. Cell-cell communication regulates the effects of protein aspartate phosphatases on the phosphorelay controlling development in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 1996, 93, 1549–1553. [Google Scholar] [CrossRef] [Green Version]
- Perego, M. A peptide export-import control circuit modulating bacterial development regulates protein phosphatases of the phosphorelay. Proc. Natl. Acad. Sci. USA 1997, 94, 8612–8617. [Google Scholar] [CrossRef] [Green Version]
- Perego, M. A new family of aspartyl phosphate phosphatases targeting the sporulation transcription factor Spo0A of Bacillus subtilis. Mol. Microbiol. 2001, 42, 133–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, M.; Shao, W.; Perego, M.; Hoch, J.A. Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol. Microbiol. 2000, 38, 535–542. [Google Scholar] [CrossRef]
- Grenha, R.; Rzechorzek, N.J.; Brannigan, J.A.; de Jong, R.N.; Ab, E.; Diercks, T.; Truffault, V.; Ladds, J.C.; Fogg, M.J.; Bongiorni, C.; et al. Structural characterization of Spo0E-like protein-aspartic acid phosphatases that regulate sporulation in bacilli. J. Biol. Chem. 2006, 281, 37993–38003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grenha, R.; Slamti, L.; Nicaise, M.; Refes, Y.; Lereclus, D.; Nessler, S. Structural basis for the activation mechanism of the PlcR virulence regulator by the quorum-sensing signal peptide, P.a.p.R. Proc. Natl. Acad. Sci. USA 2013, 110, 1047–1052. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, K.; Kensuke, T.; Kobayashi, K.; Ogasawara, N.; Ogura, M. Bacillus subtilis RghR (YvaN) represses rapG and rapH, which encode inhibitors of expression of the srfA operon. Mol. Microbiol. 2006, 59, 1714–1729. [Google Scholar] [CrossRef] [PubMed]
- Díaz, A.R.; Stephenson, S.; Green, J.M.; Levdikov, V.M.; Wilkinson, A.J.; Perego, M. Functional role for a conserved aspartate in the Spo0E signature motif involved in the dephosphorylation of the Bacillus subtilis sporulation regulator Spo0A. J. Biol. Chem. 2008, 283, 2962–2972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Declerck, N.; Bouillaut, L.; Chaix, D.; Rugani, N.; Slamti, L.; Hoh, F.; Lereclus, D.; Arold, S.T. Structure of PlcR: Insights into virulence regulation and evolution of quorum sensing in Gram-positive bacteria. Proc. Natl. Acad. Sci. USA 2007, 104, 18490–18495. [Google Scholar] [CrossRef] [Green Version]
- Slamti, L.; Perchat, S.; Huillet, E.; Lereclus, D. Quorum sensing in Bacillus thuringiensis is required for completion of a full infectious cycle in the insect. Toxins 2014, 6, 2239–2255. [Google Scholar] [CrossRef]
- Ishikawa, S.; Core, L.; Perego, M. Biochemical characterization of aspartyl phosphate phosphatase interaction with a phosphorylated response regulator and its inhibition by a pentapeptide. J. Biol. Chem. 2002, 77, 20483–20489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonenshein, A.L. Control of sporulation initiation in Bacillus subtilis. Curr. Opin. Microbiol. 2000, 3, 561–566. [Google Scholar] [CrossRef]
- Burbulys, D.; Trach, K.A.; Hoch, J.A. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 1991, 64, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Molle, V.; Fujita, M.; Jensen, S.T.; Eichenberger, P.; González-Pastor, J.E.; Liu, J.S.; Losick, R. The Spo0A regulon of Bacillus subtilis. Mol. Microbiol. 2003, 50, 1683–1701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barák, I.; Youngman, P. SpoIIE mutants of Bacillus subtilis comprise two distinct phenotypic classes consistent with a dual functional role for the SpoIIE protein. J. Bacteriol. 1996, 178, 4984–4989. [Google Scholar] [CrossRef] [Green Version]
- Barák, I.; Muchová, K.; Labajová, N. Asymmetric cell division during Bacillus subtilis sporulation. Future Microbiol. 2019, 14, 353–363. [Google Scholar] [CrossRef]
- Pottathil, M.; Lazazzera, B.A. The extracellular Phr peptide-Rap phosphatase signaling circuit of Bacillus subtilis. Front. Biosci. 2003, 8, d32–d45. [Google Scholar] [CrossRef] [Green Version]
- Fagerlund, A.; Dubois, T.; Okstad, O.A.; Verplaetse, E.; Gilois, N.; Bennaceur, I.; Perchat, M.; Myriam, G.; Aymerich, S.; Kolstø, A.-B.; et al. SinR controls enterotoxin expression in Bacillus thuringiensis biofilms. PLoS ONE 2014, 9, e87532. [Google Scholar] [CrossRef]
- Dyrdahl-Young, R.; Hu, W.; DiGennaro, P. Temporal expression patterns of Pasteuria spp. sporulation genes. J. Nematol. 2019, 29, e2019–e2039. [Google Scholar] [CrossRef] [Green Version]
- Boonstra, M.; de Jong, I.G.; Scholefield, G.; Murray, H.; Kuipers, O.P.; Veering, J.W. SpoOA regulates chromosome copy number during sporulation by directly binding to the origin of replication in Bacillus subtilis. Mol. Microbiol. 2013, 87, 925–938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eichenberger, P.; Jensen, S.T.; Conlon, E.M.; van Ooij, C.; Silvaggi, J.; González-Pastor, J.E.; Fujita, M.; Ben-Yehuda, S.; Stragier, P.; Liu, J.S.; et al. The Sigma E regulon and the identification of additional sporulation genes in Bacillus subtilis. J. Mol. Biol. 2003, 327, 945–972. [Google Scholar] [CrossRef] [PubMed]
- McKenney, P.T.; Driks, A.; Eichenberger, P. The Bacillus subtilis endospore: Assembly and functions of the multilayered coat. Nat. Rev. Microbiol. 2013, 11, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Higgins, D.; Dworkin, J. Recent progress in Bacillus subtilis sporulation. FEMS Microbiol. Rev. 2012, 36, 131–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez, A.R.; Abanes-De Mello, A.; Pogliano, K. Suppression of engulfment defects in Bacillus subtilis by elevated expression of the motility regulon. J. Bacteriol. 2006, 188, 1159–1164. [Google Scholar] [CrossRef] [Green Version]
- Plomp, M.; Carroll, A.M.; Setlow, P.; Malkin, A.J. Architecture and assembly of the Bacillus subtilis spore coat. PLoS ONE 2014, 9, e108560. [Google Scholar] [CrossRef] [Green Version]
- Daniel, R.A.; Drake, S.; Buchanan, C.E.; Scholle, R.; Errington, J. The Bacillus subtilis spoVD gene encodes a mother-cell-specific Penicillin-binding protein required for spore morphogenesis. J. Mol. Biol. 1994, 235, 209–220. [Google Scholar] [CrossRef]
- Resnekov, O.; Driks, A.; Losick, R. Identification and characterization of sporulation gene spoVS from Bacillus subtilis. J. Bacteriol. 1995, 177, 5628–5635. [Google Scholar] [CrossRef] [Green Version]
- Matsuno, K.; Sonenshein, A.L. Role of SpoVG in asymmetric septation in Bacillus subtilis. J. Bacteriol. 1999, 181, 3392–3401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radford, D.S.; Wan, Q.; Tzokov, S.; Moir, A.; Bullough, P.A. Molecular tiling on the surface of a bacterial spore- the exosporium of the Bacillus anthracis/cereus/thuringiensis group. Mol Microbiol. 2017, 104, 539–552. [Google Scholar] [CrossRef] [Green Version]
- Henriques, A.O.; Morán Jr, C.H.P. Structure, assembly, and function of the spore surface layers. Annu. Rev. Microbiol. 2007, 61, 555–588. [Google Scholar] [CrossRef]
- Chen, X.; Gao, T.; Peng, Q.; Zhang, J.; Chai, Y.; Song, F. Novel cell wall hydrolase CwlC from Bacillus thuringiensis is essential for mother cell lysis. Appl. Environ. Microbiol. 2018, 84, e02640-17. [Google Scholar] [CrossRef] [Green Version]
- Plomp, M.; Leighton, J.T.; Wheeler, K.E.; Malkin, A.J. Architecture and high-resolution structure of Bacillus thuringiensis and Bacillus cereus spore coat surfaces. Langmuir 2005, 21, 7892–7898. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Wu, J.; Chen, X.; Qiu, L.; Zhang, J.; Tian, H.; Song, F. Disruption of two-component system LytSR affects forespore engulfment in Bacillus thuringiensis. Front. Cell. Infect. Microbiol. 2017, 7, 468. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, R.; Hou, S.; HLiu, H.; Wang, J.; Yu, Q.; Peng, O.; Song, F. Identification and functional characterization of two homologous SpoVS proteins involved in sporulation of Bacillus thuringiensis. Microbiol. Spectr. 2021, 9, e0088121. [Google Scholar] [CrossRef]
- Dubois, T.; Lemy, C.; Perchat, S.; Lereclus, D. The signaling peptide NprX controlling sporulation and necrotrophism is imported into Bacillus thuringiensis by two oligopeptide permease systems. Mol Microbiol. 2019, 112, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yu, Z.; Liu, L.; Chou, S.H.-H.; Wang, J.; He, J. 6S-1 RNA contributes to sporulation and parasporal crystal formation in Bacillus thuringiensis. Front. Microbiol. 2020, 11, 1–10. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Byrd, B.; Camilleri, E.; Korza, G.; Craft, D.L.; Green, J.; Rocha, G.M.; Mok, W.W.K.; Cairmano, M.J.; Setlow, P. Levels and characteristics of mRNAs in Spores of Firmicute Species. J. Bacteriol. 2021, 203, e0001721. [Google Scholar] [CrossRef]
- Riley, E.P.; López-Garrido, J.; Sugie, J.; Liu, R.B.; Pogliano, K. Metabolic differentiation and intercellular nurturing underpin bacterial endospore formation. Sci. Adv. 2021, 7, eabd6385. [Google Scholar] [CrossRef]
- Korza, G.; Camilleri, E.; Green, J.; Robinson, J.; Nagler, K.; Moeller, R.; Caimano, M.J.; Setlow, P. Analysis of mRNAs in spores of Bacillus subtilis. J. Bacteriol. 2019, 201, e00007-19. [Google Scholar] [CrossRef] [Green Version]
- Swarge, B.; Abhyankar, W.; Jonker, M.; Hoefsloot, H.; Kramer, G.; Setlow, P.; Brul, S.; de Koning, L.J. Integrative analysis of proteome and transcriptome dynamics during Bacillus subtilis spore revival. mSphere 2020, 5, e00463-20. [Google Scholar] [CrossRef] [PubMed]
- Setlow, P.; Christie, G. Bacterial spore mRNA: What’s up with that? Front. Microbiol. 2020, 11, 596092. [Google Scholar] [CrossRef] [PubMed]
- Jeng, Y.H.; Doi, R. Messenger ribonucleic acid of dormant spores of Bacillus subtilis. J. Bacteriol. 1974, 119, 514–521. [Google Scholar] [CrossRef] [Green Version]
- Segev, E.; Smith, Y.; Ben-Yehuda, S. RNA dynamics in aging bacterial spores. Cell 2012, 148, 139–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camp, A.H.; Losick, R. A novel pathway of intercellular signalling in Bacillus subtilis involves a protein with similarity to a component of type III secretion channels. Mol. Microbiol. 2008, 69, 402–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camp, A.H.; Losick, R. A feeding tube model for activation of a cell specific transcription factor during sporulation in Bacillus subtilis. Genes. Dev. 2009, 23, 1014–1024. [Google Scholar] [CrossRef] [Green Version]
- Crawshaw, A.D.; Serrano, M.; Stanley, W.A.; Henriques, A.O.; Salgado, P.S. A mother cell-to-forespore channel: Current understanding and future challenges. FEMS Microbiol. Lett. 2014, 358, 129–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meisner, J.; Wang, X.; Serrano, M.; Henriques, A.O.; Moran, C.P., Jr. A channel connecting the mother cell and forespore during bacterial endospore formation. Proc. Natl. Acad. Sci. USA 2008, 105, 15100–15105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.P.; Setlow, B.; Setlow, P. Levels of small molecules and enzymes in the mother cell compartment and the forespore of sporulatin Bacillus megaterium. J. Bacteriol. 1977, 130, 1130–1138. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Manton, J.D.; Mustafa, A.R.; Gupta, M.; Ayuso-García, A.; Rees, E.J.; Graham, C. Proteins encoded by the gerP operon are localized to the inner coat in Bacillus cereus spores and are dependent on GerPA and SafA for assembly. Appl. Environ. Microbiol. 2018, 84, e00760-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Francesco, M.; Jacobs, J.Z.; Nunes, F.; Serrano, M.; McKenney, P.T.; Chua, M.H.; Henriques, A.O.; Eichenberger, P. Physical interaction between coat morphogenetic proteins SpoVID and CotE is necessary for spore encasement in Bacillus subtilis. J. Bacteriol. 2012, 194, 4941–4950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, G.C. The exosporium layer of bacterial spores: A connection to the environment and the infected host. Microbiol. Mol. Biol. Rev. 2015, 79, 437–457. [Google Scholar] [CrossRef] [Green Version]
- Takamatsu, H.; Watabe, K. Assembly and genetics of spore protective structures. Cell. Mol. Life Sci. 2002, 59, 434–444. [Google Scholar] [CrossRef] [PubMed]
- Popham, D.L.; Bernhards, C.B. Spore peptidoglycan. Microbiol. Spectr. 2015, 3, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Abanes-De Mello, A.; Sun, Y.-I.; Aung, S.; Pogliano, K. A cytoskeleton-like role for the bacterial cell wall during engulfment of the Bacillus subtilis fore-spore. Genes. Dev. 2002, 16, 3253–3264. [Google Scholar] [CrossRef] [Green Version]
- Verplaetse, E.; Slamti, L.; Gohar, M.; Lereclus, D. Cell differentiation in a Bacillus thuringiensis population during planktonic growth, biofilm formation, and host infection. MBio 2015, 6, e00138-15. [Google Scholar] [CrossRef] [Green Version]
- Verplaetse, E.; Slamti, L.; Gohar, M.; Lereclus, D. Two distinct pathways lead Bacillus thuringiensis to commit to sporulation in biofilm. Res. Microbiol. 2016, 168, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Han, G.; Fan, X.; Lv, J.; Zhang, X.; Peng, Q.; Zhang, J.; Xu, J.; Song, F. Characteristics of the sigK deletion mutant from Bacillus thuringiensis var. israelensis strain Bt-59. Curr. Microbiol. 2020, 77, 3422–3429. [Google Scholar] [CrossRef]
- Bechtel, D.B.; Bulla, L.A. Electron microscope study of sporulation and parasporal crystal formation in Bacillus thuringiensis. J. Bacteriol. 1976, 127, 1472–1481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bravo, A.; Agaisse, H.; Salamitou, S.; Lereclus, D. Analysis of cryIAa expression in sigE and sigK mutants of Bacillus thuringiensis. Mol. Gen. Genet. 1996, 250, 734–741. [Google Scholar] [CrossRef] [PubMed]
- Poncet, S.; Dervyn, E.; Klier, A.; Rapoport, G. Spo0A represses transcription of the cry toxin genes in Bacillus thuringiensis. Microbiology 1997, 143, 2743–2751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, C.; Peng, Q.; Song, F.; Lereclus, D. Regulation of cry gene expression in Bacillus thuringiensis. Toxins 2014, 6, 2194–2209. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Slamti, L.; Tong, L.; Verplaetse, E.; Ma, L.; Lemy, C.; Peng, Q.; Guo, S.; Zhang, J.; Song, F.; et al. The stationary phase regulator CpcR activates cry gene expression in non-sporulating cells of Bacillus thuringiensis. Mol. Microbiol. 2020, 113, 740–754. [Google Scholar] [CrossRef]
- Huang, L.; Xu, L.; Han, G.; Crickmore, N.; Song, F.; Xu, J. Characterization of CwlC, an autolysin, and its role in mother cell lysis of Bacillus thuringiensis subsp. israelensis. Lett. Appl. Microbiol. 2022, 74, 92–102. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, X.; Gao, T.; Cui, T.; Peng, Q.; Zhang, J.; Song, F. Effect of the spoIIID mutation on mother cell lysis in Bacillus thuringiensis. Appl. Microbiol. Biotechnol. 2019, 103, 4103–4112. [Google Scholar] [CrossRef] [PubMed]
- Kant, S.; Kapoor, R.; Banerjee, N. Identification of a catabolite-responsive element necessary for regulation of the cry4A gene of Bacillus thuringiensis subsp. israelensis. J. Bacteriol. 2009, 191, 4687–4692. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Qiu, L.; Peng, Q.; Lereclus, D.; Zhang, J.; Song, F.; Huang, D. Identification of the promoter in the intergenic region between orf1 and cry8Ea1 controlled by Sigma H factor. Appl. Environ. Microbiol. 2012, 78, 4164–4168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komano, T.; Takabe, S.; Sakai, H. Transcription of the insecticidal crystal protein genes of Bacillus thuringiensis. Biotechnol. Annu. Rev. 2000, 5, 131–154. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, P.; Peng, Q.; Rong, R.; Liu, C.; Lereclus, D.; Zhang, J.; Song, F.; Huang, D. Weak transcription of the cry1Ac gene in nonsporulating Bacillus thuringiensis cells. Appl. Environ. Microbiol. 2012, 78, 6466–6474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Celandroni, F.; Salvetti, S.; Senesi, S.; Ghelardi, E. Bacillus thuringiensis membrane-damaging toxins acting on mammalian cells. FEMS Microbiol. Lett. 2014, 361, 95–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, C.; Nickerson, K.W. Bacillus thuringiensis HD-73 spores have surface-localized Cry1Ac toxin: Physiological and pathogenic consequences. Appl. Environ. Microbiol. 1996, 6, 3722–3726. [Google Scholar] [CrossRef] [Green Version]
- Berry, C.; O’Neil, S.; Ben-Dov, E.; Jones, A.F.; Murphy, L.; Quail, M.A.; Holden, M.T.G.; Harris, D.; Zaritsky, A.; Parkhill, J. Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol. 2002, 68, 5082–5095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, C.; Jones, G.W.; Chlamers, T.; Berry, C. Transcriptional analysis of the toxin-coding plasmid pBtoxis from Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol. 2006, 72, 1771–1776. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Zhu, Y.; Ju, S.H.; Zhang, R.; Yu, Z.; Sun, M. Promoters of crystal protein genes do not control crystal formation inside exosporium of Bacillus thuringiensis sp. finitimus strain YBT-020. FEMS Microbiol Lett. 2009, 300, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Mendoza, M.; Bideshi, D.K.; Federici, B.A. A 54-kilodalton protein encoded by pBtoxis is required for parasporal body structural integrity in Bacillus thuringiensis subsp. israelensis. J. Bacteriol. 2012, 194, 1562–1571. [Google Scholar] [CrossRef] [Green Version]
- Sawaya, M.R.; Cascio, D.; Gingery, M.; Rodriguez, J.; Lukasz, G.; Colletier, J.P.; Messerschmidth, M.M.; Boutet, S.; Koglin, J.E.; Willimas, G.J.; et al. Protein crystal structure obtained at 2.9 Å resolution from injecting bacterial cells into an X-ray free-electron laser beam. Proc. Natl. Acad. Sci. USA 2014, 111, 12769–12774. [Google Scholar] [CrossRef] [Green Version]
- Moar, W.J.; Trumble, J.T.; Federici, B.A. Comparative toxicity of spores and crystals from the NRD-12 and HD-1 strains of Bacillus thuringiensis subsp. kurstaki to neonate beet armyworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 1989, 82, 1593–1603. [Google Scholar] [CrossRef]
- Ibarra, J.E.; Federici, B.A. Parasporal bodies of Bacillus thuringiensis subsp. morrisoni (PG-14) and Bacillus thuringiensis subsp. israelensis are similar in protein composition and toxicity. FEMS Microbiol. Lett. 1986, 34, 79–84. [Google Scholar]
- Padua, L.; Federici, B.A. Development of mutants of the mosquitocidal bacterium Bacillus thuringiensis subsp. morrisoni PG-14 toxic to lepidopterous and dipterous insects. FEMS Microbiol. Lett. 1990, 54, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Lereclus, D.; Arantes, O.; Chaufaux, J.; Lecadet, M. Transformation and expression of a cloned delta-endotoxin gene in Bacillus thuringiensis. FEMS Microbiol. Lett. 1989, 51, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Monro, R.E. Protein turnover and the formation of protein inclusions during sporulation of Bacillus thuringiensis. Biochem. J. 1961, 81, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Chakrabarti, K.; Chattopadhyay, D. Cloning of feather-degrading minor extracellular protease from Bacillus cereus DCUW: Dissection of the structural domains. Microbiology 2009, 155, 2049–2057. [Google Scholar] [CrossRef] [Green Version]
- Nisnevitch, M.; Sigawi, S.; Cahan, R.; Nitzan, Y. Isolation, characterization and biological role of camelysin from Bacillus thuringiensis subsp. israelensis. Curr. Microbiol. 2010, 61, 76–183. [Google Scholar] [CrossRef]
- Frees, D.; Savijoki, K.; Varmanen, P.; Ingmer, H. Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. Mol. Microbiol. 2007, 63, 1285–1295. [Google Scholar] [CrossRef]
- Moliere, N.; Turgay, K. Chaperone-protease systems in regulation and protein quality control in Bacillus subtilis. Res. Microbiol. 2009, 160, 637–644. [Google Scholar] [CrossRef]
- Chen, D.; Xu, D.; Li, M.; He, J.; Gong, Y.; Wu, D.; Sun, M.; Yu, Z. Proteomic analysis of Bacillus thuringiensis phaC mutant BMB171/PHB(-1) reveals that the PHB synthetic pathway warrants normal carbon metabolism. J. Proteom. 2012, 75, 5176–5188. [Google Scholar] [CrossRef]
- Navarro, A.K.; Farrera, R.R.; Lu, P.R.; Prez-Guevara, F. Relationship between poly-beta-hydroxybutyrate production and deltaendotoxin for Bacillus thuringiensis var. kurstaki. Biotechnol. Lett. 2006, 28, 641–644. [Google Scholar] [CrossRef]
- Wu, D.; He, J.; Gong, Y.; Chen, D.; Zhu, X.; Qiu, N.; Sun, M.; Li, M.; Yu, Z. Proteomic analysis reveals the strategies of Bacillus thuringiensis YBT-1520 for survival under long-term heat stress. Proteomics 2011, 11, 2580–2591. [Google Scholar] [CrossRef]
- Fujita, Y.; Fujita, T. The gluconate operon gnt of Bacillus subtilis encodes its own transcriptional negative regulator. Proc. Natl. Acad. Sci. USA 1987, 84, 4524–4528. [Google Scholar] [CrossRef] [Green Version]
- Nickerson, K.W.; St Julian, G.; Bulla, L.A., Jr. Physiology of spore-forming bacteria associated with insects: Radiorespirometric survey of carbohydrate metabolism in the 12 serotypes of Bacillus thuringiensis. Appl. Microbiol. 1974, 28, 129–132. [Google Scholar] [CrossRef]
- Hsieh, Y.C.; Wu, Y.J.; Chiang, T.Y.; Kuo, C.Y.; Shrestha, K.L.; Chao, C.F.; Huang, Y.C.; Chuankhayan, P.; Wu, W.G.; Li, Y.K.; et al. Crystal structures of Bacillus cereus NCTU2 chitinase complexes with chitooligomers reveal novel substrate binding for catalysis: A chitinase without chitin binding and insertion domains. J. Biol. Chem. 2010, 285, 31603–31615. [Google Scholar] [CrossRef] [Green Version]
- Iakiviak, M.; Mackie, R.I.; Cann, I.K. Functional analyses of multiple lichenin-degrading enzymes from the rumen bacterium Ruminococcus albus 8. Appl. Environ. Microbiol. 2011, 77, 7541–7550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magge, A.; Granger, A.C.; Wahome, P.G.; Setlow, B.; Vepachedu, V.R.; Loshon, C.A.; Peng, L.; Chen, D.; Li, Y.Q.; Setlow, P. Role of dipicolinic acid in the germination, stability, and viability of spores of Bacillus subtilis. J. Bacteriol. 2008, 190, 4798–4807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tseng, C.L.; Chen, H.J.; Shaw, G.C. Identification and characterization of the Bacillus thuringiensis phaZ gene, encoding new intracellular poly-3-hydroxybutyrate depolymerase. J. Bacteriol. 2006, 188, 7592–7599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ireton KJin, S.; Grossman, A.D.; Sonenshein, A.L. Krebs cycle function is required for activation of the Spo0A transcription factorin Bacillus subtilis. Proc. Natl. Acad. Sci. USA 1995, 92, 2845–2849. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Sonenshein, A.L. Identification of two distinct Bacillus subtilis citrate synthase genes. J. Bacteriol. 1994, 176, 4669–4679. [Google Scholar] [CrossRef] [Green Version]
- Aronson, J.N.; Borris, D.P.; Doerner, J.F.; Akers, E. Gammaaminobutyric acid pathway and modified tricarboxylic acid cycle activity during growth and sporulation of Bacillus thuringiensis. Appl. Microbiol. 1975, 30, 489–492. [Google Scholar] [CrossRef]
- Lohman, J.R.; Olson, A.C.; Remington, S.J. Atomic resolution structures of Escherichia coli and Bacillus anthracis malate synthase A: Comparison with isoform G and implications for structure-based drug discovery. Protein Sci. 2008, 17, 1935–1945. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Peng, Q.; Song, F.; Jiang, Y.; Sun, C.; Zhang, J.; Huang, D. Structure and regulation of the gab gene cluster, involved in the gamma-aminobutyric acid shunt, are controlled by a sigma54 factor in Bacillus thuringiensis. J. Bacteriol. 2010, 192, 346–355. [Google Scholar] [CrossRef] [Green Version]
- Park, K.B.; Oh, S.H. Enhancement of gamma-aminobutyric acid production in Chungkukjang by applying a Bacillus subtilis strainexpressing glutamate decarboxylase from Lactobacillus brevis. Biotechnol.Lett 2006, 28, 1459–1463. [Google Scholar] [CrossRef]
- Lang, D.R.; Felix, J.; Lundgren, D.G. Development of a membrane-bound respiratory system prior to and during sporulation in Bacillus cereus and its relationship to membrane structure. J. Bacteriol. 1972, 110, 968–977. [Google Scholar] [CrossRef] [Green Version]
- Munro, A.W.; Girvan, H.M.; McLean, K.J. Cytochrome P450–redox partner fusion enzymes. Biochim. Biophys. Acta. 2007, 1770, 345–359. [Google Scholar] [CrossRef]
- Jensen, P.R.; Michelsen, O. Carbon and energy metabolism of atp mutants of Escherichia coli. J. Bacteriol. 1992, 174, 7635–7641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santana, M.; Ionescu, M.S.; Vertes, A.; Longin, R.; Kunst, F.; Danchin, A.; Glaser, P. Bacillus subtilis F0F1 ATPase: DNA sequence of the atp operon and characterization of atp mutants. J. Bacteriol. 1994, 176, 6802–6811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paidhungat, M.; Setlow, P. Spore germination and outgrowth. In Bacillus subtilis and Its Relatives: From Genes to Cells; Onenshein, A.L., Hoch, J.A., Losick, R., Eds.; American Society for Microbiology: Washington, WA, USA, 2002; pp. 537–548. [Google Scholar]
- Paredes-Sabja, D.; Setlow, P.; Sarker, M.R. Germination of spores of Bacillales and Clostridiales species: Mechanisms and proteins involved. Trends Microbiol. 2011, 19, 85–94. [Google Scholar] [CrossRef]
- Behravan, J.; Chirakkal, H.; Masson, A.; Moir, A. Mutations in the gerP locus of Bacillus subtilis and Bacillus cereus affect access of germinants to their targets in spores. J. Bacteriol. 2000, 182, 1987–1994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moir, A.; Cooper, G. Spore germination. Microbiol. Spectr. 2015, 3, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Setlow, P.; Wang SHLi, Y.Q. Germination of spores of the orders Bacillales and Clostridiales. Annu. Rev. Microbiol. 2017, 71, 459–477. [Google Scholar] [CrossRef] [PubMed]
- Kaieda, S.; Setlow, B.; Setlow, P.; Halle, B. Mobility of core water in Bacillus subtilis spores by 2H NMR. Biophys. J. 2013, 105, 2016–2123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, A.N.; McBride, S.M. Initiation of sporulation in Clostridium difficile: A twist on the classic model. FEMS Microbiol. Lett. 2014, 358, 110–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christie, G.; Setlow, P. Bacillus spore germination: Knowns, unknowns and what we need to learn. Cell. Signal. 2020, 74, 109729. [Google Scholar] [CrossRef]
- Setlow, P. Spore germination. Curr. Opin. Microbiol. 2003, 6, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Cortezzo, D.E.; Setlow, B.; Setlow, P. Analysis of the action of compounds that inhibit the germination of spores of Bacillus species. J. Appl. Microbiol. 2004, 96, 725–741. [Google Scholar] [CrossRef]
- Chen, D.; Huang, S.S.; Li, Y.Q. Real-time detection of kinetic germination and heterogeneity of single Bacillus spores by laser tweezers Raman spectroscopy. Anal. Chem. 2006, 78, 6936–6941. [Google Scholar] [CrossRef]
- Shah, I.M.; Laaberki, M.H.; Popham, D.L.; Dworkin, J. A eukaryotic Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 2008, 135, 486–496. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Peralta, A.; Zhang, P.; Li, Y.; Setlow, P. Effects of sporulation conditions on the germination and germination protein levels of Bacillus subtilis spores. Appl. Environ. Microbiol. 2012, 78, 2689–2697. [Google Scholar] [CrossRef] [Green Version]
- Setlow, P. When the sleepers wake: The germination of spores of Bacillus species. J. Appl. Microbiol. 2013, 115, 1251–1268. [Google Scholar] [CrossRef]
- Setlow, P. Germination of spores of Bacillus species: What we know and do not know. J. Bacteriol. 2014, 196, 1297–1305. [Google Scholar] [CrossRef] [Green Version]
- Knudsen, S.M.; Cermak, N.; Delgado, F.F.; Setlow, B.; Setlow, P.; Manalis, S.R. Water and small-molecule permeation of dormant Bacillus subtilis spores. J. Bacteriol. 2016, 198, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Hudson, K.D.; Corfe, B.M.; Kemp, E.H.; Coote, P.J.; Moir, A. Localization of GerAA and GerAC germination proteins in the Bacillus subtilis spore. J. Bacteriol. 2001, 183, 4317–4322. [Google Scholar] [CrossRef] [Green Version]
- Wang Yi, X.; Li, Y.Q.; Setlow, P. Germination of individual Bacillus subtilis spores with alterations in the GerD and SpoVA proteins, which are important in spore germination. J. Bacteriol. 2011, 193, 2301–2311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffiths, K.K.; Zhang, J.; Cowan, A.E.; Yu, J.; Setlow, P. Germination proteins in the inner membrane of dormant Bacillus subtilis spores colocalize in a discrete cluster. Mol. Microbiol. 2011, 81, 1061–1077. [Google Scholar] [CrossRef]
- Cooper, G.R.; Moir, A. Amino acid residues in the GerAB protein important in the function and assembly of the alanine spore germination receptor of Bacillus subtilis 168. J. Bacteriol. 2011, 193, 2261–2267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luu, H.; Akoachere, M.; Patra, M.; Abel-Santos, E. Cooperativity and interference of germination pathways in Bacillus anthracis spores. J. Bacteriol. 2011, 193, 4192–4198. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Peralta, A.; Gupta, S.; Butzin, X.Y.; Setlow, B.; Korza, G.; Leyva-Vázquez, M.-A.; Christie, G.; Setlow, P. Identification of new proteins that modulate the germination of spores of Bacillus species. J. Bacteriol. 2013, 95, 3009–3021. [Google Scholar] [CrossRef] [Green Version]
- Korza, G.; Setlow, P. Topology and accessibility of germination proteins in the Bacillus subtilis spore inner membrane. J. Bacteriol. 2013, 195, 1484–1491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowan, A.E.; Olivastro, E.M.; Koppel, D.E.; Loshon, C.A.; Setlow, B.; Setlow, P. Lipids in the inner membrane of dormant spores of Bacillus species are immobile. Proc. Natl. Acad. Sci. USA 2004, 101, 7733–7738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paidhungat, M.; Ragkousi, K.; Setlow, P. Genetic requirements for induction of germination of spores of Bacillus subtilis by Ca+dipicolinate. J. Bacteriol. 2001, 183, 4886–4893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swerdlow, B.M.; Setlow, B.; Setlow, P. Levels of H+ and other monovalent cations in dormant and germinated spores of Bacillus megaterium. J. Bacteriol. 1981, 148, 20–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, L.; Chen, D.; Setlow, P.; Li, Y.Q. Elastic and inelastic light scattering from single bacterial spores in an optical trap allows the monitoring of spore germination dynamics. Anal. Chem. 2009, 81, 4035–4042. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.S.; Chen, D.; Pelczar, P.L.; Vepachedu, V.R.; Setlow, P.; Li, Y.Q. Levels of Ca-dipicolinic acid in individual Bacillus spores determined using microfluidic Raman tweezers. J. Bacteriol. 2007, 189, 4681–4687. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Setlow, P.; Li, Y.Q. Slow leakage of Ca-dipicolinic acid from individual Bacillus spores during initiation of spore germination. J. Bacteriol. 2015, 197, 1095–1103. [Google Scholar] [CrossRef] [Green Version]
- Clements, M.O.; Moir, A. Role of the gerI operon of Bacillus cereus 569 in the response of spores to germinants. J. Bacteriol. 1998, 180, 6729–6735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aspholm, M.; Borch-Pedersen, K.; O’Sullivan, K.; Fiellheim, S.; Bj(ornson, A.I.H.; Granum, P.E.; Lindbäck, T. Importance of individual germination receptor subunits in the cooperative function between GerA and Ynd. J. Bacteriol. 2019, 201, e00451-19. [Google Scholar] [CrossRef]
- Mongkolthanaruk, W.; Cooper, G.R.; Mawer, J.S.; Allan, R.N.; Moir, A. Effect of amino acid substitutions in the GerAA protein on the function of the alanine-responsive germinant receptor of Bacillus subtilis spores. J. Bacteriol. 2011, 193, 2268–2275. [Google Scholar] [CrossRef] [Green Version]
- Ragkousi, K.; Eichenberger, P.; Van Ooij, C.; Setlow, P. Identification of a new gene essential for germination of Bacillus subtilis spores with Ca2+-dipicolinate. J. Bacteriol. 2003, 185, 2315–2329. [Google Scholar] [CrossRef] [Green Version]
- Paidhungar, M.; Setlow, P. Isolation and characterization of mutations in Bacillus subtilis that allow spore germination in the novel germinant D-alanine. J. Bacteriol. 1999, 181, 3341–3350. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Francke, C.; Abee, T.; Wells-Bennik, M.H. Clostridial spore germination versus bacilli: Genome mining and current insights. Food Microbiol. 2011, 28, 266–274. [Google Scholar] [CrossRef]
- Gai, Y.; Liu, G.; Tan, H. Identification and characterization of a germination operon from Bacillus thuringiensis. Antonie Van Leeuwenhoek 2006, 89, 251–259. [Google Scholar]
- Li, Y.; Butzin, X.Y.; Davis, A.; Setlow, B.; Korza, G.; Ustok, F.I.; Christie, G.; Setlow, P.; Hao, B. Activity and regulation of various forms of CwlJ, SleB, and YpeB proteins in degrading cortex peptidoglycan of spores of Bacillus species in vitro and during spore germination. J. Bacteriol. 2013, 195, 2530–2540. [Google Scholar] [PubMed] [Green Version]
- Yang, J.; Peng, Q.; Chen, Z.; Deng, C.H.; Shu, C.H.; Zhang, J.; Huang, D.; Song, F. Transcriptional Regulation and Characteristics of a Novel N-Acetylmuramoyl-L-Alanine Amidase Gene Involved in Bacillus thuringiensis Mother Cell Lysis. J Bacteriol. 2013, 195, 2887–2897. [Google Scholar] [PubMed] [Green Version]
- Segev, E.; Rosenberg, A.; Mamou, G.; Sinai, L.; Ben-Yehuda, S. Molecular kinetics of reviving bacterial spores. J. Bacteriol. 2013, 195, 1875–1882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heffron, J.D.; Lambert, E.A.; Sherry Nm Popham, D.L. Contributions of four cortex lytic enzymes to germination of Bacillus anthracis spores. J. Bacteriol. 2010, 192, 763–770. [Google Scholar] [CrossRef] [Green Version]
- Yi, X.; Setlow, P. Studies of the commitment step in the germination of spores of Bacillus species. J. Bacteriol. 2010, 192, 3424–3433. [Google Scholar] [CrossRef] [Green Version]
- Yi, X.; Liu, J.; Faeder, J.R.; Setlow, P. Synergism between different germinant receptors in the germination of Bacillus subtilis spores. J. Bacteriol. 2011, 193, 4664–4671. [Google Scholar] [CrossRef] [Green Version]
- Stewart, G.S.A.; Johnstone, K.B.; Hagelberg, F.; Ellar, D.J. Commitment of bacterial spores to germinate: A measure of the trigger reaction. Biochem. J. 1981, 198, 101–106. [Google Scholar] [CrossRef]
- Zhang, J.; Griffiths, K.K.; Cowan, A.; Setlow, P.; Yu, J. Expression level of Bacillus subtilis germinant receptors determines the average rate but not the heterogeneity of spore germination. J Bacteriol 2013, 195, 1735–1740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blinker, S.; Vreede, J.; Setlow, P.; Brul, S. Predicting the structure and dynamics of membrane protein GerAB from Bacillus subtilis. Int. J. Mol. Sci. 2021, 22, 3793. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Gai, Y.; Liang, L.; Liu, G.; Tan, H. A gene encoding alanine racemase is involved in spore germination in Bacillus thuringiensis. Arch. Microbiol. 2007, 187, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Yang, H.; Liu, G.; Tan, H. Identification and characterization of a polysaccharide deacetylase gene from Bacillus thuringiensis. Can. J. Microbiol. 2006, 52, 935–941. [Google Scholar] [CrossRef]
- Liang, L.; Cai, Y.; Hu, K.; Liu, G. The gerA operon is required for spore germination in Bacillus thuringiensis. Wei Sheng Wu Xue Bao 2008, 48, 281–286. [Google Scholar] [PubMed]
- Moir, A. How do spores germinate? J. Appl. Microbiol. 2006, 101, 526–530. [Google Scholar] [CrossRef]
- Setlow, B.; Peng, L.; Loshon, C.A.; Li, Y.; Christie, G.; Setlow, P. Characterization of the germination of Bacillus megaterium spores lacking enzymes that degrade the spore cortex. J. Appl. Microbiol. 2009, 107, 318–328. [Google Scholar]
- Tehri, N.; Kumar, N.; Raghu, H.V.; Thakur, G.; Kumar-Sharma, K. Role of stereospecific nature of germinants in Bacillus megaterium spores germination. J. Biotech. 2017, 7, 259. [Google Scholar] [CrossRef]
- Setlow, P.; Christie, G. What’s new and notable in bacterial spore killing! World J. Microbiol. Biotechnol. 2021, 37, 144. [Google Scholar] [CrossRef]
- Andryukov, B.G.; Karpenko, A.A.; Lyapun, I.N. Learning from nature: Bacterial spores as a target for current technologies in medicine. Sovrem. Tekhnologii Med. 2021, 12, 105–122. [Google Scholar] [CrossRef]
- Moreno-Fierros, L.; García, N.; Gutiérrez, R.; López-Revilla, R.; Vázquez-Padrón, R.I. Intranasal, rectal and intraperitoneal immunization with protoxin Cry1Ac from Bacillus thurengiensis induces compartmentalized serum, intestinal, vaginal and pulmonary immune responses in Balb/c mice. Microbes Infect. 2000, 2, 885–890. [Google Scholar] [CrossRef] [PubMed]
- Favela-Hernández, J.M.; Balderas, R.I.; Guerrero, G.G. The potential of a commercial product based on Bacillus thuringiensis Cry1A-Cry2A as a immunogen and adjuvant. Madridge J. Immunol. 2018, 2, 58–64. [Google Scholar] [CrossRef]
- Guerrero, G.G.; Tuero, I. Adjuvant compounds: Friends in vaccine formulations against infectious diseases. Hum. Vaccines Immunother. 2021, 17, 3539–3550. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Yu, Q.; Song, F. Expression of cry genes in Bacillus thuringiensis biotechnology. Appl. Microbiol. Biotechnol. 2019, 103, 1617–1626. [Google Scholar] [CrossRef] [PubMed]
- Ibuki, T.; Iwasawa, S.; Lian, A.A.; Lye, P.Y.; Maruta, R.; Asano, S.I.; Kotani, E.; Mori, H. Development of a cypovirus proteins microcrystal-encapsulated Bacillus thuringiensis UV-tolerant and mosqutocidal delta-endotoxin. Biol. Open. 2022, 11, bio059363. [Google Scholar] [CrossRef]
- Wang, F.F.; Qu, S.X.; Lin, J.S.H.; Li, H.P.; Hou, L.J.; Jiang, N.; Luo, X.; Ma, L. Identification of Cyt2Ba from a new strain of Bacillus thuringiensis and its toxicity in Bradysia difformis. Curr. Microbiol. 2020, 77, 2859–2866. [Google Scholar]
- El-Khoury, N.; Majad, R.; Perchat, S.; Kallasay, M.; Lereclus, D.; Gohar, M. Spatio-temporal evolution of sporulation in Bacillus thuringiensis biofilm. Front. Microb. 2016, 7, 1222. [Google Scholar] [CrossRef] [Green Version]
- Jouzani, G.S.; Valijanina, E.; Sharafi, R. Bacillus thuringiensis: A successful insecticide with new environmental features and tidings. Appl. Microbiol. Biotechnol. 2017, 101, 2691–2711. [Google Scholar] [CrossRef]
- Tetreau, G.; Andreeva, E.A.; Banneville, A.S.; De Zitter, E.; Colletier, J.P. Can (we make) Bacillus thuringiensis crystallize more than its toxins? Toxins 2021, 13, 441–456. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrero M., G.G. Sporulation, Structure Assembly, and Germination in the Soil Bacterium Bacillus thuringiensis: Survival and Success in the Environment and the Insect Host. Microbiol. Res. 2023, 14, 466-491. https://doi.org/10.3390/microbiolres14020035
Guerrero M. GG. Sporulation, Structure Assembly, and Germination in the Soil Bacterium Bacillus thuringiensis: Survival and Success in the Environment and the Insect Host. Microbiology Research. 2023; 14(2):466-491. https://doi.org/10.3390/microbiolres14020035
Chicago/Turabian StyleGuerrero M., Gloria G. 2023. "Sporulation, Structure Assembly, and Germination in the Soil Bacterium Bacillus thuringiensis: Survival and Success in the Environment and the Insect Host" Microbiology Research 14, no. 2: 466-491. https://doi.org/10.3390/microbiolres14020035
APA StyleGuerrero M., G. G. (2023). Sporulation, Structure Assembly, and Germination in the Soil Bacterium Bacillus thuringiensis: Survival and Success in the Environment and the Insect Host. Microbiology Research, 14(2), 466-491. https://doi.org/10.3390/microbiolres14020035