Different Patterns of Virulence Genes in Streptococcus mutans and Streptococcus sobrinus Originating from Estonian Toddlers—Mothers Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Molecular Methods
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loesche, W.J. Role of Streptococcus mutans in human dental decay. Microbiol. Rev. 1986, 50, 353–380. [Google Scholar] [CrossRef] [PubMed]
- Pitts, N.B.; Zero, D.T.; Marsh, P.D.; Ekstrand, K.; Weintraub, J.A.; Ramos-Gomez, F.; Tagami, J.; Twetman, S.; Tsakos, G.; Ismail, A. Dental caries. Nat. Rev. Dis. Primers 2017, 3, 17030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karjalainen, S.; Söderling, E.; Sewón, L.; Lapinleimu, H.; Simell, O. A prospective study on sucrose consumption, visible plaque and caries in children from 3 to 6 years of age. Community Dent. Oral Epidemiol. 2001, 29, 136–142. [Google Scholar] [CrossRef]
- Szatko, F.; Wierzbicka, M.; Dybizbanska, E.; Struzycka, I.; Iwanicka-Frankowska, E. Oral health of Polish three-year-olds and mothers’ oral health-related knowledge. Community Dent. Health 2004, 21, 175–180. [Google Scholar] [PubMed]
- Olak, J.; Nõmmela, R.; Lilleberg, M.; Murakas, R. Ülevaade 3-, 6- ja 12-Aastaste Laste Suutervise Uuringust. Eesti Hambaarstide Liit. 2019. Available online: https://ehl.ee/artikkel/ulevaade-3-6-ja-12-aastaste-laste-suutervise-uuringust/ (accessed on 3 November 2022). (In Estonian).
- Wade, W.G. The oral microbiome in health and disease. Pharmacol. Res. 2013, 69, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Avila, M.; Ojcius, D.M.; Yilmaz, Ö. The Oral Microbiota: Living with a Permanent Guest. DNA Cell Biol. 2009, 28, 405–411. [Google Scholar] [CrossRef]
- Marsh, P.D. Microbiology of Dental Plaque Biofilms and Their Role in Oral Health and Caries. Dent. Clin. N. Am. 2010, 54, 441–454. [Google Scholar] [CrossRef]
- Lemos, J.A.; Burne, R.A. A model of efficiency: Stress tolerance by Streptococcus mutans. Microbiology 2008, 154 Pt 11, 3247–3255. [Google Scholar] [CrossRef] [Green Version]
- Costerton, J.W. Introduction to biofilm. Int. J. Antimicrob. Agents 1999, 11, 217–221. [Google Scholar] [CrossRef]
- Hall-Stoodley, L.; Costerton, J.W.; Stoodley, P. Bacterial biofilms: From the Natural environment to infectious diseases. Nat. Rev. Microbiol. 2004, 2, 95–108. [Google Scholar] [CrossRef]
- Zhu, L.; Kreth, J.; Cross, S.E.; Gimzewski, J.K.; Shi, W.; Qi, F. Functional characterization of cell-wall-associated protein WapA in Streptococcus mutans. Microbiology 2006, 152, 2395–2404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senadheera, M.D.; Guggenheim, B.; Spatafora, G.A.; Huang, Y.C.C.; Choi, J.; Hung, D.C.; Treglown, J.S.; Goodman, S.D.; Ellen, R.P.; Cvitkovitch, D.G. A VicRK Signal Transduction System in Streptococcus mutans Affects gtfBCD, gbpB, and ftf Expression, Biofilm Formation, and Genetic Competence Development. J. Bacteriol. 2005, 187, 4064–4076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuramitsu, H.K. Molecular genetic analysis of the virulence of oral bacterial pathogens: An historical perspective. Crit. Rev. Oral Biol. Med. 2003, 14, 331–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ono, T.; Hirota, K.; Nemoto, K.; Fernandez, E.J.; Ota, F.; Fukui, K. Detection of Streptococcus mutans by PCR amplification of spaP gene. J. Med. Microbiol. 1994, 41, 231–235. [Google Scholar] [CrossRef] [Green Version]
- Kelly, C.G.; Todryk, S.; Kendal, H.L.; Munro, G.H.; Lehner, T. T-cell, adhesion, and B-cell epitopes of the cell surface Streptococcus mutans protein antigen I/II. Infect. Immun. 1995, 63, 3649–3658. [Google Scholar] [CrossRef] [Green Version]
- Bowden, G.H.; Hamilton, I.R. Survival of oral bacteria. Crit. Rev. Oral Biol. Med. 1998, 9, 54–85. [Google Scholar] [CrossRef]
- Sato, S.; Kuramitsu, H.K. Isolation and characterization of a fructosyltransferase gene from Streptococcus mutans GS-5. Infect. Immun. 1986, 52, 166–1670. [Google Scholar] [CrossRef] [Green Version]
- Rölla, G. Why is sucrose so cariogenic? The role of glucosyltransferase and polysaccharides. Scand. J. Dent. Res. 1989, 97, 115–119. [Google Scholar] [CrossRef]
- Lei, L.; Yang, Y.; Mao, M.; Li, H.; Li, M.; Yang, Y.; Yin, J.; Hu, T. Modulation of Biofilm Exopolysaccharides by the Streptococcus mutans vicX Gene. Front. Microbiol. 2015, 6, 1432. [Google Scholar] [CrossRef] [Green Version]
- Shellis, R.P.; Dibdin, G.H. Analysis of the Buffering Systems in Dental Plaque. J. Dent. Res. 1988, 67, 438–446. [Google Scholar] [CrossRef]
- Matsui, R.; Cvitkovitch, D. Acid tolerance mechanisms utilized by Streptococcus mutans. Future Microbiol. 2010, 5, 403–417. [Google Scholar] [CrossRef] [Green Version]
- Featherstone, J.D.B. The continuum of dental caries—Evidence for a dynamic disease process. J. Dent. Res. 2004, 83, C39–C42. [Google Scholar] [CrossRef] [PubMed]
- Olak, J. Dental Health in Preschool and Schoolchildren in Relation to Dental Fear and Some Fear-Related Factors, and the Outcome of a Caries Prevention Program in Offspring of Fearful Mothers. Ph.D. Thesis, University of Turku, Turku, Finland, 2013. [Google Scholar]
- Honkala, E.; Runnel, R.; Honkala, S.; Olak, J.; Vahlberg, T.; Saag, M.; Mäkinen, K.K. Measuring dental caries in the mixed dentition by ICDAS. Int. J. Dent. 2011, 2011, 15024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Decker, E.-M.; Klein, C.; Schwindt, D.; Von Ohle, C. Metabolic activity of Streptococcus mutans biofilms and gene expression during exposure to xylitol and sucrose. Int. J. Oral Sci. 2014, 6, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Lynch, D.J.; Michalek, S.M.; Zhu, M.; Drake, D.; Qian, F.; Banas, J.A. Cariogenicity of Streptococcus mutans Glucan-Binding Protein Deletion Mutants. Oral Health Dent. Manag. 2013, 12, 191–199. [Google Scholar]
- Matsumi, Y.; Fujita, K.; Takashima, Y.; Yanagida, K.; Morikawa, Y.; Matsumoto-Nakano, M. Contribution of glucan-binding protein A to firm and stable biofilm formation by Streptococcus mutans. Mol. Oral Microbiol. 2015, 30, 217–226. [Google Scholar] [CrossRef]
- Hazlett, K.R.O.; Mazurkiewicz, J.E.; Banas, J.A. Inactivation of the gbpA Gene of Streptococcus mutans Alters Structural and Functional Aspects of Plaque Biofilm Which Are Compensated by Recombination of the gtfB and gtfC Genes. Infect. Immun. 1999, 67, 3909–3914. [Google Scholar] [CrossRef] [Green Version]
- Jenkinson, H.F.; Demuth, D.R. Structure, function and immunogenicity of streptococcal antigen I/II polypeptides. Mol. Microbiol. 1997, 23, 183–190. [Google Scholar] [CrossRef]
- Rozen, R.; Steinberg, D.; Bachrach, G. Streptococcus mutans fructosyltransferase interactions with glucans. FEMS Microbiol. Lett. 2004, 232, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, Y.; Bowen, W.H.; Burne, R.A.; Kuramitsu, H.K. Role of the Streptococcus mutans gtf genes in caries induction in the specific-pathogen-free rat model. Infect. Immun. 1993, 61, 3811–3817. [Google Scholar] [CrossRef] [Green Version]
- De Soet, J.J.; Van Loveren, C.; Lammens, A.J.; Pavičić, M.J.A.M.P.; Homburg, C.H.E.; Ten Cate, J.M.; De Graaff, J. Differences in cariogenicity between fresh isolates of Streptococcus sobrinus and Streptococcus mutans. Caries Res. 1991, 25, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, T.; Yamamoto, A.; Goto, N. PCR for detection and identification of Streptococcus sobrinus. J. Med. Microbiol. 2000, 49, 1069–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conrads, G.; de Soet, J.J.; Song, L.; Henne, K.; Sztajer, H.; Wagner-Döbler, I.; Zeng, A.-P. Comparing the cariogenic species Streptococcus sobrinus and S. mutans on whole genome level. J. Oral Microbiol. 2014, 6, 26189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, P.L.; Yu, L.X.; Liao, J.K.; Zhou, Y.; Lin, H.C. Relationship between the genetic polymorphisms of vicR and vicK Streptococcus mutans genes and early childhood caries in two-year-old children. BMC Oral Health 2018, 18, 39. [Google Scholar] [CrossRef] [Green Version]
- Mattos-Graner, R.O.; Porter, K.A.; Smith, D.J.; Hosogi, Y.; Duncan, M.J. Functional Analysis of Glucan Binding Protein B from Streptococcus mutans. J. Bacteriol. 2006, 188, 3813–3825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krzyściak, W.; Jurczak, A.; Kościelniak, D.; Bystrowska, B.; Skalniak, A. The virulence of Streptococcus mutans and the ability to form biofilms. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 499–515. [Google Scholar] [CrossRef] [Green Version]
- EMBL-EBI. Gene Ontology and GO Annotations. Available online: https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=Q8DWF5 (accessed on 2 June 2020).
- Banas, J.A. Virulence properties of Streptococcus mutans. Front. Biosci. 2004, 9, 1267–1277. [Google Scholar] [CrossRef]
- Olak, J.; Mändar, R.; Karjalainen, S.; Söderling, E.; Saag, M. Dental health and oral mutans streptococci in 2–4-year-old Estonian children. Int. J. Paediatr. Dent. 2007, 17, 92–97. [Google Scholar] [CrossRef]
- Bourgeois, D.M.; Llodra, J.C. Global burden of dental condition among children in nine countries participating in an international oral health promotion programme, 2012–2013. Int. Dent. J. 2014, 64, 27–34. [Google Scholar] [CrossRef]
- Fan, C.C.; Wang, W.H.; Xu, T.; Zheng, S.G. Risk factors of early childhood caries (ECC) among children in Beijing—A prospective cohort study. BMC Oral Health 2019, 19, 34. [Google Scholar] [CrossRef] [Green Version]
- Lukacs, J.R. Sex differences in dental caries experience: Clinical evidence, complex etiology. Clin. Oral Investig. 2011, 15, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Pieralise, F.J.S.; Maciel, S.M.; de Andrade, F.B.; Garcia, J.E.; Poli-Frederico, R.C. Detection of Streptococcus mutans of the spaP gene and dental caries in mother/child pairs. RGO Rev. Gaúcha Odontol. 2013, 61, 205–211. [Google Scholar]
- Crowley, P.J.; Brady, L.J.; Michalek, S.M.; Bleiweis, A.S. Virulence of a spaP Mutant of Streptococcus mutans in a Gnotobiotic Rat Model. Infect. Immun. 1999, 67, 1201–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durán-Contreras, G.L.; Torre-Martínez, H.H.; De La Rosa, E.I.; Hernández, R.M.; De La Garza-Ramos, M.A. spaP gene of Streptococcus mutans in dental plaque and its relationship with early childhood caries. Eur. J. Paediatr. Dent. 2011, 12, 220–224. [Google Scholar] [PubMed]
- Hirose, H.; Hirose, K.; Isogai, E.; Mima, H.; Ueda, I. Close association between Streptococcus sobrinus in the saliva of young children and smooth-surface caries increment. Caries Res. 1993, 27, 292–297. [Google Scholar] [CrossRef]
- Okada, M.; Soda, Y.; Hayashi, F.; Doi, T.; Suzuki, J.; Miura, K.; Kozai, K. Longitudinal study of dental caries incidence associated with Streptococcus mutans and Streptococcus sobrinus in pre-school children. J. Med. Microbiol. 2005, 54, 661–665. [Google Scholar] [CrossRef]
- Hata, S.; Hata, H.; Miyasawa-Hori, H.; Kudo, A.; Mayanagi, H. Quantitative detection of Streptococcus mutans in the dental plaque of Japanese preschool children by real-time PCR. Lett. Appl. Microbiol. 2006, 42, 127–131. [Google Scholar] [CrossRef]
- Saraithong, P.; Pattanaporn, K.; Chen, Z.; Khongkhunthian, S.; Laohapensang, P.; Chhun, N.; Gaw, H.Y.; Li, Y. Streptococcus mutans and Streptococcus sobrinus colonization and caries experience in 3- and 5-year-old Thai children. Clin. Oral Investig. 2015, 19, 1955–1964. [Google Scholar] [CrossRef]
Donors | Sex (%) | Age (Years) | dmf (0–20) | DMFS (0–128) | DMFT (0–32) | SM Score (0–3) | DAS (4–20) | |
---|---|---|---|---|---|---|---|---|
F | M | |||||||
mother (n = 13) | 100 | 0 | 27.3 ± 3.7 | - | 20.8 ± 14.62 | 11.20 ± 5.18 | 2.23 ± 0.93 | 11.8 ± 3.61 |
child (n = 24) | 62.5 | 37.5 | 2.7 ± 0.4 | 0.46 ± 0.83 | - | - | 1.46 ± 1.22 | - |
Virulence Mechanism | Genes * |
---|---|
Adhesion to tooth enamel | sucrose-dependent adhesion: gbpA, gbpB, ftf, vicR, wapA sucrose-independent adhesion: spaP |
Biofilm formation | atlA, ftf, SMU.609, vicR, wapA |
Production of polysaccharides | gtfA, gtfB, gtfC, gtfD, ftf, vicR |
Decomposition of carbohydrates with acid production | mipB, SMU.104, SMU.105, sorA |
Acid tolerance | comD, SMU.1037c |
Gene | Correlation of SM Scores | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
S. mutans and S. sobrinus | S. mutans | S. sobrinus | ||||||||
(n = 38) | (n = 21) | (n = 17) | Children (n = 11) | Mothers (n = 6) | ||||||
r2 | p-Value | r2 | p-Value | r2 | p-Value | r2 | p-Value | r2 | p-Value | |
gbpA | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
gbpB | 0 | NS (1) | −0.057 | NS (0.805) | n/a | n/a | n/a | n/a | n/a | n/a |
spaP | 0.117 | NS (0.796) | n/a | n/a | 0.404 | NS (0.108) | 0.643 | p = 0.033 | 0 | NS (1) |
wapA | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
ftf | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
gtfB | 0.019 | NS (0.912) | n/a | n/a | 0.101 | NS (0.699) | 0 | NS (1) | 0.447 | NS (0.374) |
gtfD | −0.149 | NS (0.372) | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
vicR | −0.295 | NS (0.072) | n/a | n/a | −0.398 | NS (0.113) | −0.428 | NS (0.189) | −0.333 | NS (0.512) |
smu.1037c | 0.023 | NS (0.894) | n/a | n/a | 0.059 | NS (0.819) | 0 | NS (1) | n/a | n/a |
smu.104 | −0.163 | NS (0.329) | −0.095 | NS (0.681) | n/a | n/a | n/a | n/a | n/a | n/a |
smu.105 | −0.281 | NS (0.088) | n/a | n/a | −0.398 | NS (0.114) | −0.371 | NS (0.262) | −0.447 | NS (0.374) |
Gene | Correlation of DMFT/dmf Scores | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S. mutans and S. sobrinus | S. mutans | S. sobrinus | ||||||||||
Mothers (DMFT) (n = 14) | Children (dmf) (n = 24) | Mothers (DMFT) (n = 8) | Children (dmf) (n = 13) | Mothers (DMFT) (n = 6) | Children (dmf) (n = 11) | |||||||
r2 | p-Value | r2 | p-Value | r2 | p-Value | r2 | p-Value | r2 | p- Value | r2 | p-Value | |
gbpA | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
gbpB | −0.313 | NS (0.276) | n/a | n/a | −0.417 | NS (0.304) | n/a | n/a | n/a | n/a | n/a | n/a |
spaP | −0.198 | NS (0.497) | 0.157 | NS (0.465) | n/a | n/a | n/a | n/a | −0.533 | NS (0.276) | 0.086 | NS (0.802) |
wapA | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
ftf | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
gtfB | 0.035 | NS (0.906) | 0.173 | NS (0.419) | n/a | n/a | n/a | n/a | 0.135 | NS (0.799) | 0.221 | NS (0.514) |
gtfD | 0 | NS (1) | 0.176 | NS (0.411) | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
vicR | 0.197 | NS (0.501) | 0.108 | NS (0.616) | n/a | n/a | n/a | n/a | 0.402 | NS (0.429) | 0 | NS (1) |
smu.1037c | n/a | n/a | −0.101 | NS (0.639) | n/a | n/a | n/a | n/a | n/a | n/a | −0.332 | NS (0.319) |
smu.104 | 0 | NS (1) | 0.121 | NS (0.572) | 0 | NS (1) | −0.03 | NS (0.921) | n/a | n/a | n/a | n/a |
smu.105 | −0.035 | NS (0.906) | 0.118 | NS (0.578) | n/a | n/a | n/a | n/a | −0.135 | NS (0.799) | 0.148 | NS (0.664) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maasi, G.; Štšepetova, J.; Jõesaar, M.; Olak, J.; Mändar, R. Different Patterns of Virulence Genes in Streptococcus mutans and Streptococcus sobrinus Originating from Estonian Toddlers—Mothers Cohort. Microbiol. Res. 2022, 13, 928-936. https://doi.org/10.3390/microbiolres13040065
Maasi G, Štšepetova J, Jõesaar M, Olak J, Mändar R. Different Patterns of Virulence Genes in Streptococcus mutans and Streptococcus sobrinus Originating from Estonian Toddlers—Mothers Cohort. Microbiology Research. 2022; 13(4):928-936. https://doi.org/10.3390/microbiolres13040065
Chicago/Turabian StyleMaasi, Greete, Jelena Štšepetova, Merike Jõesaar, Jana Olak, and Reet Mändar. 2022. "Different Patterns of Virulence Genes in Streptococcus mutans and Streptococcus sobrinus Originating from Estonian Toddlers—Mothers Cohort" Microbiology Research 13, no. 4: 928-936. https://doi.org/10.3390/microbiolres13040065
APA StyleMaasi, G., Štšepetova, J., Jõesaar, M., Olak, J., & Mändar, R. (2022). Different Patterns of Virulence Genes in Streptococcus mutans and Streptococcus sobrinus Originating from Estonian Toddlers—Mothers Cohort. Microbiology Research, 13(4), 928-936. https://doi.org/10.3390/microbiolres13040065