Uncommon Pathogens in Common Presentations: Genetic Profiling and Virulence Determinants of Vibrio alginolyticus Isolated from a Case of External Otitis
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Antibiotic Resistance Genes
4.2. Virulence Factors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, K.; Tian, K.; Liu, X.; Liu, W.; Zhang, X.; Liu, J.; Sun, F. Characteristic and Otopathogenic Analysis of a Vibrio alginolyticus Strain Responsible for Chronic Otitis Externa in China. Front. Microbiol. 2021, 12, 750642. [Google Scholar] [CrossRef]
- Raza, S.A.; Denholm, S.W.; Wong, J.C.H. An Audit of the Management of Acute Otitis Externa in an ENT Casualty Clinic. J. Laryngol. Otol. 1995, 109, 130–133. [Google Scholar] [CrossRef]
- Pabla, L.; Jindal, M.; Latif, K. The Management of Otitis Externa in UK General Practice. Eur. Arch. Otorhinolaryngol. 2012, 269, 753–756. [Google Scholar] [CrossRef] [PubMed]
- Wade, T.J.; Sams, E.A.; Beach, M.J.; Collier, S.A.; Dufour, A.P. The Incidence and Health Burden of Earaches Attributable to Recreational Swimming in Natural Waters: A Prospective Cohort Study. Environ. Health 2013, 12, 67. [Google Scholar] [CrossRef] [PubMed]
- Pantazidou, G.; Dimitrakopoulou, M.E.; Kotsalou, C.; Velissari, J.; Vantarakis, A. Risk Analysis of Otitis Externa (Swimmer’s Ear) in Children Pool Swimmers: A Case Study from Greece. Water 2022, 14, 1983. [Google Scholar] [CrossRef]
- Slifka, K.M.J.; Newton, A.E.; Mahon, B.E. Vibrio alginolyticus Infections in the USA, 1988–2012. Epidemiol. Infect. 2017, 145, 1491–1499. [Google Scholar] [CrossRef]
- Reilly, G.; Reilly, C.; Smith, E.; Baker-Austin, C. Vibrio alginolyticus-Associated Wound Infection Acquired in British Waters, Guernsey, July 2011. Eurosurveillance 2011, 16, 19994. [Google Scholar] [CrossRef]
- Citil, B.E.; Derin, S.; Sankur, F.; Sahan, M.; Citil, M.U. Vibrio alginolyticus Associated Chronic Myringitis Acquired in Mediterranean Waters of Turkey. Case Rep. Infect. Dis. 2015, 2015, 187212. [Google Scholar] [CrossRef]
- Fu, J.; Li, Y.; Zhao, L.; Wu, C.; He, Z. Characterization and Genomic Analysis of a Bacteriophage with Potential in Lysing Vibrio alginolyticus. Viruses 2023, 15, 135. [Google Scholar] [CrossRef] [PubMed]
- Alomar, A.O.; Alsanea, M.; Almajed, A.; Alsaab, F. Vibrio alginolyticus Tympanostomy Tube Otorrhea in a Child Newly Diagnosed with Primary Ciliary Dyskinesia with No Seawater Exposure. Saudi J. Otorhinolaryngol. Head Neck Surg. 2021, 23, 158. [Google Scholar] [CrossRef]
- Lorente-Piera, J.; Betanzos, N.; Cervera-Paz, F.J. Otitis by Vibrio alginolyticus: An Emerging Entity without a Defined Seasonal Pattern: Contaminated Water Exposure or Persistent Colonization? Indian J. Otolaryngol. Head Neck Surg. 2024, 76, 5864–5867. [Google Scholar] [CrossRef]
- Cai, H.; Yu, J.; Li, Q.; Zhang, Y.; Huang, L.; Cai, H.; Yu, J.; Li, Q.; Zhang, Y.; Huang, L. Research Progress on Virulence Factors of Vibrio alginolyticus: A Key Pathogenic Bacteria of Sepsis. In Heat Illness and Critical Care; IntechOpen: London, UK, 2022; ISBN 978-1-83768-904-0. [Google Scholar]
- Rotaru, L.-I.; Surleac, M. PeGAS: A Versatile Bioinformatics Pipeline for Antimicrobial Resistance, Virulence and Pangenome Analysis. Bioinform. Adv. 2025, 5, vbaf165. [Google Scholar] [CrossRef]
- Morris, J.M.; Mercoulia, K.; Valcanis, M.; Gorrie, C.L.; Sherry, N.L.; Howden, B.P. Hidden Resistances: How Routine Whole-Genome Sequencing Uncovered an Otherwise Undetected blaNDM-1 Gene in Vibrio alginolyticus from Imported Seafood. Microbiol. Spectr. 2023, 11, e0417622. [Google Scholar] [CrossRef] [PubMed]
- Osorio, C.R. T3SS Effectors in Vibrios: Homology in Sequence, Diversity in Biological Functions? Virulence 2018, 9, 721–723. [Google Scholar] [CrossRef] [PubMed]
- Avalos, E.; Catanzaro, D.; Catanzaro, A.; Ganiats, T.; Brodine, S.; Alcaraz, J.; Rodwell, T. Frequency and Geographic Distribution of gyrA and gyrB Mutations Associated with Fluoroquinolone Resistance in Clinical Mycobacterium Tuberculosis Isolates: A Systematic Review. PLoS ONE 2015, 10, e0120470. [Google Scholar] [CrossRef]
- Dridi, L.; Tankovic, J.; Burghoffer, B.; Barbut, F.; Petit, J.-C. gyrA and gyrB Mutations Are Implicated in Cross-Resistance to Ciprofloxacin and Moxifloxacin in Clostridium difficile. Antimicrob. Agents Chemother. 2002, 46, 3418–3421. [Google Scholar] [CrossRef]
- Vinué, L.; Corcoran, M.A.; Hooper, D.C.; Jacoby, G.A. Mutations That Enhance the Ciprofloxacin Resistance of Escherichia coli with qnrA1. Antimicrob. Agents Chemother. 2016, 60, 1537–1545. [Google Scholar] [CrossRef]
- Arabameri, N.; Heshmatipour, Z.; Eftekhar Ardebili, S.; Jafari Bidhendi, Z. The Role of Gene Mutations (gyrA, parC) in Resistance to Ciprofloxacin in Clinical Isolates of Pseudomonas Aeruginosa. Iran. J. Pathol. 2021, 16, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zhang, W.; Wang, H.; Zhao, S.; Chen, Y.; Meng, F.; Zhang, Y.; Xu, H.; Chen, X.; Zhang, F. Specific Patterns of gyr A Mutations Determine the Resistance Difference to Ciprofloxacin and Levofloxacin in Klebsiella pneumoniae and Escherichia coli. BMC Infect. Dis. 2013, 13, 8. [Google Scholar] [CrossRef]
- Moon, D.C.; Seol, S.Y.; Gurung, M.; Jin, J.S.; Choi, C.H.; Kim, J.; Lee, Y.C.; Cho, D.T.; Lee, J.C. Emergence of a New Mutation and Its Accumulation in the Topoisomerase IV Gene Confers High Levels of Resistance to Fluoroquinolones in Escherichia coli Isolates. Int. J. Antimicrob. Agents 2010, 35, 76–79. [Google Scholar] [CrossRef]
- Stephen, J.; Lekshmi, M.; Ammini, P.; Kumar, S.H.; Varela, M.F. Membrane Efflux Pumps of Pathogenic Vibrio Species: Role in Antimicrobial Resistance and Virulence. Microorganisms 2022, 10, 382. [Google Scholar] [CrossRef]
- Doma, A.O.; Popescu, R.; Mitulețu, M.; Muntean, D.; Dégi, J.; Boldea, M.V.; Radulov, I.; Dumitrescu, E.; Muselin, F.; Puvača, N.; et al. Comparative Evaluation of qnrA, qnrB, and qnrS Genes in Enterobacteriaceae Ciprofloxacin-Resistant Cases, in Swine Units and a Hospital from Western Romania. Antibiotics 2020, 9, 698. [Google Scholar] [CrossRef]
- Hooper, D.C.; Jacoby, G.A. Mechanisms of Drug Resistance: Quinolone Resistance. Ann. N.Y. Acad. Sci. 2015, 1354, 12–31. [Google Scholar] [CrossRef] [PubMed]
- Garoff, L.; Yadav, K.; Hughes, D. Increased Expression of Qnr Is Sufficient to Confer Clinical Resistance to Ciprofloxacin in Escherichia coli. J. Antimicrob. Chemother. 2018, 73, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Hooper, D.C.; Jacoby, G.A. Topoisomerase Inhibitors: Fluoroquinolone Mechanisms of Action and Resistance. Cold Spring Harb. Perspect. Med. 2016, 6, a025320. [Google Scholar] [CrossRef]
- Park, C.H.; Robicsek, A.; Jacoby, G.A.; Sahm, D.; Hooper, D.C. Prevalence in the United States of Aac(6′)-Ib-Cr Encoding a Ciprofloxacin-Modifying Enzyme. Antimicrob. Agents Chemother. 2006, 50, 3953–3955. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yan, Y.; Yan, S.; Li, F.; Li, Y.; Yan, L.; Yang, D.; Peng, Z.; Yang, B.; Sun, J.; et al. Prevalence, Antibiotic Susceptibility, and Genomic Analysis of Vibrio alginolyticus Isolated from Seafood and Freshwater Products in China. Front. Microbiol. 2024, 15, 1381457. [Google Scholar] [CrossRef]
- Wang, H.; Shi, C.; Yang, B.; Li, Q.; Liu, S. Characterization of the Genome and Cell Invasive Phenotype of Vibrio Diabolicus Cg5 Isolated from Mass Mortality of Pacific Oyster, Crassostrea Gigas. Microb. Pathog. 2024, 186, 106466. [Google Scholar] [CrossRef]
- Xue, M.; Huang, X.; Xue, J.; He, R.; Liang, G.; Liang, H.; Liu, J.; Wen, C. Comparative Genomic Analysis of Seven Vibrio alginolyticus Strains Isolated from Shrimp Larviculture Water with Emphasis on Chitin Utilization. Front. Microbiol. 2022, 13, 925747. [Google Scholar] [CrossRef]
- Li, J.; Tian, F.; Hu, Y.; Lin, W.; Liu, Y.; Zhao, F.; Ren, H.; Pan, Q.; Shi, T.; Tong, Y. Characterization and Genomic Analysis of BUCT549, a Novel Bacteriophage Infecting Vibrio alginolyticus with Flagella as Receptor. Front. Microbiol. 2021, 12, 668319. [Google Scholar] [CrossRef]
- Sebastian, P.J.; Schlesener, C.; Byrne, B.A.; Miller, M.; Smith, W.; Batac, F.; Goertz, C.E.C.; Weimer, B.C.; Johnson, C.K. Antimicrobial Resistance of Vibrio spp. from the Coastal California System: Discordance between Genotypic and Phenotypic Patterns. Appl. Environ. Microbiol. 2025, 91, e01808-24. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, H.; Habimana, O. High Risk of Vibrio Pathogen and Antibiotic Resistance Transfer in Live Seafood Wet Markets of Shantou, China. Int. J. Food Microbiol. 2025, 432, 111098. [Google Scholar] [CrossRef]
- Farooq, A.; Kim, J.; Raza, S.; Jang, J.; Han, D.; Sadowsky, M.J.; Unno, T. A Hybrid DNA Sequencing Approach Is Needed to Properly Link Genotype to Phenotype in Multi-Drug Resistant Bacteria. Environ. Pollut. 2021, 289, 117856. [Google Scholar] [CrossRef]
- Zhao, Y.; Tang, X.; Zhan, W. Cloning, Expressing, and Hemolysis of Tdh, Trh and Tlh Genes of Vibrio parahaemolyticus. J. Ocean. Univ. China 2011, 10, 275–279. [Google Scholar] [CrossRef]
- Zhang, X.-H.; Austin, B. Haemolysins in Vibrio Species. J. Appl. Microbiol. 2005, 98, 1011–1019. [Google Scholar] [CrossRef]
- Sakatoku, A.; Hatano, K.; Takada, K.; Shimizu, R.; Suzuki, T.; Seki, M.; Suzuki, N.; Tanaka, D.; Nakamura, S.; Isshiki, T. Purification and Characterization of the Lecithin-Dependent Thermolabile Hemolysin Vhe1 from the Vibrio sp. Strain MA3 Associated with Mass Mortality of Pearl Oyster (Pinctada fucata). Curr. Microbiol. 2023, 80, 288. [Google Scholar] [CrossRef]
- Zhou, S.; Tu, X.; Pang, H.; Hoare, R.; Monaghan, S.J.; Luo, J.; Jian, J. A T3SS Regulator Mutant of Vibrio alginolyticus Affects Antibiotic Susceptibilities and Provides Significant Protection to Danio rerio as a Live Attenuated Vaccine. Front. Cell. Infect. Microbiol. 2020, 10, 183. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, L.; Feng, H.; Wang, J.; Zeng, F.; Xiao, X.; Jian, J.; Wang, N.; Pang, H. Functional Characterization of Vibrio alginolyticus T3SS Regulator ExsA and Evaluation of Its Mutant as a Live Attenuated Vaccine Candidate in Zebrafish (Danio rerio) Model. Front. Vet. Sci. 2022, 9, 938822. [Google Scholar] [CrossRef] [PubMed]
- Burkinshaw, B.J.; Strynadka, N.C.J. Assembly and Structure of the T3SS. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2014, 1843, 1649–1663. [Google Scholar] [CrossRef] [PubMed]
- Abrusci, P.; McDowell, M.A.; Lea, S.M.; Johnson, S. Building a Secreting Nanomachine: A Structural Overview of the T3SS. Curr. Opin. Struct. Biol. 2014, 25, 111–117. [Google Scholar] [CrossRef]
- Kodama, T.; Hiyoshi, H.; Okada, R.; Matsuda, S.; Gotoh, K.; Iida, T. Regulation of Vibrio parahaemolyticus T3SS2 Gene Expression and Function of T3SS2 Effectors That Modulate Actin Cytoskeleton. Cell. Microbiol. 2015, 17, 183–190. [Google Scholar] [CrossRef]
- Goldufsky, J.; Wood, S.J.; Jayaraman, V.; Majdobeh, O.; Chen, L.; Qin, S.; Zhang, C.; DiPietro, L.A.; Shafikhani, S.H. Pseudomonas Aeruginosa Uses T3SS to Inhibit Diabetic Wound Healing. Wound Repair Regen. 2015, 23, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Holland, I.B.; Schmitt, L. The Type 1 Secretion Pathway—The Hemolysin System and Beyond. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2014, 1843, 1629–1641. [Google Scholar] [CrossRef] [PubMed]
- Wagner, W.; Kuhn, M.; Goebel, W. Active and Inactive Forms of Hemolysin (HlyA) from Escherichia coli. Biol. Chem. 1988, 369, 39–46. [Google Scholar] [CrossRef]
- Menestrina, G.; Moser, C.; Pellet, S.; Welch, R. Pore-Formation by Escherichia coli Hemolysin (HlyA) and Other Members of the RTX Toxins Family. Toxicology 1994, 87, 249–267. [Google Scholar] [CrossRef]
- Ludwig, A.; Garcia, F.; Bauer, S.; Jarchau, T.; Benz, R.; Hoppe, J.; Goebel, W. Analysis of the In Vivo Activation of Hemolysin (HlyA) from Escherichia coli. J. Bacteriol. 1996, 178, 5422–5430. [Google Scholar] [CrossRef]
- Holland, I.B.; Blight, M.A.; Kenny, B. The Mechanism of Secretion of Hemolysin and Other Polypeptides from Gram-Negative Bacteria. J. Bioenerg. Biomembr. 1990, 22, 473–491. [Google Scholar] [CrossRef]
- Boehm, D.F.; Welch, R.A.; Snyder, I.S. Domains of Escherichia coli Hemolysin (HlyA) Involved in Binding of Calcium and Erythrocyte Membranes. Infect. Immun. 1990, 58, 1959–1964. [Google Scholar] [CrossRef]
- Yamamoto, K.; Ichinose, Y.; Shinagawa, H.; Makino, K.; Nakata, A.; Iwanaga, M.; Honda, T.; Miwatani, T. Two-Step Processing for Activation of the Cytolysin/Hemolysin of Vibrio cholerae O1 Biotype El Tor: Nucleotide Sequence of the Structural Gene (hlyA) and Characterization of the Processed Products. Infect. Immun. 1990, 58, 4106–4116. [Google Scholar] [CrossRef]
- Kim, Y.B.; Okuda, J.; Matsumoto, C.; Takahashi, N.; Hashimoto, S.; Nishibuchi, M. Identification of Vibrio parahaemolyticus Strains at the Species Level by PCR Targeted to the toxR Gene. J. Clin. Microbiol. 1999, 37, 1173–1177. [Google Scholar] [CrossRef]
- Vuddhakul, V.; Nakai, T.; Matsumoto, C.; Oh, T.; Nishino, T.; Chen, C.-H.; Nishibuchi, M.; Okuda, J. Analysis of gyrB and toxR Gene Sequences of Vibrio hollisae and Development of gyrB- and toxR-Targeted PCR Methods for Isolation of V. hollisae from the Environment and Its Identification. Appl. Environ. Microbiol. 2000, 66, 3506–3514. [Google Scholar] [CrossRef]
- Skorupski, K.; Taylor, R.K. Control of the ToxR Virulence Regulon in Vibrio cholerae by Environmental Stimuli. Mol. Microbiol. 1997, 25, 1003–1009. [Google Scholar] [CrossRef] [PubMed]
- Nye, M.B.; Pfau, J.D.; Skorupski, K.; Taylor, R.K. Vibrio cholerae H-NS Silences Virulence Gene Expression at Multiple Steps in the ToxR Regulatory Cascade. J. Bacteriol. 2000, 182, 4295–4303. [Google Scholar] [CrossRef] [PubMed]
- Kazi, M.I.; Conrado, A.R.; Mey, A.R.; Payne, S.M.; Davies, B.W. ToxR Antagonizes H-NS Regulation of Horizontally Acquired Genes to Drive Host Colonization. PLoS Pathog. 2016, 12, e1005570. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-B.; Tian, L.-H.; Zou, H.-J.; Wang, C.-Y.; Yu, Z.-Q.; Tang, C.-H.; Zhao, F.-K.; Pan, J.-Y. Outer Membrane Protein OmpW of Escherichia coli Is Required for Resistance to Phagocytosis. Res. Microbiol. 2013, 164, 848–855. [Google Scholar] [CrossRef]
- Nandi, B.; Nandy, R.K.; Sarkar, A.; Ghose, A.C. Structural Features, Properties and Regulation of the Outer-Membrane Protein W (OmpW) of Vibrio cholerae. Microbiology 2005, 151, 2975–2986. [Google Scholar] [CrossRef]
- Huang, W.; Wang, S.; Yao, Y.; Xia, Y.; Yang, X.; Long, Q.; Sun, W.; Liu, C.; Li, Y.; Ma, Y. OmpW Is a Potential Target for Eliciting Protective Immunity against Acinetobacter baumannii Infections. Vaccine 2015, 33, 4479–4485. [Google Scholar] [CrossRef]
- Catel-Ferreira, M.; Marti, S.; Guillon, L.; Jara, L.; Coadou, G.; Molle, V.; Bouffartigues, E.; Bou, G.; Shalk, I.; Jouenne, T.; et al. The Outer Membrane Porin OmpW of Acinetobacter baumannii Is Involved in Iron Uptake and Colistin Binding. FEBS Lett. 2016, 590, 224–231. [Google Scholar] [CrossRef]
- Schmitt, B.L.; Leal, B.F.; Leyser, M.; de Barros, M.P.; Trentin, D.S.; Ferreira, C.A.S.; de Oliveira, S.D. Increased ompW and ompA Expression and Higher Virulence of Acinetobacter baumannii Persister Cells. BMC Microbiol. 2023, 23, 157. [Google Scholar] [CrossRef]
- Ganie, H.A.; Choudhary, A.; Baranwal, S. Structure, Regulation, and Host Interaction of Outer Membrane Protein U (OmpU) of Vibrio Species. Microb. Pathog. 2022, 162, 105267. [Google Scholar] [CrossRef]
- Wang, W.; Liu, J.; Guo, S.; Liu, L.; Yuan, Q.; Guo, L.; Pan, S. Identification of Vibrio parahaemolyticus and Vibrio spp. Specific Outer Membrane Proteins by Reverse Vaccinology and Surface Proteome. Front. Microbiol. 2021, 11, 625315. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, A.; Cai, X.; Yin, J.; Liu, Y.; Dong, Q.; Jiang, Q.; Zhang, X.; Gao, X. Functional Role of rpoN in Regulating the Virulence of Non-O1/O139 Vibrio cholerae. Int. J. Biol. Macromol. 2025, 308, 142439. [Google Scholar] [CrossRef]
- Gu, D.; Zhang, Y.; Wang, K.; Li, M.; Jiao, X. Characterization of the RpoN Regulon Reveals the Regulation of Motility, T6SS2 and Metabolism in Vibrio parahaemolyticus. Front. Microbiol. 2022, 13, 1025960. [Google Scholar] [CrossRef]
- Sheng, L.; Gu, D.; Wang, Q.; Liu, Q.; Zhang, Y. Quorum Sensing and Alternative Sigma Factor RpoN Regulate Type VI Secretion System I (T6SSVA1) in Fish Pathogen Vibrio alginolyticus. Arch. Microbiol. 2012, 194, 379–390. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, S.; Ren, W.; Gong, X.; Long, H.; Zhang, X.; Cai, X.; Huang, A.; Xie, Z. Roles of rpoN in Biofilm Formation of Vibrio alginolyticus HN08155 at Different Cell Densities. Microbiol. Res. 2021, 247, 126728. [Google Scholar] [CrossRef]
- Yin, W.-L.; Xie, Z.-Y.; Zeng, Y.-H.; Zhang, J.; Long, H.; Ren, W.; Zhang, X.; Cai, X.-N.; Huang, A.-Y. Two (p)ppGpp Synthetase Genes, relA and spoT, Are Involved in Regulating Cell Motility, Exopolysaccharides Production, and Biofilm Formation of Vibrio alginolyticus. Front. Microbiol. 2022, 13, 858559. [Google Scholar] [CrossRef]
- Yin, W.-L.; Zhang, N.; Xu, H.; Gong, X.-X.; Long, H.; Ren, W.; Zhang, X.; Cai, X.-N.; Huang, A.-Y.; Xie, Z.-Y. Stress Adaptation and Virulence in Vibrio alginolyticus Is Mediated by Two (p)ppGpp Synthetase Genes, relA and spoT. Microbiol. Res. 2021, 253, 126883. [Google Scholar] [CrossRef]
- Atkinson, G.C.; Tenson, T.; Hauryliuk, V. The RelA/SpoT Homolog (RSH) Superfamily: Distribution and Functional Evolution of ppGpp Synthetases and Hydrolases across the Tree of Life. PLoS ONE 2011, 6, e23479. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Wu, F.; Huang, Y.C.; Jian, J.C.; Cai, S.H. Mechanisms Underlying the Virulence and Intestinal Colonization of the Vibrio alginolyticus HY9901 DctP Protein with Proteomic Analysis. Appl. Biochem. Microbiol. 2023, 59, 646–658. [Google Scholar] [CrossRef]
- Slamti, L.; Lereclus, D. The Oligopeptide ABC-Importers Are Essential Communication Channels in Gram-Positive Bacteria. Res. Microbiol. 2019, 170, 338–344. [Google Scholar] [CrossRef]
- Liu, W.; Huang, L.; Su, Y.; Qin, Y.; Zhao, L.; Yan, Q. Contributions of the Oligopeptide Permeases in Multistep of Vibrio alginolyticus Pathogenesis. MicrobiologyOpen 2017, 6, e00511. [Google Scholar] [CrossRef]
- Jones, M.M.; Murphy, T.F. Expression of the Oligopeptide Permease Operon of Moraxella Catarrhalis Is Regulated by Temperature and Nutrient Availability. Infect. Immun. 2015, 83, 3497–3505. [Google Scholar] [CrossRef] [PubMed]
- Echeverry-Gallego, R.A.; Martínez-Pachón, D.; Arenas, N.E.; Franco, D.C.; Moncayo-Lasso, A.; Vanegas, J. Characterization of Bacterial Diversity in Rhizospheric Soils, Irrigation Water, and Lettuce Crops in Municipalities near the Bogotá River, Colombia. Heliyon 2024, 10, e35909. [Google Scholar] [CrossRef]
- Gao, X.; Wang, X.; Mao, Q.; Xu, R.; Zhou, X.; Ma, Y.; Liu, Q.; Zhang, Y.; Wang, Q. VqsA, a Novel LysR-Type Transcriptional Regulator, Coordinates Quorum Sensing (QS) and Is Controlled by QS To Regulate Virulence in the Pathogen Vibrio alginolyticus. Appl. Environ. Microbiol. 2018, 84, e00444-18. [Google Scholar] [CrossRef]
- Sheikh, H.I.; Alhamadin, N.I.I.; Liew, H.J.; Fadhlina, A.; Wahid, M.E.A.; Musa, N.; Jalal, K.C.A. Virulence Factors of the Zoonotic Pathogen Vibrio alginolyticus: A Review and Bibliometric Analysis. Appl. Biochem. Microbiol. 2024, 60, 514–531. [Google Scholar] [CrossRef]
Isolate | Gene | Mutation |
---|---|---|
Isolate A | gyrB gyrB parE | c.2024A>G c.2065C>G c.623G>A |
Isolate B | gyrB gyrB gyrA parE | c.2024A>G c.2065C>G c.1870C>T c.623G>A |
Gene | Product | Isolate | % Identity | % Coverage | Start | End | Strand | Species Name |
---|---|---|---|---|---|---|---|---|
tlh | thermolabile hemolysin TLH thermolabile hemolysin (TLH)/lecithin-dependent hemolysin (LDH) | A | 85.28 | 100.00 | 345,281 | 346,537 | + | Vibrio species |
B | 85.28 | 99.92 | 185,933 | 187,188 | + | |||
tyeA | type III secretion system regulatory protein | A | 81.40 | 100.00 | 102,289 | 102,573 | + | Vibrio species |
B | 81.40 | 100.00 | 1,354,811 | 1,355,095 | + | |||
vcrH | type III secretion system chaperone VcrH | A | 91.22 | 100.00 | 108,370 | 108,859 | + | Vibrio species |
B | 91.02 | 100.00 | 1,360,881 | 1,361,370 | + | |||
vopB | type III secretion system translocator protein VopB | A | 84.75 | 100.00 | 108,863 | 110,062 | + | Vibrio species |
B | 84.58 | 99.83 | 1,361,374 | 1,362,571 | + | |||
vopD | type III secretion system translocator protein VopD | A | 80.92 | 99.90 | 110,073 | 111,077 | + | Vibrio species |
B | 80.81 | 99.80 | 1,362,582 | 1,363,585 | + | |||
vopR | type III secretion system effector VopR phosphoinositide-binding protein | A | 80.86 | 99.90 | 89,423 | 90,399 | + | Vibrio species |
B | 80.86 | 99.80 | 1,341,958 | 1,342,933 | + | |||
vscF | type III secretion system needle protein VscF | A | 82.33 | 100.00 | 83,309 | 83,557 | + | Vibrio species |
B | 82.33 | 100.00 | 1,335,850 | 1,336,098 | + | |||
vscI | type III secretion system inner rod protein VscI | A | 83.14 | 99.71 | 84,561 | 84,904 | + | Vibrio species |
B | 83.14 | 99.42 | 1,337,102 | 1,337,444 | + | |||
vscN | type III secretion system ATPase VscN | A | 80.66 | 99.24 | 99,917 | 101,229 | - | Vibrio species |
B | 80.52 | 99.17 | 1,352,442 | 1,353,754 | - | |||
vscR | type III secretion system C-ring protein VscR | A | 83.82 | 99.69 | 96,618 | 97,266 | - | Vibrio species |
B | 83.67 | 99.54 | 1,349,149 | 1,349,796 | - | |||
vscS | type III secretion system C-ring protein VscS | A | 80.90 | 100.00 | 96,336 | 96,602 | - | Vibrio species |
B | 80.90 | 100.00 | 1,348,867 | 1,349,133 | - |
Isolate | Gene | Gene Description | GenBank® ID | Genome Match Isolate A | Genome Match Isolate B |
---|---|---|---|---|---|
Hemolysin | |||||
A, B | hlyA | hemolysin A | UAVI01000001.1 | 95.74% | 99.49% |
Colonization | |||||
A, B | toxR | cholera toxin transcriptional activator | KJ579443.1 | 99.00% | 99.55% |
A, B | collagenase | collagenase | KX099763.1 | 98.13% | 98.12% |
B | ompW | major outer membrane protein | AY944132.1 | - | 98.60% |
Biofilm | |||||
A, B | rpoN | RNA polymerase sigma factor N | AB006709.1 | 94.58% | 94.54% |
A, B | relA | GTP diphosphokinase | 75166643 | 98.96% | 99.01% |
A, B | spoT | bifunctional GTP diphosphokinase/guanosine-3′,5′-bis pyrophosphate 3′-pyrophosphohydrolase | 69650475 | 99.15% | 99.01% |
A, B | opp | oligopeptide permease | AY566268.1 | 80.90% | 80.85% |
Motility—flagellum | |||||
A, B | luxS | S-ribosylhomocysteine lyase | AY391122.1 | 99.81% | 99.81% |
Virulence proteins | |||||
B | vacB | chitinase | AJ292004.1 | - | 90.51% |
A | proA | gamma-glutamyl phosphate reductase | BATK01000019 | 99.44% | - |
Antibiotic resistance genes | |||||
A, B | tet(34) | oxytetracycline resistance determinant tet(34) | AB061440.1 | 82.31% | 82.10% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Togănel, R.O.; Coșeriu, R.L.; Mare, A.D.; Vintilă, C.; Sîrbu, I.-O.; Chis, A.R.; Gîrbovan, C.E.; Man, A. Uncommon Pathogens in Common Presentations: Genetic Profiling and Virulence Determinants of Vibrio alginolyticus Isolated from a Case of External Otitis. Infect. Dis. Rep. 2025, 17, 114. https://doi.org/10.3390/idr17050114
Togănel RO, Coșeriu RL, Mare AD, Vintilă C, Sîrbu I-O, Chis AR, Gîrbovan CE, Man A. Uncommon Pathogens in Common Presentations: Genetic Profiling and Virulence Determinants of Vibrio alginolyticus Isolated from a Case of External Otitis. Infectious Disease Reports. 2025; 17(5):114. https://doi.org/10.3390/idr17050114
Chicago/Turabian StyleTogănel, Radu Ovidiu, Razvan Lucian Coșeriu, Anca Delia Mare, Camelia Vintilă, Ioan-Ovidiu Sîrbu, Aimée Rodica Chis, Cristina Elena Gîrbovan, and Adrian Man. 2025. "Uncommon Pathogens in Common Presentations: Genetic Profiling and Virulence Determinants of Vibrio alginolyticus Isolated from a Case of External Otitis" Infectious Disease Reports 17, no. 5: 114. https://doi.org/10.3390/idr17050114
APA StyleTogănel, R. O., Coșeriu, R. L., Mare, A. D., Vintilă, C., Sîrbu, I.-O., Chis, A. R., Gîrbovan, C. E., & Man, A. (2025). Uncommon Pathogens in Common Presentations: Genetic Profiling and Virulence Determinants of Vibrio alginolyticus Isolated from a Case of External Otitis. Infectious Disease Reports, 17(5), 114. https://doi.org/10.3390/idr17050114