Next Article in Journal
A Report of Two Uncommon Cases of Mycobacterium chelonae with Localized and Disseminated Skin and Soft Tissue Infection
Next Article in Special Issue
Advances in the Management of Infectious Diseases
Previous Article in Journal
Impact of Severity of COVID-19 in TB Disease Patients: Experience from an Italian Infectious Disease Referral Hospital
Previous Article in Special Issue
Infection Rate and Risk Factors of SARS-CoV-2 Infection in Retail Workers at the Onset of the COVID-19 Pandemic, Quebec, Canada
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Immune Alterations and Viral Reservoir Atlas in SIV-Infected Chinese Rhesus Macaques

1
Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
2
Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France
3
Institut national de la santé et de la recherche médicale (Inserm) U1259 MAVIVHe, Université de Tours, 37032 Tours, France
4
Institut de Génétique Humaine, CNRS-Université de Montpellier UMR9002, 34094 Montpellier, France
*
Author to whom correspondence should be addressed.
Infect. Dis. Rep. 2025, 17(1), 12; https://doi.org/10.3390/idr17010012
Submission received: 7 October 2024 / Revised: 24 January 2025 / Accepted: 26 January 2025 / Published: 6 February 2025
(This article belongs to the Special Issue Prevention, Diagnosis and Treatment of Infectious Diseases)

Abstract

:
Background/Objectives: Over the last decades, our projects have been dedicated to clarifying immunopathological and virological events associated with Human Immunodeficiency Virus (HIV) infection. Methods: By using non-human primate models of pathogenic and non-pathogenic lentiviral infections, we aimed at identifying the cells and tissues in which the virus persists, despite antiretroviral therapy (ART). Indeed, the eradication of viral reservoirs is a major challenge for HIV cure. Results: We present a series of results performed in rhesus macaques of Chinese origin deciphering the virological and immunological events associated with ART that can be of interest for people living with HIV. Conclusions: This model could be of interest for understanding in whole body the clinical alteration that persist despite ART.

1. Non-Human Primates and SIV Infections

Simian Immunodeficiency Viruses (SIVs) have been isolated from naturally infected Old World primates, including chimpanzees (SIVcpz) [1], African green monkeys (SIVagm) [2,3], sooty mangabeys (SIVsm) [4], mandrills (SIVmnd) [5,6], and gorillas (SIVgor) [7] (Figure 1). There is generally no acquired immunodeficiency syndrome (AIDS) associated with these strains of SIV in their natural hosts (Figure 1A). However, macaques developing a disease closer to that observed in humans, including the death and depletion of CD4 T cells [8], were transmitted by captive sooty mangabeys housed in United States primates, leading to the isolation of the SIVmac [9] (Figure 1B). Thus, non-human primates (NHP) have been used to decipher the pathogenic events associated with AIDS and to test vaccines and therapies. Rhesus macaques (RMs) (Macaca mulatta) of Indian origin are generally used for research purposes. They display higher levels of viral replication, full depletion of CD4 T cells expressing the main co-receptor CCR5, and higher T cell death, compared to cynomolgus macaques (CMs) (Macaca fascicularis), which are less sensitive to SIV infection [10] (Table 1). Furthermore, due to the drastic CD4 T cell depletion, almost a third of SIV-infected Indian RMs fail to produce SIV-specific antibodies and to demonstrate an immune activation. Several groups, including ours, have been working with RMs of Chinese origin, which offer several advantages [11,12,13,14,15,16]. In fact, the dynamics of immune events in Chinese RMs are closer to the clinical observations in people living with HIV (PLWH). Indeed, in the blood of PLWH, the proportion of CD4 T cells expressing CCR5 increases following HIV infection [17,18,19,20]. This increase is a marker of disease progression, particularly because immune activation promotes the expression of CCR5 [17,18,19,20]. Accordingly, the absence of CCR5 increases in African green monkeys during the acute phase is associated with a low level of T cell immune activation, contrary to what is observed in SIV-infected RMs [16]. Whereas a drastic depletion of CCR5-positive T cells is reported in Indian RMs [21,22], this depletion in the blood of RMs of Chinese origin is transient, and this proportion is increasing post-acute phase [13], consistent with the dynamics observed in PLWH [17,18,19,20]. We have also reported that in naïve RMs of Chinese origin [13], the percentages of CD4 T cells expressing CCR5 (approximately 7%) are similar to those observed in non-pathogenic NHP models like in African green monkeys or sooty mangabeys and different from that reported for CD4 T cells of Indian RMs (approximately 20%) [21,22,23] (Table 1). Thus, this observation in RMs of Chinese origin suggests that the loss of memory CD4 T cells cannot be solely attributed to a difference in CCR5 expression between pathogenic and non-pathogenic NHP models. Although CCR5 represents one of the main co-receptors, we have previously found that alternative co-receptors such as Bob/GPR15 may participate in the priming of T cells from RMs to die by apoptosis; however, the dynamics of CD4 T cells expressing this co-receptor remain poorly studied [24]. Another animal model is the pigtailed macaque (Macaca nemestrina), which is highly susceptible to SIV infection [25], showing a drastic CD4 T cell depletion, the absence of SIV-specific antibodies [26], and developing encephalitis within a couple of weeks after infection [27]. Therefore, this animal model is less useful in designing effective antibody-based vaccines or in evaluating the correlates of protection associated with humoral immunity. However, whereas this phenotype is generally observed in US colonies, pigtailed monkeys living in Australia display a distinct profile in which a specific humoral response is observed [28]. This difference may reflect genetic inbreeding in the US, related to the limited number of founders.
Indeed, a number of studies have revealed that certain macaque major histocompatibility complex (MHC; Mamu) class I alleles, including Mamu-A*01 [30], Mamu-B*01 [31], and Mamu-B*17 [32], among others [33] are expressed with high frequency in Indian RM populations. The beneficial impact of TRIM5 alleles in Mauritian CMs also demonstrates limited genetic diversity due to a small number of founder animals with only seven MHC haplotypes (M1-M7) [34]; such diversity is higher in other breeding colonies [35] (Table 1). These MHC class I alleles are more polymorphic in Chinese RMs than in their Indian counterparts, and few are overlapping [36,37,38,39]. The Mamu-A1*02201, one of the most frequent alleles identified, is an analog to HLA-B7 supertype in humans [37]. The Mamu-A1* 02601 and Mamu-B*08301 alleles, each representing a frequency of 6%, share characteristics in terms of peptide antigen recognition with the HLA-A2 and HLA-A3 supertypes in humans. Thus, these three common Mamu class I alleles identified in Chinese RMs, which are absent in Indian RMs [37,40,41], are associated with a peptide motif corresponding to one of the three most common HLA supertypes expressed in humans. When HLA-B7, HLA-A2, and HLA-A3 supertypes are combined, over 86% of the human population is covered [42]. These differences between monkey species could likely be the consequence of the USA moratorium on animal import in 1978 and the subsequent inbreeding in primate centers.
Furthermore, in Indian RMs, in addition to the restricting Tripartite motif 5α factor (TRIM5α) in which TFP/TFP and TFP/Q genotypes are predominant [43], the Mamu-B*08 [44,45], Mamu-B*17 and Mamu-A*01 alleles are associated with viral control [32,46,47] (Table 1). Peptides presented by Mamu-B*08 share a binding motif with peptides presented by HLA-B*27 allele, which is associated with viral control in humans [44,48,49,50]. In the German Primate Center breeding colony, the average frequency of the Mamu-A*08 allele was reported to be 48% [51]. Whereas the HLA-B*57 allele has been identified earlier in HIV-1-infected long-term non-progressors [52,53,54,55], little is known so far regarding its analog in macaques. In CMs, the M1 and M6 MHC haplotypes have also been mostly associated with spontaneous SIV control [56,57,58]. However, the beneficial impact of TRIM5α alleles on SIV-infection remains controversial [59,60].
Therefore, based on our expertise with SIVmac-infected Chinese RMs, we have developed this model to assess a viral reservoir (VR) atlas after antiretroviral therapy (ART) administration.

2. Viral Dynamics and Persistence Despite ART

Viral production in HIV-infected individuals results from a dynamic process involving continuous rounds of de novo infection and replication in CD4 T cells, along with the rapid turnover of both cell-free virus and virus-producing cells. The level of viral load is a strong predictor of disease progression [61,62,63]. However, assessing antiretroviral therapies in monkey models also needs to consider the strains of SIV used and the age of the animals. Indeed, different SIV strains are used to infect RMs, such as SIVmac239 and SIVmac251; although the former is less potent in infecting the macrophages in vitro [64]. NHP infection may also be carried out with simian/human immunodeficiency viruses (SHIVs) that express the HIV envelope but often yield too low viral loads and fail to establish persistent viral infection after 3 months [65]. This attenuated profile is exacerbated in CMs. Similarly, a nef-deleted SIVmac is associated with low viral loads and is generally considered non-pathogenic in macaques [66]. However, this attenuated virus can lead to AIDS in a large proportion of neonatal and adult RMs after several years [67,68,69].
With the advent of antiretroviral combined therapy, the eradication of VRs remains a major challenge for HIV cure [70]. In most PLWH, plasma viral rebound occurs within days or weeks after ART interruption (ATi) [71,72,73,74,75]. However, due to the challenges of sampling tissues in humans, macaques have been useful in deciphering the early events associated with viral dissemination and addressing the establishment of VRs under ART. ART administered early after infection before plasma viremia detection [76] is unable to prevent VR establishment [77,78,79]. This initial observation by Whitney et al. [76], reporting the absence of viral detection in blood and peripheral LNs in Indian RMs, was of importance, indicating that the source of viral rebound after ATi was elsewhere [76,80]. Therefore, we performed similar experiments in Chinese RMs infected with SIVmac251 and treated with early ART (Figure 2). We reported that VRs are seeded in mesenteric lymph nodes (MLNs) and in the spleen [80].
The establishment of VRs also generates a large fraction of cells with defective genomes, which represent the vast majority of HIV-1 DNA persisting under ART [85,86,87]. Although defective, these genomes may lead to the expression of some viral antigens, triggering cytolytic immune responses [88,89]. This viral persistence may also contribute to HIV-associated inflammation through the recognition of HIV proteins and RNAs that activate innate antiviral responses [90,91]. Recent studies in SIVmac239- and SHIV-infected Indian RMs treated with ART have shown the persistence of defective proviruses as well [92]. Of importance was the observation obtained using immunoPET (antibody-targeted positron emission tomography) showing that in aviremic antiretroviral-treated Indian RMs, the glycoprotein of SIV is detectable in various tissues, including the colon, certain lymph nodes, and lungs [93], indicating the presence of transcriptionally active infected cells despite ART.
The quality of immune cells in maintaining viral control within tissues under ART is crucial for effective viral suppression [94,95,96]. Recently, it has been shown that combining ART with a therapeutic strategy based on anti-IL-10 and anti-PD-1 monoclonal antibodies improves T cell immune response in SIV-infected Indian RMs and reduces viral rebound after ATi [97]. This observation is consistent with the suppressive role of IL-10, which is of critical importance during the acute phase [98,99]. By counter-balancing the positive action of IL-12, as described more than two decades ago [98,99,100], IL-10 could contribute to NK cell impairment and hinder viral clearance. Indeed, NK cells have been proposed to play an important role in eliminating productive infected cells in the lymph nodes of SIV-infected African green monkeys [101].
Thus, immunotherapies in association with ART offer promising new avenues to boost the immune system’s ability to tackle anatomical VRs.

3. Myeloid Cells and VRs

Blood monocytes consist of subsets with distinct phenotypic and functional characteristics. The expression of CD14 (lipopolysaccharide [LPS] coreceptor) and CD16 (FcγRIII) distinguishes classical (CD14++ CD16−), intermediate (CD14++ CD16+), and nonclassical (CD14+/− CD16+) monocyte subsets [102]. Whereas the CD14 population expresses the chemokine receptor CCR1 and CCR2, enabling migration into inflamed tissues via CCL2 and CCL3 gradients, the CD16 subset expresses CX3CR1 and migrates into the inflamed tissues in response to CX3CL1. Blood monocytes also express CD4 and CCR5, which are important for HIV infection [103,104]. In this context, although blood monocytes are non-cycling and non-proliferating cells, productive infection coincides with their entry into the G1/S phase of the cell cycle. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is one of the main cytokines that promotes and sustains their productive infection [105,106,107]. Myeloid cells support high levels of viral replication, especially during bacterial infection [108] or when T cells have been depleted [109,110].
Whereas viral DNA can be detected in blood monocytes [111,112,113], we and several groups have reported the beneficial effect of ART in reducing the pool of infected monocytes [114,115,116,117]. In a model of humanized mice, persistent infection of myeloid cells is responsible for viral rebound after ATi [118]. The pool of infected blood monocytes is drastically reduced when ART is administrated early after infection in SIVmac251-infected RMs of Chinese origin [81] (Figure 2). This is critical, as monocytes contribute to the turnover of intestinal macrophages during inflammation and after tissue injury [119,120]. Furthermore, we have reported that early ART prevents the infection of monocytes in the spleen. This is of importance, given that splenic monocytes represent major cellular reservoirs mobilized early after trauma [121]. Therefore, by preventing monocyte infection, ART has a beneficial effect in limiting viral dissemination.
Inflamed and resident macrophages [122] may also contribute to the establishment of VRs. Thus, viral DNA also persists in pulmonary macrophages of ART-treated pigtailed macaques [123] and in PLWH associated with immune pulmonary alterations [124,125,126]. Recently, our team found that pulmonary CD206+ tissue-resident macrophages contain viral DNA despite early ART in SIVmac251-infected RMs of Chinese origin [83]. Infection of macrophages has also been earlier established in the brain [127], including perivascular cells [128] associated with cognitive impairment in SIV-infected RMs [129]. Viral DNA and neurocognitive symptoms have also been described in PLWH despite ART [130,131]. Thus, the brain from different macaque species was shown to harbor SIV-infected cells [82,132,133] even when treated with early ART. Importantly, our study in early ART-treated SIVmac251-infected Chinese RMs revealed that brain tissues harbor significant levels of viral RNA/DNA and capsid antigens in microglia/macrophages [82]. The liver may also contain a persisting virus under ART [134], in which, similarly to the lungs, the CD206+ tissue-resident macrophages harbor viral DNA [83] (Figure 2).
In both the brain and lungs, an inflammatory signature persists, despite early ART administered in SIVmac251-infected Chinese RMs [83,135]. This is particularly significant given that chronic inflammation is associated with comorbidities in PLWH [136,137,138,139]. In this context of inflammation, it has been shown that ART is unable to reduce the expression of caspase-1, the main effector molecule of the inflammasome, and IL-18 [140,141]. IL-18, which is an inducer of FasL, a pro-apoptotic molecule [142,143], is a substrate of caspase-1 [144,145]. The administration of Q-VD, a broad-spectrum caspase inhibitor, effectively inhibits caspase activation and reduces inflammation in SIVmac251-infected RMs of Chinese origin [146]. Other inhibitors could be of interest, such as z-VAD-FMK, but this molecule interferes with cell proliferation and maturation [147,148], or VX-765, which is specific to caspase-1 [149,150]. Given that chronic inflammation is a characteristic of PLWH, these molecules might offer potential benefits for PLWH undergoing ART.

4. CD4 T Cell Subsets and VRs

CD4 T cells are crucial to achieving a regulated, effective immune response to pathogens. They may acquire distinct cytokine polarization (e.g., Th1, Th17, Treg) controlled by inflammation and metabolism [151]. Thus, naïve CD4 T cells are activated upon interaction with the antigen-MHC complex and differentiate into specific subtypes, mainly depending on the cytokine milieu of the microenvironment (Figure 3). Central memory (TCM) and transitional memory (TTM) CD4 T lymphocytes have been reported to be the main VRs in the blood of PLWH [152]. While a role of long-lived stem cell memory CD4 T cells has been proposed [153], other groups have reported a significant enrichment in TCM expressing the chemokine receptor CCR6 in PLWH as VRs [154], considered to be related to Th17 [151]. Whereas this population has been described in SIV-infected RMs of Indian origin [155], another subset of memory CD4 T cells expressing CTLA-4 but lacking programmed death-1 (PD-1) expression has also been reported as VR, sharing markers with regulatory T cells [156]. This may reflect the altered balance of Th17/Treg cells since Th17 cells are selectively depleted from the gut [157,158]. However, we have observed that such balance is partially restored after an early ART in SIVmac251-infected RMs of Chinese origin in lymph nodes draining the large and small intestines [159]. These exhausted molecules, CTLA-4 and PD-1, have been proposed to promote HIV latency in PLWH [160,161]. In non-lymphoid tissues such as the liver, memory CD4 T cells, which strongly express CCR5, are also infected and depleted in SIVmac251-infected RMs of Chinese origin. These cells undergo transcriptional reprogramming, with increased expression of granzyme A and members of the transforming growth factor (TGF)-β family, potentially contributing to fueling the hepatic inflammation and fibrosis [84]. However, the role of CD4 T cells as VRs in the hepatic tissues of PLWH remains poorly addressed so far.
In addition, the T follicular helper (Tfh) cell subset, which produces IL-21 and is essential for germinal center (GC) development, B cell maturation, and antibody production [162,163,164,165], has also been identified as a VR [28,166,167,168,169,170,171] (Figure 2). This population highly expresses the chemokine receptor CXCR5 and PD-1 (Figure 3) [164,165]. Although an expansion of circulating Tfh has been reported [172,173], the percentages of Tfh cells in peripheral LNs from progressor RMs are lower than in non-progressor RMs [168,174]. Furthermore, we have reported an early depletion of Tfh cells after infection, both in the spleen and MLNs of SIVmac251-infected RMs of Chinese origin [171,175]. In addition, this depletion was associated with altered CXCR5 ligand (CXCL13) expression in B cell follicles and profound remodeling of the GC architecture in this model [171,175].
Several transcriptional factors (TFs), both activators [176,177,178,179,180] and repressors [181,182,183,184], play a role in the regulation of Tfh cells. Higher levels of the TFs Foxo1 and KLF2 [181,182,183,184], as well as Stat5 phosphorylation [185,186,187] are associated with a block in Tfh differentiation. In the context of HIV/SIV infections, Tfh is abnormally differentiated [167,171,175,188,189,190,191]. Tfh cells from both the spleen and MLNs of SIVmac251-infected RMs of Chinese origin display a Th1-like profile [171,175] similar to that reported in peripheral LNs of SIV-infected RMs of Indian origin [192]. Given the immunological role of Tfh cells, along with the localization of SIV RNA in the region of B cell follicles and its accumulation in the follicular dendritic cell network (Figure 3), strategies aimed at improving and/or reprogramming Tfh cell function, as well as preventing their infection, could be highly beneficial for PLWH.

5. Viral Dissemination After ART Interruption

Once viremia is controlled by early ART and despite the absence of viral detection in the blood and peripheral LNs, a viral rebound is observed within two weeks after ATi [71,72,73,74,75]. Viral rebound can be used as a measure of in vivo inducible VRs and treatment efficacy. Thus, different strategies aiming to tackle VRs are measuring viral rebound after treatment [97]. To assess viral dissemination, we performed several analyses from SIVmac251-infected RMs of Chinese origin that were sacrificed on days 10, 12, 15, and 18 post-ATi. These time-points correspond to 3 days after the first detectable viremia in the blood. Thus, a short time after viral detection, we performed necropsies. Whereas on day 10, viral DNA was detected only in splenic Tfh, all T cell subsets from MLNs displayed viral DNA; none of the CD4 T cell subsets in peripheral LNs expressed viral DNA, indicating a limited dissemination. Nevertheless, in less than 2 weeks, in 3 RMs of Chinese origin (necropsied on days 12, 15, and 18 post ATi), effector memory CD4 T cells (TEM) and Tfh cells expressed viral DNA, both in the spleen and MLNs, but also in peripheral LNs. In these compartments, CM CD4 T cells are also infected, indicating the rapid dissemination of SIVmac251 [76]. Altogether, these observations suggest that once the ART is interrupted, SIV-infected cells are de novo transcriptionally active in MLN and the spleen is capable of generating, in a week, millions of viral particles in the blood. Understanding the role of these populations is of central interest for the cure strategies.
From the same RMs, we also analyzed monocytes across the blood, spleen, and intestine. Whereas no virus was detected in these compartments among individuals necropsied under ART [57], monocytes were infected, expressing viral RNA following ATi. Notably, the spleen emerged as one of the main anatomical sites of viral rebound in SIVmac251-infected RMs of Chinese origin [81]. Thus, on day 10 post-ATi, we detected a few SIV-DNA-positive CD14 cells and mostly localized in the intestine. However, on days 12, 15, and 18 post-ATi, we observed viral DNA in the three different compartments of the necropsied RMs. The main infected monocytic subpopulation was CD14-positive rather than CD14-negative. Nevertheless, the extent of viral infection in monocytes was lower compared to that in CD4 T cells.
Altogether, these results indicate that after ATi, viral dissemination is rapid, targeting CD4 T cells, in which Tfh cells represent the preferentially infected population, but also myeloid cells in SIVmac251-infected RMs of Chinese origin. Thus, different strategies aiming to tackle VRs need to consider the nature of the infected cells after the viral rebound, particularly in tissues where Tfh cells are predominant targets.

6. B Cell Response and VRs

As indicated Tfh cells represent the main VRs in visceral lymphoid tissues. A defect in the interaction between B and Tfh cells may lead to an impaired immune response [162,163,164,165]. It has been shown that persistent triggering of PD-1 affects Tfh ability to provide adequate B cell help [190]. The comparison of pathogenic and non-pathogenic lentiviral infections has indicated a negative correlation between the levels of CD4 T cell death and the capacity to generate an IgG response [16,193]. Furthermore, a loss of B cells and an absence of seroconversion were observed in RMs that progress to AIDS, in particular in Indian RMs progressing faster to AIDS, showing an absence of immune activation and a huge depletion of memory CD4 T cells shortly after infection associated with T cell apoptosis [193,194]. Importantly, in B-cell areas surrounding GCs where Tfh are localized, dying B cells have been reported to be associated with GC involution [195]. We have found an early defection in the differentiation of B cells, not only in the spleen but also in MLNs of SIVmac251-infected RMs of Chinese origin, concomitantly with the depletion of Tfh cells [171,175]. Thus, the genesis of mature B cells and survival associated with the production of specific antibodies against HIV positively correlate with the frequency and quality of Tfh cells [174,196].
B cell-activating factor (BAFF) and a proliferation-inducing ligand (APRIL), which shares two receptors with BAFF, play essential roles in B cell regulation. Interestingly, APRIL has been proposed to correlate with the magnitude of vaccine responses [197,198].
Early ART has been reported to preserve peripheral blood B cells in PLWH [199]. However, BAFF levels remain elevated in ART-treated individuals compared to healthy donors [200] and are associated with HIV-related disease progression [201]. Moreover, abnormal B cell differentiation persists in PLWH, and the ability to respond to vaccines often remains compromised [202,203]. Importantly, it has been shown that follicular hyperplasia is not completely resolved following ART [204,205,206], and the amount of LN fibrosis negatively correlates with the vaccine response [207]. This defect in lymphoid tissues may provide a rationale for the observation that Tfh cell function remains impaired in PLWH who do not respond efficiently to the influenza vaccine, despite ART [208,209].
Identifying strategies that may enhance B cell survival and restore Tfh functions could be of interest to PLWH, particularly to improve vaccine response.

7. Apoptosis, Caspases and Therapy

Depletion of CD4 T cells, in particular memory, is characteristic of pathogenic lentiviral infections. Studies conducted in both pathogenic and non-pathogenic models of SIV infection demonstrated a direct correlation between progression to AIDS and levels of CD4 T cell apoptosis [8,16,24,98,100,193,210,211,212,213,214,215,216] (Figure 1B). Although viral replication may induce T cell death [217,218,219], most dying cells are non-infected suggesting alternative mechanisms [211,216]. Two main physiological mechanisms contribute to regulating lymphoid cell death: activation-induced cell death (AICD) and death by neglect (or cytokine deprivation). AICD depends on Fas (CD95) and is associated with the activation of caspases, whereas death by neglect activates members of the Bcl-2 family and the mitochondrial pathway of apoptosis [220,221,222]. CD4 T cell death during HIV/SIV infections can be related, at least in part, to heightened levels of immune activation [210,212,213,223,224] and an increased sensitivity to Fas signaling, leading to caspase activation and death [98,100,214,225]. The HIV-1 envelope glycoprotein also induces death [226,227,228,229,230,231,232,233,234,235] through the activation of caspase-3 and caspase-8 [229,230]. CD4 T cells may also die via a caspase-1–mediated pyroptosis [231,236] or by autophagy [237]. A recent report indicates that CARD8 inflammasome drives CD4 T cell depletion during pathogenic HIV/SIV infections [238]. Finally, it was shown that CD4 T cells from aviremic PLWH remain more susceptible to dying by apoptosis compared to healthy donors [239,240,241].
The fact that T cell death remains elevated in PLWH is not anecdotic. Indeed, TEM cells and the more differentiated T cell subsets (TDT) are the subsets more prone to dying by AICD [98,214] compared to TCM and naïve CD4 T cells. While viral DNA detected in TEM is higher compared to TCM, TEM cells are less potent in reactivating integrated viral DNA compared to TCM. This difference in the susceptibility of T cells to die after stimulation is generally not considered in most of the recent studies assessing VRs. Indeed, it cannot be excluded that the inability to detect viral RNA after reactivation is related to the fact that these T cells are dying before being productive. Similarly, attempts to monitor the antigen-specificity of CD4 T cells could also be impacted by AICD. This process contributed to the defective recall immune responses observed in PLWH during the 1990s [242,243]. Counterintuitively, individuals with reduced VRs and T cells less susceptible to apoptosis would be expected to exhibit stronger specific immune responses compared to those with larger VRs and T cells more prone to cell death. Therefore, the modus operandi needs to consider T cell death, even in ART-treated individuals in whom the persistence of VR may impact T cell immunity.
However, the formal proof of the importance of apoptosis was provided by the administration of Q-VD, a broad caspase inhibitor, during the acute phase in the absence of ART. Indeed, we showed that in SIVmac251-infected Chinese RMs treated with Q-VD, the prevention of memory CD4 T cell death enabled the generation of antigen-specific memory CD4 T cells [146]. Most importantly, viremia and cell-associated SIV DNA were reduced and progression to AIDS was delayed in Q-VD-treated RMs compared to control RMs, although we used a model in which vpx contributes to viral virulence [244,245].
Thus, caspase inhibitors could represent an adjunctive therapeutic agent to reduce the VRs and inflammation in PLWH.

8. Conclusions

Altogether, these studies have provided strong information regarding cellular and tissue reservoirs for SIV. This is of importance for PLWH, in which such analyses are extremely complicated to perform. Furthermore, these experiments have provided major advances regarding our knowledge of the alterations of the immune system in the course of lentiviral infections, which persist despite early ART. Indeed, virus-induced reprogramming of immune cells occurs early after infection, and strategies aiming to rejuvenate the immune system are needed.

Author Contributions

J.E., writing—original draft preparation, supervision, conceptualization, methodology; validation, investigation, writing—review and editing; J.A.C., F.M., P.C. and O.Z.-A., writing—review and editing; J.A.C., M.P., H.R., S.A., S.B., E.G.M., J.D., Q.D., E.T., G.R., C.S., O.Z.-A. and J.E. performed the experiments and analyzed the data. All authors have read and agreed to the published version of the manuscript.

Funding

J.E. was supported by grants from the ANRS maladies infectieuses émergentes (ANRS-MIE) and by the Canadian Institutes of Health Research (CIHR) (HBF-123682, PJT-175182, HBF-126786, MOP-142195 and MOP-133476) and by the Canadian HIV Cure Enterprise Grant HIG-133050 from the CIHR partnership with CANFAR (HB2-164064) and IAS. J.A.C. was supported by a fellowship from Laval University (Fonds de recherche sur le Sida), CHU de Québec (Formation Desjardins pour la Recherche et l’Innovation), and Fonds de Recherche du Québec—Nature et Technologie (FRQNT). H.R. was supported by a fellowship from CHU de Québec (Formation Desjardins pour la Recherche et l’Innovation) and Fonds de Recherche du Québec—Santé (FRQS). MP was supported by a fellowship from Ensemble Contre le Sida (Sidaction). E.T. was supported by a fellowship from Fonds de Recherche du Québec—Santé (FRQS) et Instituts de Recherche en Santé du Canada (IRSC).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

No new data generated or analysed.

Acknowledgments

This paper is part of the Special Issue entitled “Prevention, Diagnosis, and Treatment of Infectious Diseases”, dedicated to the 50th anniversary of the research center in infectious diseases, founded by Michel G. Bergeron, at the CHU de Québec-Université Laval’s Research Center. We would like to extend our sincere gratitude to Michel G. Bergeron for his invaluable contributions and for creating such an exceptional research environment.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Peeters, M.; Honoré, C.; Huet, T.; Bedjabaga, L.; Ossari, S.; Bussi, P.; Cooper, R.W.; Delaporte, E. Isolation and partial characterization of an HIV-related virus occurring naturally in chimpanzees in Gabon. Aids 1989, 3, 625–630. [Google Scholar] [CrossRef] [PubMed]
  2. Kanki, P.J.; Alroy, J.; Essex, M. Isolation of T-lymphotropic retrovirus related to HTLV-III/LAV from wild-caught African green monkeys. Science 1985, 230, 951–954. [Google Scholar] [CrossRef] [PubMed]
  3. Fukasawa, M.; Miura, T.; Hasegawa, A.; Morikawa, S.; Tsujimoto, H.; Miki, K.; Kitamura, T.; Hayami, M. Sequence of simian immunodeficiency virus from African green monkey, a new member of the HIV/SIV group. Nature 1988, 333, 457–461. [Google Scholar] [CrossRef] [PubMed]
  4. Hirsch, V.M.; Olmsted, R.A.; Murphey-Corb, M.; Purcell, R.H.; Johnson, P.R. An African primate lentivirus (SIVsm) closely related to HIV-2. Nature 1989, 339, 389–392. [Google Scholar] [CrossRef]
  5. Estaquier, J.; Peeters, M.; Bedjabaga, L.; Honoré, C.; Bussi, P.; Dixson, A.; Delaporte, E. Prevalence and transmission of simian immunodeficiency virus and simian T-cell leukemia virus in a semi-free-range breeding colony of mandrills in Gabon. Aids 1991, 5, 1385–1386. [Google Scholar] [CrossRef]
  6. Tsujimoto, H.; Hasegawa, A.; Maki, N.; Fukasawa, M.; Miura, T.; Speidel, S.; Cooper, R.W.; Moriyama, E.N.; Gojobori, T.; Hayami, M. Sequence of a novel simian immunodeficiency virus from a wild-caught African mandrill. Nature 1989, 341, 539–541. [Google Scholar] [CrossRef]
  7. Van Heuverswyn, F.; Li, Y.; Neel, C.; Bailes, E.; Keele, B.F.; Liu, W.; Loul, S.; Butel, C.; Liegeois, F.; Bienvenue, Y.; et al. Human immunodeficiency viruses: SIV infection in wild gorillas. Nature 2006, 444, 164. [Google Scholar] [CrossRef]
  8. Estaquier, J.; Idziorek, T.; de Bels, F.; Barre-Sinoussi, F.; Hurtrel, B.; Aubertin, A.M.; Venet, A.; Mehtali, M.; Muchmore, E.; Michel, P.; et al. Programmed cell death and AIDS: Significance of T-cell apoptosis in pathogenic and nonpathogenic primate lentiviral infections. Proc. Natl. Acad. Sci. USA 1994, 91, 9431–9435. [Google Scholar] [CrossRef]
  9. Apetrei, C.; Robertson, D.L.; Marx, P.A. The history of SIVS and AIDS: Epidemiology, phylogeny and biology of isolates from naturally SIV infected non-human primates (NHP) in Africa. Front. Biosci. 2004, 9, 225–254. [Google Scholar] [CrossRef]
  10. Reimann, K.A.; Parker, R.A.; Seaman, M.S.; Beaudry, K.; Beddall, M.; Peterson, L.; Williams, K.C.; Veazey, R.S.; Montefiori, D.C.; Mascola, J.R.; et al. Pathogenicity of simian-human immunodeficiency virus SHIV-89.6P and SIVmac is attenuated in cynomolgus macaques and associated with early T-lymphocyte responses. J. Virol. 2005, 79, 8878–8885. [Google Scholar] [CrossRef]
  11. Ling, B.; Veazey, R.S.; Luckay, A.; Penedo, C.; Xu, K.; Lifson, J.D.; Marx, P.A. SIVmac pathogenesis in rhesus macaques of Chinese and Indian origin compared with primary HIV infections in humans. AIDS 2002, 16, 1489–1496. [Google Scholar] [CrossRef] [PubMed]
  12. Marcondes, M.C.; Penedo, M.C.; Lanigan, C.; Hall, D.; Watry, D.D.; Zandonatti, M.; Fox, H.S. Simian immunodeficiency virus-induced CD4+ T cell deficits in cytokine secretion profile are dependent on monkey origin. Viral Immunol. 2006, 19, 679–689. [Google Scholar] [CrossRef] [PubMed]
  13. Monceaux, V.; Viollet, L.; Petit, F.; Cumont, M.C.; Kaufmann, G.R.; Aubertin, A.M.; Hurtrel, B.; Silvestri, G.; Estaquier, J. CD4+ CCR5+ T-cell dynamics during simian immunodeficiency virus infection of Chinese rhesus macaques. J. Virol. 2007, 81, 13865–13875. [Google Scholar] [CrossRef] [PubMed]
  14. Elbim, C.; Monceaux, V.; Mueller, Y.M.; Lewis, M.G.; Francois, S.; Diop, O.; Akarid, K.; Hurtrel, B.; Gougerot-Pocidalo, M.A.; Levy, Y.; et al. Early divergence in neutrophil apoptosis between pathogenic and nonpathogenic simian immunodeficiency virus infections of nonhuman primates. J. Immunol. 2008, 181, 8613–8623. [Google Scholar] [CrossRef]
  15. Campillo-Gimenez, L.; Laforge, M.; Fay, M.; Brussel, A.; Cumont, M.C.; Monceaux, V.; Diop, O.; Levy, Y.; Hurtrel, B.; Zaunders, J.; et al. Nonpathogenesis of simian immunodeficiency virus infection is associated with reduced inflammation and recruitment of plasmacytoid dendritic cells to lymph nodes, not to lack of an interferon type I response, during the acute phase. J. Virol. 2010, 84, 1838–1846. [Google Scholar] [CrossRef]
  16. Cumont, M.C.; Diop, O.; Vaslin, B.; Elbim, C.; Viollet, L.; Monceaux, V.; Lay, S.; Silvestri, G.; Le Grand, R.; Muller-Trutwin, M.; et al. Early divergence in lymphoid tissue apoptosis between pathogenic and nonpathogenic simian immunodeficiency virus infections of nonhuman primates. J. Virol. 2008, 82, 1175–1184. [Google Scholar] [CrossRef]
  17. Ostrowski, M.A.; Justement, S.J.; Catanzaro, A.; Hallahan, C.A.; Ehler, L.A.; Mizell, S.B.; Kumar, P.N.; Mican, J.A.; Chun, T.W.; Fauci, A.S. Expression of chemokine receptors CXCR4 and CCR5 in HIV-1-infected and uninfected individuals. J. Immunol. 1998, 161, 3195–3201. [Google Scholar] [CrossRef]
  18. Reynes, J.; Baillat, V.; Portales, P.; Clot, J.; Corbeau, P. Relationship between CCR5 density and viral load after discontinuation of antiretroviral therapy. Jama 2004, 291, 46. [Google Scholar] [CrossRef]
  19. Reynes, J.; Portales, P.; Segondy, M.; Baillat, V.; Andre, P.; Reant, B.; Avinens, O.; Couderc, G.; Benkirane, M.; Clot, J.; et al. CD4+ T cell surface CCR5 density as a determining factor of virus load in persons infected with human immunodeficiency virus type 1. J. Infect. Dis. 2000, 181, 927–932. [Google Scholar] [CrossRef]
  20. Deeks, S.G.; Kitchen, C.M.; Liu, L.; Guo, H.; Gascon, R.; Narvaez, A.B.; Hunt, P.; Martin, J.N.; Kahn, J.O.; Levy, J.; et al. Immune activation set point during early HIV infection predicts subsequent CD4+ T-cell changes independent of viral load. Blood 2004, 104, 942–947. [Google Scholar] [CrossRef]
  21. Picker, L.J.; Hagen, S.I.; Lum, R.; Reed-Inderbitzin, E.F.; Daly, L.M.; Sylwester, A.W.; Walker, J.M.; Siess, D.C.; Piatak, M., Jr.; Wang, C.; et al. Insufficient Production and Tissue Delivery of CD4+ Memory T Cells in Rapidly Progressive Simian Immunodeficiency Virus Infection. J. Exp. Med. 2004, 200, 1299–1314. [Google Scholar] [CrossRef] [PubMed]
  22. Pandrea, I.; Apetrei, C.; Gordon, S.; Barbercheck, J.; Dufour, J.; Bohm, R.; Sumpter, B.; Roques, P.; Marx, P.A.; Hirsch, V.M.; et al. Paucity of CD4+CCR5+ T cells is a typical feature of natural SIV hosts. Blood 2007, 109, 1069–1076. [Google Scholar] [CrossRef] [PubMed]
  23. Paiardini, M.; Cervasi, B.; Reyes-Aviles, E.; Micci, L.; Ortiz, A.M.; Chahroudi, A.; Vinton, C.; Gordon, S.N.; Bosinger, S.E.; Francella, N.; et al. Low levels of SIV infection in sooty mangabey central memory CD⁴⁺ T cells are associated with limited CCR5 expression. Nat. Med. 2011, 17, 830–836. [Google Scholar] [CrossRef] [PubMed]
  24. Viollet, L.; Monceaux, V.; Petit, F.; Ho Tsong Fang, R.; Cumont, M.C.; Hurtrel, B.; Estaquier, J. Death of CD4+ T cells from lymph nodes during primary SIVmac251 infection predicts the rate of AIDS progression. J. Immunol. 2006, 177, 6685–6694. [Google Scholar] [CrossRef] [PubMed]
  25. Klatt, N.R.; Canary, L.A.; Vanderford, T.H.; Vinton, C.L.; Engram, J.C.; Dunham, R.M.; Cronise, H.E.; Swerczek, J.M.; Lafont, B.A.; Picker, L.J.; et al. Dynamics of simian immunodeficiency virus SIVmac239 infection in pigtail macaques. J. Virol. 2012, 86, 1203–1213. [Google Scholar] [CrossRef]
  26. Hirsch, V.M.; Santra, S.; Goldstein, S.; Plishka, R.; Buckler-White, A.; Seth, A.; Ourmanov, I.; Brown, C.R.; Engle, R.; Montefiori, D.; et al. Immune failure in the absence of profound CD4+ T-lymphocyte depletion in simian immunodeficiency virus-infected rapid progressor macaques. J. Virol. 2004, 78, 275–284. [Google Scholar] [CrossRef]
  27. Clements, J.E.; Mankowski, J.L.; Gama, L.; Zink, M.C. The accelerated simian immunodeficiency virus macaque model of human immunodeficiency virus-associated neurological disease: From mechanism to treatment. J. Neurovirology 2008, 14, 309–317. [Google Scholar] [CrossRef]
  28. Xu, Y.; Weatherall, C.; Bailey, M.; Alcantara, S.; De Rose, R.; Estaquier, J.; Wilson, K.; Suzuki, K.; Corbeil, J.; Cooper, D.A.; et al. Simian immunodeficiency virus infects follicular helper CD4 T cells in lymphoid tissues during pathogenic infection of pigtail macaques. J. Virol. 2013, 87, 3760–3773. [Google Scholar] [CrossRef]
  29. Jasinska, A.J.; Apetrei, C.; Pandrea, I. Walk on the wild side: SIV infection in African non-human primate hosts-from the field to the laboratory. Front. Immunol. 2022, 13, 1060985. [Google Scholar] [CrossRef]
  30. Allen, T.M.; Mothé, B.R.; Sidney, J.; Jing, P.; Dzuris, J.L.; Liebl, M.E.; Vogel, T.U.; O’Connor, D.H.; Wang, X.; Wussow, M.C.; et al. CD8+ lymphocytes from simian immunodeficiency virus-infected rhesus macaques recognize 14 different epitopes bound by the major histocompatibility complex class I molecule mamu-A*01: Implications for vaccine design and testing. J. Virol. 2001, 75, 738–749. [Google Scholar] [CrossRef]
  31. Loffredo, J.T.; Sidney, J.; Piaskowski, S.; Szymanski, A.; Furlott, J.; Rudersdorf, R.; Reed, J.; Peters, B.; Hickman-Miller, H.D.; Bardet, W.; et al. The high frequency Indian rhesus macaque MHC class I molecule, Mamu-B*01, does not appear to be involved in CD8+ T lymphocyte responses to SIVmac239. J. Immunol. 2005, 175, 5986–5997. [Google Scholar] [CrossRef] [PubMed]
  32. Mothé, B.R.; Weinfurter, J.; Wang, C.; Rehrauer, W.; Wilson, N.; Allen, T.M.; Allison, D.B.; Watkins, D.I. Expression of the major histocompatibility complex class I molecule Mamu-A*01 is associated with control of simian immunodeficiency virus SIVmac239 replication. J. Virol. 2003, 77, 2736–2740. [Google Scholar] [CrossRef] [PubMed]
  33. Loffredo, J.T.; Sidney, J.; Wojewoda, C.; Dodds, E.; Reynolds, M.R.; Napoé, G.; Mothé, B.R.; O’Connor, D.H.; Wilson, N.A.; Watkins, D.I.; et al. Identification of seventeen new simian immunodeficiency virus-derived CD8+ T cell epitopes restricted by the high frequency molecule, Mamu-A*02, and potential escape from CTL recognition. J. Immunol. 2004, 173, 5064–5076. [Google Scholar] [CrossRef] [PubMed]
  34. Budde, M.L.; Wiseman, R.W.; Karl, J.A.; Hanczaruk, B.; Simen, B.B.; O’Connor, D.H. Characterization of Mauritian cynomolgus macaque major histocompatibility complex class I haplotypes by high-resolution pyrosequencing. Immunogenetics 2010, 62, 773–780. [Google Scholar] [CrossRef] [PubMed]
  35. Karl, J.A.; Graham, M.E.; Wiseman, R.W.; Heimbruch, K.E.; Gieger, S.M.; Doxiadis, G.G.; Bontrop, R.E.; O’Connor, D.H. Major histocompatibility complex haplotyping and long-amplicon allele discovery in cynomolgus macaques from Chinese breeding facilities. Immunogenetics 2017, 69, 211–229. [Google Scholar] [CrossRef]
  36. Karl, J.A.; Wiseman, R.W.; Campbell, K.J.; Blasky, A.J.; Hughes, A.L.; Ferguson, B.; Read, D.S.; O’Connor, D.H. Identification of MHC class I sequences in Chinese-origin rhesus macaques. Immunogenetics 2008, 60, 37–46. [Google Scholar] [CrossRef]
  37. Solomon, C.; Southwood, S.; Hoof, I.; Rudersdorf, R.; Peters, B.; Sidney, J.; Pinilla, C.; Marcondes, M.C.; Ling, B.; Marx, P.; et al. The most common Chinese rhesus macaque MHC class I molecule shares peptide binding repertoire with the HLA-B7 supertype. Immunogenetics 2010, 62, 451–464. [Google Scholar] [CrossRef]
  38. Otting, N.; Heijmans, C.M.C.; Noort, R.C.; de Groot, N.G.; Doxiadis, G.G.M.; van Rood, J.J.; Watkins, D.I.; Bontrop, R.E. Unparalleled complexity of the MHC class I region in rhesus macaques. Proc. Natl. Acad. Sci. USA 2005, 102, 1626–1631. [Google Scholar] [CrossRef]
  39. Otting, N.; de Vos-Rouweler, A.J.; Heijmans, C.M.; de Groot, N.G.; Doxiadis, G.G.; Bontrop, R.E. MHC class I A region diversity and polymorphism in macaque species. Immunogenetics 2007, 59, 367–375. [Google Scholar] [CrossRef]
  40. Kaizu, M.; Borchardt, G.J.; Glidden, C.E.; Fisk, D.L.; Loffredo, J.T.; Watkins, D.I.; Rehrauer, W.M. Molecular typing of major histocompatibility complex class I alleles in the Indian rhesus macaque which restrict SIV CD8+ T cell epitopes. Immunogenetics 2007, 59, 693–703. [Google Scholar] [CrossRef]
  41. Southwood, S.; Solomon, C.; Hoof, I.; Rudersdorf, R.; Sidney, J.; Peters, B.; Wahl, A.; Hawkins, O.; Hildebrand, W.; Mothe, B.R.; et al. Functional analysis of frequently expressed Chinese rhesus macaque MHC class I molecules Mamu-A1*02601 and Mamu-B*08301 reveals HLA-A2 and HLA-A3 supertypic specificities. Immunogenetics 2011, 63, 275–290. [Google Scholar] [CrossRef] [PubMed]
  42. Sette, A.; Sidney, J. Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism. Immunogenetics 1999, 50, 201–212. [Google Scholar] [CrossRef] [PubMed]
  43. de Groot, N.G.; Heijmans, C.M.; Koopman, G.; Verschoor, E.J.; Bogers, W.M.; Bontrop, R.E. TRIM5 allelic polymorphism in macaque species/populations of different geographic origins: Its impact on SIV vaccine studies. Tissue Antigens 2011, 78, 256–262. [Google Scholar] [CrossRef] [PubMed]
  44. Loffredo, J.T.; Sidney, J.; Bean, A.T.; Beal, D.R.; Bardet, W.; Wahl, A.; Hawkins, O.E.; Piaskowski, S.; Wilson, N.A.; Hildebrand, W.H.; et al. Two MHC class I molecules associated with elite control of immunodeficiency virus replication, Mamu-B*08 and HLA-B*2705, bind peptides with sequence similarity. J. Immunol. 2009, 182, 7763–7775. [Google Scholar] [CrossRef]
  45. Loffredo, J.T.; Maxwell, J.; Qi, Y.; Glidden, C.E.; Borchardt, G.J.; Soma, T.; Bean, A.T.; Beal, D.R.; Wilson, N.A.; Rehrauer, W.M.; et al. Mamu-B*08-positive macaques control simian immunodeficiency virus replication. J. Virol. 2007, 81, 8827–8832. [Google Scholar] [CrossRef]
  46. O’Connor, D.H.; Mothe, B.R.; Weinfurter, J.T.; Fuenger, S.; Rehrauer, W.M.; Jing, P.; Rudersdorf, R.R.; Liebl, M.E.; Krebs, K.; Vasquez, J.; et al. Major histocompatibility complex class I alleles associated with slow simian immunodeficiency virus disease progression bind epitopes recognized by dominant acute-phase cytotoxic-T-lymphocyte responses. J. Virol. 2003, 77, 9029–9040. [Google Scholar] [CrossRef]
  47. Yant, L.J.; Friedrich, T.C.; Johnson, R.C.; May, G.E.; Maness, N.J.; Enz, A.M.; Lifson, J.D.; O’Connor, D.H.; Carrington, M.; Watkins, D.I. The high-frequency major histocompatibility complex class I allele Mamu-B*17 is associated with control of simian immunodeficiency virus SIVmac239 replication. J. Virol. 2006, 80, 5074–5077. [Google Scholar] [CrossRef]
  48. McLaren, P.J.; Coulonges, C.; Ripke, S.; van den Berg, L.; Buchbinder, S.; Carrington, M.; Cossarizza, A.; Dalmau, J.; Deeks, S.G.; Delaneau, O.; et al. Association study of common genetic variants and HIV-1 acquisition in 6,300 infected cases and 7,200 controls. PLoS Pathog. 2013, 9, e1003515. [Google Scholar] [CrossRef]
  49. Hendel, H.; Caillat-Zucman, S.; Lebuanec, H.; Carrington, M.; O’Brien, S.; Andrieu, J.M.; Schächter, F.; Zagury, D.; Rappaport, J.; Winkler, C.; et al. New class I and II HLA alleles strongly associated with opposite patterns of progression to AIDS. J. Immunol. 1999, 162, 6942–6946. [Google Scholar] [CrossRef]
  50. Marcilla, M.; Alvarez, I.; Ramos-Fernández, A.; Lombardía, M.; Paradela, A.; Albar, J.P. Comparative Analysis of the Endogenous Peptidomes Displayed by HLA-B*27 and Mamu-B*08: Two MHC Class I Alleles Associated with Elite Control of HIV/SIV Infection. J. Proteome Res. 2016, 15, 1059–1069. [Google Scholar] [CrossRef]
  51. Muhl, T.; Krawczak, M.; Ten Haaft, P.; Hunsmann, G.; Sauermann, U. MHC class I alleles influence set-point viral load and survival time in simian immunodeficiency virus-infected rhesus monkeys. J. Immunol. 2002, 169, 3438–3446. [Google Scholar] [CrossRef] [PubMed]
  52. Fellay, J.; Shianna, K.V.; Ge, D.; Colombo, S.; Ledergerber, B.; Weale, M.; Zhang, K.; Gumbs, C.; Castagna, A.; Cossarizza, A.; et al. A whole-genome association study of major determinants for host control of HIV-1. Science 2007, 317, 944–947. [Google Scholar] [CrossRef] [PubMed]
  53. Migueles, S.A.; Sabbaghian, M.S.; Shupert, W.L.; Bettinotti, M.P.; Marincola, F.M.; Martino, L.; Hallahan, C.W.; Selig, S.M.; Schwartz, D.; Sullivan, J.; et al. HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proc. Natl. Acad. Sci. USA 2000, 97, 2709–2714. [Google Scholar] [CrossRef] [PubMed]
  54. Migueles, S.A.; Laborico, A.C.; Imamichi, H.; Shupert, W.L.; Royce, C.; McLaughlin, M.; Ehler, L.; Metcalf, J.; Liu, S.; Hallahan, C.W.; et al. The differential ability of HLA B*5701+ long-term nonprogressors and progressors to restrict human immunodeficiency virus replication is not caused by loss of recognition of autologous viral gag sequences. J. Virol. 2003, 77, 6889–6898. [Google Scholar] [CrossRef]
  55. Miura, T.; Brockman, M.A.; Schneidewind, A.; Lobritz, M.; Pereyra, F.; Rathod, A.; Block, B.L.; Brumme, Z.L.; Brumme, C.J.; Baker, B.; et al. HLA-B57/B*5801 human immunodeficiency virus type 1 elite controllers select for rare gag variants associated with reduced viral replication capacity and strong cytotoxic T-lymphocyte recognition. J. Virol. 2009, 83, 2743–2755. [Google Scholar] [CrossRef]
  56. Budde, M.L.; Greene, J.M.; Chin, E.N.; Ericsen, A.J.; Scarlotta, M.; Cain, B.T.; Pham, N.H.; Becker, E.A.; Harris, M.; Weinfurter, J.T.; et al. Specific CD8+ T cell responses correlate with control of simian immunodeficiency virus replication in Mauritian cynomolgus macaques. J. Virol. 2012, 86, 7596–7604. [Google Scholar] [CrossRef]
  57. Mee, E.T.; Berry, N.; Ham, C.; Sauermann, U.; Maggiorella, M.T.; Martinon, F.; Verschoor, E.J.; Heeney, J.L.; Le Grand, R.; Titti, F.; et al. Mhc haplotype H6 is associated with sustained control of SIVmac251 infection in Mauritian cynomolgus macaques. Immunogenetics 2009, 61, 327–339. [Google Scholar] [CrossRef]
  58. Bruel, T.; Hamimi, C.; Dereuddre-Bosquet, N.; Cosma, A.; Shin, S.Y.; Corneau, A.; Versmisse, P.; Karlsson, I.; Malleret, B.; Targat, B.; et al. Long-term control of simian immunodeficiency virus (SIV) in cynomolgus macaques not associated with efficient SIV-specific CD8+ T-cell responses. J. Virol. 2015, 89, 3542–3556. [Google Scholar] [CrossRef]
  59. Lim, S.Y.; Chan, T.; Gelman, R.S.; Whitney, J.B.; O’Brien, K.L.; Barouch, D.H.; Goldstein, D.B.; Haynes, B.F.; Letvin, N.L. Contributions of Mamu-A*01 status and TRIM5 allele expression, but not CCL3L copy number variation, to the control of SIVmac251 replication in Indian-origin rhesus monkeys. PLoS Genet. 2010, 6, e1000997. [Google Scholar] [CrossRef]
  60. Fenizia, C.; Keele, B.F.; Nichols, D.; Cornara, S.; Binello, N.; Vaccari, M.; Pegu, P.; Robert-Guroff, M.; Ma, Z.M.; Miller, C.J.; et al. TRIM5α does not affect simian immunodeficiency virus SIV(mac251) replication in vaccinated or unvaccinated Indian rhesus macaques following intrarectal challenge exposure. J. Virol. 2011, 85, 12399–12409. [Google Scholar] [CrossRef]
  61. Mellors, J.W.; Rinaldo, C.R., Jr.; Gupta, P.; White, R.M.; Todd, J.A.; Kingsley, L.A. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 1996, 272, 1167–1170. [Google Scholar] [CrossRef] [PubMed]
  62. Lifson, J.D.; Nowak, M.A.; Goldstein, S.; Rossio, J.L.; Kinter, A.; Vasquez, G.; Wiltrout, T.A.; Brown, C.; Schneider, D.; Wahl, L.; et al. The extent of early viral replication is a critical determinant of the natural history of simian immunodeficiency virus infection. J. Virol. 1997, 71, 9508–9514. [Google Scholar] [CrossRef]
  63. Pantaleo, G.; Graziosi, C.; Demarest, J.F.; Butini, L.; Montroni, M.; Fox, C.H.; Orenstein, J.M.; Kotler, D.P.; Fauci, A.S. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature 1993, 362, 355–358. [Google Scholar] [CrossRef] [PubMed]
  64. Desrosiers, R.C.; Hansen-Moosa, A.; Mori, K.; Bouvier, D.P.; King, N.W.; Daniel, M.D.; Ringler, D.J. Macrophage-tropic variants of SIV are associated with specific AIDS-related lesions but are not essential for the development of AIDS. Am. J. Pathol. 1991, 139, 29–35. [Google Scholar]
  65. Xu, L.; Pegu, A.; Rao, E.; Doria-Rose, N.; Beninga, J.; McKee, K.; Lord, D.M.; Wei, R.R.; Deng, G.; Louder, M.; et al. Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques. Science 2017, 358, 85–90. [Google Scholar] [CrossRef] [PubMed]
  66. Kestler, H.W., 3rd; Ringler, D.J.; Mori, K.; Panicali, D.L.; Sehgal, P.K.; Daniel, M.D.; Desrosiers, R.C. Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell 1991, 65, 651–662. [Google Scholar] [CrossRef]
  67. Baba, T.W.; Jeong, Y.S.; Pennick, D.; Bronson, R.; Greene, M.F.; Ruprecht, R.M. Pathogenicity of live, attenuated SIV after mucosal infection of neonatal macaques. Science 1995, 267, 1820–1825. [Google Scholar] [CrossRef]
  68. Hofmann-Lehmann, R.; Vlasak, J.; Williams, A.L.; Chenine, A.L.; McClure, H.M.; Anderson, D.C.; O’Neil, S.; Ruprecht, R.M. Live attenuated, nef-deleted SIV is pathogenic in most adult macaques after prolonged observation. Aids 2003, 17, 157–166. [Google Scholar] [CrossRef]
  69. Ho Tsong Fang, R.; Khatissian, E.; Monceaux, V.; Cumont, M.C.; Beq, S.; Ameisen, J.C.; Aubertin, A.M.; Israël, N.; Estaquier, J.; Hurtrel, B. Disease progression in macaques with low SIV replication levels: On the relevance of TREC counts. Aids 2005, 19, 663–673. [Google Scholar] [CrossRef]
  70. Chun, T.W.; Moir, S.; Fauci, A.S. HIV reservoirs as obstacles and opportunities for an HIV cure. Nat. Immunol. 2015, 16, 584–589. [Google Scholar] [CrossRef]
  71. Chun, T.W.; Davey, R.T., Jr.; Engel, D.; Lane, H.C.; Fauci, A.S. Re-emergence of HIV after stopping therapy. Nature 1999, 401, 874–875. [Google Scholar] [CrossRef] [PubMed]
  72. Davey, R.T., Jr.; Bhat, N.; Yoder, C.; Chun, T.W.; Metcalf, J.A.; Dewar, R.; Natarajan, V.; Lempicki, R.A.; Adelsberger, J.W.; Miller, K.D.; et al. HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc. Natl. Acad. Sci. USA 1999, 96, 15109–15114. [Google Scholar] [CrossRef] [PubMed]
  73. Rothenberger, M.K.; Keele, B.F.; Wietgrefe, S.W.; Fletcher, C.V.; Beilman, G.J.; Chipman, J.G.; Khoruts, A.; Estes, J.D.; Anderson, J.; Callisto, S.P.; et al. Large number of rebounding/founder HIV variants emerge from multifocal infection in lymphatic tissues after treatment interruption. Proc. Natl. Acad. Sci. USA 2015, 112, E1126–E1134. [Google Scholar] [CrossRef] [PubMed]
  74. Henrich, T.J.; Hatano, H.; Bacon, O.; Hogan, L.E.; Rutishauser, R.; Hill, A.; Kearney, M.F.; Anderson, E.M.; Buchbinder, S.P.; Cohen, S.E.; et al. HIV-1 persistence following extremely early initiation of antiretroviral therapy (ART) during acute HIV-1 infection: An observational study. PLoS Med. 2017, 14, e1002417. [Google Scholar] [CrossRef]
  75. Colby, D.J.; Trautmann, L.; Pinyakorn, S.; Leyre, L.; Pagliuzza, A.; Kroon, E.; Rolland, M.; Takata, H.; Buranapraditkun, S.; Intasan, J.; et al. Rapid HIV RNA rebound after antiretroviral treatment interruption in persons durably suppressed in Fiebig I acute HIV infection. Nat. Med. 2018, 24, 923–926. [Google Scholar] [CrossRef]
  76. Whitney, J.B.; Hill, A.L.; Sanisetty, S.; Penaloza-MacMaster, P.; Liu, J.; Shetty, M.; Parenteau, L.; Cabral, C.; Shields, J.; Blackmore, S.; et al. Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys. Nature 2014, 512, 74–77. [Google Scholar] [CrossRef]
  77. Okoye, A.A.; Hansen, S.G.; Vaidya, M.; Fukazawa, Y.; Park, H.; Duell, D.M.; Lum, R.; Hughes, C.M.; Ventura, A.B.; Ainslie, E.; et al. Early antiretroviral therapy limits SIV reservoir establishment to delay or prevent post-treatment viral rebound. Nat. Med. 2018, 24, 1430–1440. [Google Scholar] [CrossRef]
  78. Bender, A.M.; Simonetti, F.R.; Kumar, M.R.; Fray, E.J.; Bruner, K.M.; Timmons, A.E.; Tai, K.Y.; Jenike, K.M.; Antar, A.A.R.; Liu, P.T.; et al. The Landscape of Persistent Viral Genomes in ART-Treated SIV, SHIV, and HIV-2 Infections. Cell Host Microbe 2019, 26, 73–85 e74. [Google Scholar] [CrossRef]
  79. Keele, B.F.; Okoye, A.A.; Fennessey, C.M.; Varco-Merth, B.; Immonen, T.T.; Kose, E.; Conchas, A.; Pinkevych, M.; Lipkey, L.; Newman, L.; et al. Early antiretroviral therapy in SIV-infected rhesus macaques reveals a multiphasic, saturable dynamic accumulation of the rebound competent viral reservoir. PLoS Pathog. 2024, 20, e1012135. [Google Scholar] [CrossRef]
  80. Rabezanahary, H.; Moukambi, F.; Palesch, D.; Clain, J.; Racine, G.; Andreani, G.; Benmadid-Laktout, G.; Zghidi-Abouzid, O.; Soundaramourty, C.; Tremblay, C.; et al. Despite early antiretroviral therapy effector memory and follicular helper CD4 T cells are major reservoirs in visceral lymphoid tissues of SIV-infected macaques. Mucosal Immunol. 2020, 13, 149–160. [Google Scholar] [CrossRef]
  81. Rabezanahary, H.; Clain, J.; Racine, G.; Andreani, G.; Benmadid-Laktout, G.; Borde, C.; Mammano, F.; Mesplèdes, T.; Ancuta, P.; Zghidi-Abouzid, O.; et al. Early Antiretroviral Therapy Prevents Viral Infection of Monocytes and Inflammation in Simian Immunodeficiency Virus-Infected Rhesus Macaques. J. Virol. 2020, 94, e01478-20. [Google Scholar] [CrossRef]
  82. Mohammadzadeh, N.; Roda, W.; Branton, W.G.; Clain, J.; Rabezanahary, H.; Zghidi-Abouzid, O.; Gelman, B.B.; Angel, J.B.; Cohen, E.A.; Gill, M.J.; et al. Lentiviral Infections Persist in Brain despite Effective Antiretroviral Therapy and Neuroimmune Activation. mBio 2021, 12, e02784-21. [Google Scholar] [CrossRef] [PubMed]
  83. Clain, J.A.; Rabezanahary, H.; Racine, G.; Boutrais, S.; Soundaramourty, C.; Joly Beauparlant, C.; Jenabian, M.A.; Droit, A.; Ancuta, P.; Zghidi-Abouzid, O.; et al. Early ART reduces viral seeding and innate immunity in liver and lungs of SIV-infected macaques. JCI Insight 2023, 8, e167856. [Google Scholar] [CrossRef] [PubMed]
  84. Clain, J.A.; Boutrais, S.; Dewatines, J.; Racine, G.; Rabezanahary, H.; Droit, A.; Zghidi-Abouzid, O.; Estaquier, J. Lipid metabolic reprogramming of hepatic CD4+ T cells during SIV infection. Microbiol. Spectr. 2023, 11, e01687-23. [Google Scholar] [CrossRef] [PubMed]
  85. Ho, Y.C.; Shan, L.; Hosmane, N.N.; Wang, J.; Laskey, S.B.; Rosenbloom, D.I.; Lai, J.; Blankson, J.N.; Siliciano, J.D.; Siliciano, R.F. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 2013, 155, 540–551. [Google Scholar] [CrossRef] [PubMed]
  86. Cohn, L.B.; Silva, I.T.; Oliveira, T.Y.; Rosales, R.A.; Parrish, E.H.; Learn, G.H.; Hahn, B.H.; Czartoski, J.L.; McElrath, M.J.; Lehmann, C.; et al. HIV-1 integration landscape during latent and active infection. Cell 2015, 160, 420–432. [Google Scholar] [CrossRef]
  87. Bruner, K.M.; Murray, A.J.; Pollack, R.A.; Soliman, M.G.; Laskey, S.B.; Capoferri, A.A.; Lai, J.; Strain, M.C.; Lada, S.M.; Hoh, R.; et al. Defective proviruses rapidly accumulate during acute HIV-1 infection. Nat. Med. 2016, 22, 1043–1049. [Google Scholar] [CrossRef]
  88. Pollack, R.A.; Jones, R.B.; Pertea, M.; Bruner, K.M.; Martin, A.R.; Thomas, A.S.; Capoferri, A.A.; Beg, S.A.; Huang, S.H.; Karandish, S.; et al. Defective HIV-1 Proviruses Are Expressed and Can Be Recognized by Cytotoxic T Lymphocytes, which Shape the Proviral Landscape. Cell Host Microbe 2017, 21, 494–506.e494. [Google Scholar] [CrossRef]
  89. Imamichi, H.; Dewar, R.L.; Adelsberger, J.W.; Rehm, C.A.; O’Doherty, U.; Paxinos, E.E.; Fauci, A.S.; Lane, H.C. Defective HIV-1 proviruses produce novel protein-coding RNA species in HIV-infected patients on combination antiretroviral therapy. Proc. Natl. Acad. Sci. USA 2016, 113, 8783–8788. [Google Scholar] [CrossRef]
  90. Kuniholm, J.; Armstrong, E.; Bernabe, B.; Coote, C.; Berenson, A.; Patalano, S.D.; Olson, A.; He, X.; Lin, N.H.; Fuxman Bass, J.I.; et al. Intragenic proviral elements support transcription of defective HIV-1 proviruses. PLoS Pathog. 2021, 17, e1009982. [Google Scholar] [CrossRef]
  91. Kuniholm, J.; Coote, C.; Henderson, A.J. Defective HIV-1 genomes and their potential impact on HIV pathogenesis. Retrovirology 2022, 19, 13. [Google Scholar] [CrossRef] [PubMed]
  92. Fray, E.J.; Wu, F.; Simonetti, F.R.; Zitzmann, C.; Sambaturu, N.; Molina-Paris, C.; Bender, A.M.; Liu, P.T.; Ventura, J.D.; Wiseman, R.W.; et al. Antiretroviral therapy reveals triphasic decay of intact SIV genomes and persistence of ancestral variants. Cell Host Microbe 2023, 31, 356–372.e355. [Google Scholar] [CrossRef] [PubMed]
  93. Santangelo, P.J.; Rogers, K.A.; Zurla, C.; Blanchard, E.L.; Gumber, S.; Strait, K.; Connor-Stroud, F.; Schuster, D.M.; Amancha, P.K.; Hong, J.J.; et al. Whole-body immunoPET reveals active SIV dynamics in viremic and antiretroviral therapy-treated macaques. Nat. Methods 2015, 12, 427–432. [Google Scholar] [CrossRef] [PubMed]
  94. Cartwright, E.K.; Spicer, L.; Smith, S.A.; Lee, D.; Fast, R.; Paganini, S.; Lawson, B.O.; Nega, M.; Easley, K.; Schmitz, J.E.; et al. CD8+ Lymphocytes Are Required for Maintaining Viral Suppression in SIV-Infected Macaques Treated with Short-Term Antiretroviral Therapy. Immunity 2016, 45, 656–668. [Google Scholar] [CrossRef] [PubMed]
  95. Samer, S.; Thomas, Y.; Araínga, M.; Carter, C.; Shirreff, L.M.; Arif, M.S.; Avita, J.M.; Frank, I.; McRaven, M.D.; Thuruthiyil, C.T.; et al. Blockade of TGF-β signaling reactivates HIV-1/SIV reservoirs and immune responses in vivo. JCI Insight 2022, 7, e162290. [Google Scholar] [CrossRef]
  96. Cumont, M.C.; Monceaux, V.; Viollet, L.; Lay, S.; Parker, R.; Hurtrel, B.; Estaquier, J. TGF-beta in intestinal lymphoid organs contributes to the death of armed effector CD8 T cells and is associated with the absence of virus containment in rhesus macaques infected with the simian immunodeficiency virus. Cell Death Differ. 2007, 14, 1747–1758. [Google Scholar] [CrossRef]
  97. Pereira Ribeiro, S.; Strongin, Z.; Soudeyns, H.; Ten-Caten, F.; Ghneim, K.; Pacheco Sanchez, G.; Xavier de Medeiros, G.; Del Rio Estrada, P.M.; Pelletier, A.N.; Hoang, T.; et al. Dual blockade of IL-10 and PD-1 leads to control of SIV viral rebound following analytical treatment interruption. Nat. Immunol. 2024, 25, 1900–1912. [Google Scholar] [CrossRef]
  98. Estaquier, J.; Tanaka, M.; Suda, T.; Nagata, S.; Golstein, P.; Ameisen, J.C. Fas-mediated apoptosis of CD4+ and CD8+ T cells from human immunodeficiency virus-infected persons: Differential in vitro preventive effect of cytokines and protease antagonists. Blood 1996, 87, 4959–4966. [Google Scholar] [CrossRef]
  99. Clerici, M.; Sarin, A.; Coffman, R.L.; Wynn, T.A.; Blatt, S.P.; Hendrix, C.W.; Wolf, S.F.; Shearer, G.M.; Henkart, P.A. Type 1/type 2 cytokine modulation of T-cell programmed cell death as a model for human immunodeficiency virus pathogenesis. Proc. Natl. Acad. Sci. USA 1994, 91, 11811–11815. [Google Scholar] [CrossRef]
  100. Estaquier, J.; Idziorek, T.; Zou, W.; Emilie, D.; Farber, C.M.; Bourez, J.M.; Ameisen, J.C. T helper type 1/T helper type 2 cytokines and T cell death: Preventive effect of interleukin 12 on activation-induced and CD95 (FAS/APO-1)-mediated apoptosis of CD4+ T cells from human immunodeficiency virus-infected persons. J. Exp. Med. 1995, 182, 1759–1767. [Google Scholar] [CrossRef]
  101. Huot, N.; Jacquelin, B.; Garcia-Tellez, T.; Rascle, P.; Ploquin, M.J.; Madec, Y.; Reeves, R.K.; Derreudre-Bosquet, N.; Müller-Trutwin, M. Natural killer cells migrate into and control simian immunodeficiency virus replication in lymph node follicles in African green monkeys. Nat. Med. 2017, 23, 1277–1286. [Google Scholar] [CrossRef] [PubMed]
  102. Ziegler-Heitbrock, L.; Ancuta, P.; Crowe, S.; Dalod, M.; Grau, V.; Hart, D.N.; Leenen, P.J.; Liu, Y.J.; MacPherson, G.; Randolph, G.J.; et al. Nomenclature of monocytes and dendritic cells in blood. Blood 2010, 116, e74–e80. [Google Scholar] [CrossRef] [PubMed]
  103. Naif, H.M.; Li, S.; Alali, M.; Sloane, A.; Wu, L.; Kelly, M.; Lynch, G.; Lloyd, A.; Cunningham, A.L. CCR5 expression correlates with susceptibility of maturing monocytes to human immunodeficiency virus type 1 infection. J. Virol. 1998, 72, 830–836. [Google Scholar] [CrossRef]
  104. Tuttle, D.L.; Harrison, J.K.; Anders, C.; Sleasman, J.W.; Goodenow, M.M. Expression of CCR5 increases during monocyte differentiation and directly mediates macrophage susceptibility to infection by human immunodeficiency virus type 1. J. Virol. 1998, 72, 4962–4969. [Google Scholar] [CrossRef] [PubMed]
  105. Gartner, S.; Markovits, P.; Markovitz, D.M.; Kaplan, M.H.; Gallo, R.C.; Popovic, M. The role of mononuclear phagocytes in HTLV-III/LAV infection. Science 1986, 233, 215–219. [Google Scholar] [CrossRef] [PubMed]
  106. Gendelman, H.E.; Orenstein, J.M.; Martin, M.A.; Ferrua, C.; Mitra, R.; Phipps, T.; Wahl, L.A.; Lane, H.C.; Fauci, A.S.; Burke, D.S. Efficient isolation and propagation of human immunodeficiency virus on recombinant colony-stimulating factor 1-treated monocytes. J. Exp. Med. 1988, 167, 1428–1441. [Google Scholar] [CrossRef]
  107. Perno, C.F.; Yarchoan, R.; Cooney, D.A.; Hartman, N.R.; Webb, D.S.; Hao, Z.; Mitsuya, H.; Johns, D.G.; Broder, S. Replication of human immunodeficiency virus in monocytes. Granulocyte/macrophage colony-stimulating factor (GM-CSF) potentiates viral production yet enhances the antiviral effect mediated by 3’-azido-2’3’-dideoxythymidine (AZT) and other dideoxynucleoside congeners of thymidine. J. Exp. Med. 1989, 169, 933–951. [Google Scholar] [CrossRef]
  108. Pomerantz, R.J.; Feinberg, M.B.; Trono, D.; Baltimore, D. Lipopolysaccharide is a potent monocyte/macrophage-specific stimulator of human immunodeficiency virus type 1 expression. J. Exp. Med. 1990, 172, 253–261. [Google Scholar] [CrossRef]
  109. Igarashi, T.; Brown, C.R.; Endo, Y.; Buckler-White, A.; Plishka, R.; Bischofberger, N.; Hirsch, V.; Martin, M.A. Macrophage are the principal reservoir and sustain high virus loads in rhesus macaques after the depletion of CD4+ T cells by a highly pathogenic simian immunodeficiency virus/HIV type 1 chimera (SHIV): Implications for HIV-1 infections of humans. Proc. Natl. Acad. Sci. USA 2001, 98, 658–663. [Google Scholar] [CrossRef]
  110. Micci, L.; Alvarez, X.; Iriele, R.I.; Ortiz, A.M.; Ryan, E.S.; McGary, C.S.; Deleage, C.; McAtee, B.B.; He, T.; Apetrei, C.; et al. CD4 depletion in SIV-infected macaques results in macrophage and microglia infection with rapid turnover of infected cells. PLoS Pathog. 2014, 10, e1004467. [Google Scholar] [CrossRef]
  111. Ho, D.D.; Rota, T.R.; Hirsch, M.S. Infection of monocyte/macrophages by human T lymphotropic virus type III. J. Clin. Investig. 1986, 77, 1712–1715. [Google Scholar] [CrossRef] [PubMed]
  112. McElrath, M.J.; Steinman, R.M.; Cohn, Z.A. Latent HIV-1 infection in enriched populations of blood monocytes and T cells from seropositive patients. J. Clin. Investig. 1991, 87, 27–30. [Google Scholar] [CrossRef] [PubMed]
  113. Laforge, M.; Campillo-Gimenez, L.; Monceaux, V.; Cumont, M.C.; Hurtrel, B.; Corbeil, J.; Zaunders, J.; Elbim, C.; Estaquier, J. HIV/SIV infection primes monocytes and dendritic cells for apoptosis. PLoS Pathog. 2011, 7, e1002087. [Google Scholar] [CrossRef] [PubMed]
  114. Furtado, M.R.; Callaway, D.S.; Phair, J.P.; Kunstman, K.J.; Stanton, J.L.; Macken, C.A.; Perelson, A.S.; Wolinsky, S.M. Persistence of HIV-1 transcription in peripheral-blood mononuclear cells in patients receiving potent antiretroviral therapy. N. Engl. J. Med. 1999, 340, 1614–1622. [Google Scholar] [CrossRef] [PubMed]
  115. Lambotte, O.; Taoufik, Y.; de Goër, M.G.; Wallon, C.; Goujard, C.; Delfraissy, J.F. Detection of infectious HIV in circulating monocytes from patients on prolonged highly active antiretroviral therapy. J. Acquir. Immune Defic. Syndr. 2000, 23, 114–119. [Google Scholar] [CrossRef]
  116. Zhu, T.; Muthui, D.; Holte, S.; Nickle, D.; Feng, F.; Brodie, S.; Hwangbo, Y.; Mullins, J.I.; Corey, L. Evidence for human immunodeficiency virus type 1 replication in vivo in CD14+ monocytes and its potential role as a source of virus in patients on highly active antiretroviral therapy. J. Virol. 2002, 76, 707–716. [Google Scholar] [CrossRef]
  117. Cattin, A.; Wiche Salinas, T.R.; Gosselin, A.; Planas, D.; Shacklett, B.; Cohen, E.A.; Ghali, M.P.; Routy, J.P.; Ancuta, P. HIV-1 is rarely detected in blood and colon myeloid cells during viral-suppressive antiretroviral therapy. Aids 2019, 33, 1293–1306. [Google Scholar] [CrossRef]
  118. Honeycutt, J.B.; Wahl, A.; Baker, C.; Spagnuolo, R.A.; Foster, J.; Zakharova, O.; Wietgrefe, S.; Caro-Vegas, C.; Madden, V.; Sharpe, G.; et al. Macrophages sustain HIV replication in vivo independently of T cells. J. Clin. Investig. 2016, 126, 1353–1366. [Google Scholar] [CrossRef]
  119. Bain, C.C.; Bravo-Blas, A.; Scott, C.L.; Perdiguero, E.G.; Geissmann, F.; Henri, S.; Malissen, B.; Osborne, L.C.; Artis, D.; Mowat, A.M. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat. Immunol. 2014, 15, 929–937. [Google Scholar] [CrossRef]
  120. Iijima, N.; Mattei, L.M.; Iwasaki, A. Recruited inflammatory monocytes stimulate antiviral Th1 immunity in infected tissue. Proc. Natl. Acad. Sci. USA 2011, 108, 284–289. [Google Scholar] [CrossRef]
  121. Swirski, F.K.; Nahrendorf, M.; Etzrodt, M.; Wildgruber, M.; Cortez-Retamozo, V.; Panizzi, P.; Figueiredo, J.L.; Kohler, R.H.; Chudnovskiy, A.; Waterman, P.; et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 2009, 325, 612–616. [Google Scholar] [CrossRef] [PubMed]
  122. Ginhoux, F.; Guilliams, M. Tissue-Resident Macrophage Ontogeny and Homeostasis. Immunity 2016, 44, 439–449. [Google Scholar] [CrossRef] [PubMed]
  123. Abreu, C.M.; Veenhuis, R.T.; Avalos, C.R.; Graham, S.; Queen, S.E.; Shirk, E.N.; Bullock, B.T.; Li, M.; Metcalf Pate, K.A.; Beck, S.E.; et al. Infectious Virus Persists in CD4+ T Cells and Macrophages in Antiretroviral Therapy-Suppressed Simian Immunodeficiency Virus-Infected Macaques. J. Virol. 2019, 93, e00065-19. [Google Scholar] [CrossRef] [PubMed]
  124. Costiniuk, C.T.; Salahuddin, S.; Farnos, O.; Olivenstein, R.; Pagliuzza, A.; Orlova, M.; Schurr, E.; De Castro, C.; Bourbeau, J.; Routy, J.P.; et al. HIV persistence in mucosal CD4+ T cells within the lungs of adults receiving long-term suppressive antiretroviral therapy. Aids 2018, 32, 2279–2289. [Google Scholar] [CrossRef] [PubMed]
  125. Meziane, O.; Alexandrova, Y.; Olivenstein, R.; Dupuy, F.P.; Salahuddin, S.; Thomson, E.; Orlova, M.; Schurr, E.; Ancuta, P.; Durand, M.; et al. Peculiar Phenotypic and Cytotoxic Features of Pulmonary Mucosal CD8 T Cells in People Living with HIV Receiving Long-Term Antiretroviral Therapy. J. Immunol. 2021, 206, 641–651. [Google Scholar] [CrossRef]
  126. Alexandrova, Y.; Yero, A.; Olivenstein, R.; Orlova, M.; Schurr, E.; Estaquier, J.; Costiniuk, C.T.; Jenabian, M.A. Dynamics of pulmonary mucosal cytotoxic CD8 T-cells in people living with HIV under suppressive antiretroviral therapy. Respir. Res. 2024, 25, 240. [Google Scholar] [CrossRef]
  127. Koenig, S.; Gendelman, H.E.; Orenstein, J.M.; Dal Canto, M.C.; Pezeshkpour, G.H.; Yungbluth, M.; Janotta, F.; Aksamit, A.; Martin, M.A.; Fauci, A.S. Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science 1986, 233, 1089–1093. [Google Scholar] [CrossRef]
  128. Williams, K.C.; Corey, S.; Westmoreland, S.V.; Pauley, D.; Knight, H.; deBakker, C.; Alvarez, X.; Lackner, A.A. Perivascular macrophages are the primary cell type productively infected by simian immunodeficiency virus in the brains of macaques: Implications for the neuropathogenesis of AIDS. J. Exp. Med. 2001, 193, 905–915. [Google Scholar] [CrossRef]
  129. Murray, E.A.; Rausch, D.M.; Lendvay, J.; Sharer, L.R.; Eiden, L.E. Cognitive and motor impairments associated with SIV infection in rhesus monkeys. Science 1992, 255, 1246–1249. [Google Scholar] [CrossRef]
  130. Lamers, S.L.; Rose, R.; Maidji, E.; Agsalda-Garcia, M.; Nolan, D.J.; Fogel, G.B.; Salemi, M.; Garcia, D.L.; Bracci, P.; Yong, W.; et al. HIV DNA Is Frequently Present within Pathologic Tissues Evaluated at Autopsy from Combined Antiretroviral Therapy-Treated Patients with Undetectable Viral Loads. J. Virol. 2016, 90, 8968–8983. [Google Scholar] [CrossRef]
  131. Heaton, R.K.; Clifford, D.B.; Franklin, D.R., Jr.; Woods, S.P.; Ake, C.; Vaida, F.; Ellis, R.J.; Letendre, S.L.; Marcotte, T.D.; Atkinson, J.H.; et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology 2010, 75, 2087–2096. [Google Scholar] [CrossRef] [PubMed]
  132. Avalos, C.R.; Abreu, C.M.; Queen, S.E.; Li, M.; Price, S.; Shirk, E.N.; Engle, E.L.; Forsyth, E.; Bullock, B.T.; Mac Gabhann, F.; et al. Brain Macrophages in Simian Immunodeficiency Virus-Infected, Antiretroviral-Suppressed Macaques: A Functional Latent Reservoir. mBio 2017, 8, e01186-17. [Google Scholar] [CrossRef] [PubMed]
  133. Perez, S.; Johnson, A.M.; Xiang, S.H.; Li, J.; Foley, B.T.; Doyle-Meyers, L.; Panganiban, A.; Kaur, A.; Veazey, R.S.; Wu, Y.; et al. Persistence of SIV in the brain of SIV-infected Chinese rhesus macaques with or without antiretroviral therapy. J. Neurovirology 2018, 24, 62–74. [Google Scholar] [CrossRef] [PubMed]
  134. Fisher, B.S.; Green, R.R.; Brown, R.R.; Wood, M.P.; Hensley-McBain, T.; Fisher, C.; Chang, J.; Miller, A.D.; Bosche, W.J.; Lifson, J.D.; et al. Liver macrophage-associated inflammation correlates with SIV burden and is substantially reduced following cART. PLoS Pathog. 2018, 14, e1006871. [Google Scholar] [CrossRef]
  135. Mohammadzadeh, N.; Zhang, N.; Branton, W.G.; Zghidi-Abouzid, O.; Cohen, E.A.; Gelman, B.B.; Estaquier, J.; Kong, L.; Power, C. The HIV Restriction Factor Profile in the Brain Is Associated with the Clinical Status and Viral Quantities. Viruses 2023, 15, 316. [Google Scholar] [CrossRef]
  136. Kuller, L.H.; Tracy, R.; Belloso, W.; De Wit, S.; Drummond, F.; Lane, H.C.; Ledergerber, B.; Lundgren, J.; Neuhaus, J.; Nixon, D.; et al. Inflammatory and coagulation biomarkers and mortality in patients with HIV infection. PLoS Med. 2008, 5, e203. [Google Scholar] [CrossRef]
  137. Tenorio, A.R.; Zheng, Y.; Bosch, R.J.; Krishnan, S.; Rodriguez, B.; Hunt, P.W.; Plants, J.; Seth, A.; Wilson, C.C.; Deeks, S.G.; et al. Soluble markers of inflammation and coagulation but not T-cell activation predict non-AIDS-defining morbid events during suppressive antiretroviral treatment. J. Infect. Dis. 2014, 210, 1248–1259. [Google Scholar] [CrossRef]
  138. Sereti, I.; Krebs, S.J.; Phanuphak, N.; Fletcher, J.L.; Slike, B.; Pinyakorn, S.; O’Connell, R.J.; Rupert, A.; Chomont, N.; Valcour, V.; et al. Persistent, Albeit Reduced, Chronic Inflammation in Persons Starting Antiretroviral Therapy in Acute HIV Infection. Clin. Infect. Dis. 2017, 64, 124–131. [Google Scholar] [CrossRef]
  139. Strategies for Management of Antiretroviral Therapy Study Group; El-Sadr, W.M.; Lundgren, J.; Neaton, J.D.; Gordin, F.; Abrams, D.; Arduino, R.C.; Babiker, A.; Burman, W.; Clumeck, N.; et al. CD4+ count-guided interruption of antiretroviral treatment. N. Engl. J. Med. 2006, 355, 2283–2296. [Google Scholar] [CrossRef]
  140. Balagopal, A.; Gupte, N.; Shivakoti, R.; Cox, A.L.; Yang, W.T.; Berendes, S.; Mwelase, N.; Kanyama, C.; Pillay, S.; Samaneka, W.; et al. Continued Elevation of Interleukin-18 and Interferon-gamma After Initiation of Antiretroviral Therapy and Clinical Failure in a Diverse Multicountry Human Immunodeficiency Virus Cohort. Open Forum Infect. Dis. 2016, 3, ofw118. [Google Scholar] [CrossRef]
  141. Bandera, A.; Masetti, M.; Fabbiani, M.; Biasin, M.; Muscatello, A.; Squillace, N.; Clerici, M.; Gori, A.; Trabattoni, D. The NLRP3 Inflammasome Is Upregulated in HIV-Infected Antiretroviral Therapy-Treated Individuals with Defective Immune Recovery. Front. Immunol. 2018, 9, 214. [Google Scholar] [CrossRef] [PubMed]
  142. Tsutsui, H.; Matsui, K.; Kawada, N.; Hyodo, Y.; Hayashi, N.; Okamura, H.; Higashino, K.; Nakanishi, K. IL-18 accounts for both TNF-alpha- and Fas ligand-mediated hepatotoxic pathways in endotoxin-induced liver injury in mice. J. Immunol. 1997, 159, 3961–3967. [Google Scholar] [CrossRef] [PubMed]
  143. Hashimoto, W.; Osaki, T.; Okamura, H.; Robbins, P.D.; Kurimoto, M.; Nagata, S.; Lotze, M.T.; Tahara, H. Differential antitumor effects of administration of recombinant IL-18 or recombinant IL-12 are mediated primarily by Fas-Fas ligand- and perforin-induced tumor apoptosis, respectively. J. Immunol. 1999, 163, 583–589. [Google Scholar] [CrossRef] [PubMed]
  144. Gu, Y.; Kuida, K.; Tsutsui, H.; Ku, G.; Hsiao, K.; Fleming, M.A.; Hayashi, N.; Higashino, K.; Okamura, H.; Nakanishi, K.; et al. Activation of interferon-gamma inducing factor mediated by interleukin-1beta converting enzyme. Science 1997, 275, 206–209. [Google Scholar] [CrossRef]
  145. Ghayur, T.; Banerjee, S.; Hugunin, M.; Butler, D.; Herzog, L.; Carter, A.; Quintal, L.; Sekut, L.; Talanian, R.; Paskind, M.; et al. Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production. Nature 1997, 386, 619–623. [Google Scholar] [CrossRef]
  146. Laforge, M.; Silvestre, R.; Rodrigues, V.; Garibal, J.; Campillo-Gimenez, L.; Mouhamad, S.; Monceaux, V.; Cumont, M.C.; Rabezanahary, H.; Pruvost, A.; et al. The anti-caspase inhibitor Q-VD-OPH prevents AIDS disease progression in SIV-infected rhesus macaques. J. Clin. Investig. 2018, 128, 1627–1640. [Google Scholar] [CrossRef]
  147. Alam, A.; Cohen, L.Y.; Aouad, S.; Sekaly, R.P. Early activation of caspases during T lymphocyte stimulation results in selective substrate cleavage in nonapoptotic cells. J. Exp. Med. 1999, 190, 1879–1890. [Google Scholar] [CrossRef]
  148. Mouhamad, S.; Arnoult, D.; Auffredou, M.T.; Estaquier, J.; Vazquez, A. Differential modulation of interleukin-2-and interleukin-4-mediated early activation of normal human B lymphocytes by the caspase inhibitor zVAD-fmk. Eur. Cytokine Netw. 2002, 13, 439–445. [Google Scholar]
  149. Stack, J.H.; Beaumont, K.; Larsen, P.D.; Straley, K.S.; Henkel, G.W.; Randle, J.C.; Hoffman, H.M. IL-converting enzyme/caspase-1 inhibitor VX-765 blocks the hypersensitive response to an inflammatory stimulus in monocytes from familial cold autoinflammatory syndrome patients. J. Immunol. 2005, 175, 2630–2634. [Google Scholar] [CrossRef]
  150. André, S.; Picard, M.; Cezar, R.; Roux-Dalvai, F.; Alleaume-Butaux, A.; Soundaramourty, C.; Cruz, A.S.; Mendes-Frias, A.; Gotti, C.; Leclercq, M.; et al. T cell apoptosis characterizes severe Covid-19 disease. Cell Death Differ. 2022, 29, 1486–1499. [Google Scholar] [CrossRef]
  151. Yero, A.; Bouassa, R.M.; Ancuta, P.; Estaquier, J.; Jenabian, M.A. Immuno-metabolic control of the balance between Th17-polarized and regulatory T-cells during HIV infection. Cytokine Growth Factor Rev. 2023, 69, 1–13. [Google Scholar] [CrossRef] [PubMed]
  152. Chomont, N.; El-Far, M.; Ancuta, P.; Trautmann, L.; Procopio, F.A.; Yassine-Diab, B.; Boucher, G.; Boulassel, M.R.; Ghattas, G.; Brenchley, J.M.; et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat. Med. 2009, 15, 893–900. [Google Scholar] [CrossRef]
  153. Buzon, M.J.; Sun, H.; Li, C.; Shaw, A.; Seiss, K.; Ouyang, Z.; Martin-Gayo, E.; Leng, J.; Henrich, T.J.; Li, J.Z.; et al. HIV-1 persistence in CD4+ T cells with stem cell-like properties. Nat. Med. 2014, 20, 139–142. [Google Scholar] [CrossRef] [PubMed]
  154. Gosselin, A.; Wiche Salinas, T.R.; Planas, D.; Wacleche, V.S.; Zhang, Y.; Fromentin, R.; Chomont, N.; Cohen, É.A.; Shacklett, B.; Mehraj, V.; et al. HIV persists in CCR6+CD4+ T cells from colon and blood during antiretroviral therapy. Aids 2017, 31, 35–48. [Google Scholar] [CrossRef] [PubMed]
  155. Stieh, D.J.; Matias, E.; Xu, H.; Fought, A.J.; Blanchard, J.L.; Marx, P.A.; Veazey, R.S.; Hope, T.J. Th17 Cells Are Preferentially Infected Very Early after Vaginal Transmission of SIV in Macaques. Cell Host Microbe 2016, 19, 529–540. [Google Scholar] [CrossRef]
  156. McGary, C.S.; Deleage, C.; Harper, J.; Micci, L.; Ribeiro, S.P.; Paganini, S.; Kuri-Cervantes, L.; Benne, C.; Ryan, E.S.; Balderas, R.; et al. CTLA-4+PD-1- Memory CD4+ T Cells Critically Contribute to Viral Persistence in Antiretroviral Therapy-Suppressed, SIV-Infected Rhesus Macaques. Immunity 2017, 47, 776–788.e775. [Google Scholar] [CrossRef]
  157. Cecchinato, V.; Trindade, C.J.; Laurence, A.; Heraud, J.M.; Brenchley, J.M.; Ferrari, M.G.; Zaffiri, L.; Tryniszewska, E.; Tsai, W.P.; Vaccari, M.; et al. Altered balance between Th17 and Th1 cells at mucosal sites predicts AIDS progression in simian immunodeficiency virus-infected macaques. Mucosal Immunol. 2008, 1, 279–288. [Google Scholar] [CrossRef]
  158. Favre, D.; Lederer, S.; Kanwar, B.; Ma, Z.M.; Proll, S.; Kasakow, Z.; Mold, J.; Swainson, L.; Barbour, J.D.; Baskin, C.R.; et al. Critical loss of the balance between Th17 and T regulatory cell populations in pathogenic SIV infection. PLoS Pathog. 2009, 5, e1000295. [Google Scholar] [CrossRef]
  159. Yero, A.; Farnos, O.; Rabezanahary, H.; Racine, G.; Estaquier, J.; Jenabian, M.A. Differential Dynamics of Regulatory T-Cell and Th17 Cell Balance in Mesenteric Lymph Nodes and Blood following Early Antiretroviral Initiation during Acute Simian Immunodeficiency Virus Infection. J. Virol. 2019, 93, e00371-19. [Google Scholar] [CrossRef]
  160. Fromentin, R.; Bakeman, W.; Lawani, M.B.; Khoury, G.; Hartogensis, W.; DaFonseca, S.; Killian, M.; Epling, L.; Hoh, R.; Sinclair, E.; et al. CD4+ T Cells Expressing PD-1, TIGIT and LAG-3 Contribute to HIV Persistence during ART. PLoS Pathog. 2016, 12, e1005761. [Google Scholar] [CrossRef]
  161. Rasmussen, T.A.; Zerbato, J.M.; Rhodes, A.; Tumpach, C.; Dantanarayana, A.; McMahon, J.H.; Lau, J.S.Y.; Chang, J.J.; Gubser, C.; Brown, W.; et al. Memory CD4+ T cells that co-express PD1 and CTLA4 have reduced response to activating stimuli facilitating HIV latency. Cell Rep Med 2022, 3, 100766. [Google Scholar] [CrossRef] [PubMed]
  162. Förster, R.; Mattis, A.E.; Kremmer, E.; Wolf, E.; Brem, G.; Lipp, M. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 1996, 87, 1037–1047. [Google Scholar] [CrossRef] [PubMed]
  163. Legler, D.F.; Loetscher, M.; Roos, R.S.; Clark-Lewis, I.; Baggiolini, M.; Moser, B. B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J. Exp. Med. 1998, 187, 655–660. [Google Scholar] [CrossRef] [PubMed]
  164. Breitfeld, D.; Ohl, L.; Kremmer, E.; Ellwart, J.; Sallusto, F.; Lipp, M.; Förster, R. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 2000, 192, 1545–1552. [Google Scholar] [CrossRef] [PubMed]
  165. Schaerli, P.; Willimann, K.; Lang, A.B.; Lipp, M.; Loetscher, P.; Moser, B. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med. 2000, 192, 1553–1562. [Google Scholar] [CrossRef]
  166. Perreau, M.; Savoye, A.L.; De Crignis, E.; Corpataux, J.M.; Cubas, R.; Haddad, E.K.; De Leval, L.; Graziosi, C.; Pantaleo, G. Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production. J. Exp. Med. 2013, 210, 143–156. [Google Scholar] [CrossRef]
  167. Fukazawa, Y.; Lum, R.; Okoye, A.A.; Park, H.; Matsuda, K.; Bae, J.Y.; Hagen, S.I.; Shoemaker, R.; Deleage, C.; Lucero, C.; et al. B cell follicle sanctuary permits persistent productive simian immunodeficiency virus infection in elite controllers. Nat. Med. 2015, 21, 132–139. [Google Scholar] [CrossRef]
  168. Xu, H.; Wang, X.; Malam, N.; Lackner, A.A.; Veazey, R.S. Persistent Simian Immunodeficiency Virus Infection Causes Ultimate Depletion of Follicular Th Cells in AIDS. J. Immunol. 2015, 195, 4351–4357. [Google Scholar] [CrossRef]
  169. Kohler, S.L.; Pham, M.N.; Folkvord, J.M.; Arends, T.; Miller, S.M.; Miles, B.; Meditz, A.L.; McCarter, M.; Levy, D.N.; Connick, E. Germinal Center T Follicular Helper Cells Are Highly Permissive to HIV-1 and Alter Their Phenotype during Virus Replication. J. Immunol. 2016, 196, 2711–2722. [Google Scholar] [CrossRef]
  170. Boritz, E.A.; Darko, S.; Swaszek, L.; Wolf, G.; Wells, D.; Wu, X.; Henry, A.R.; Laboune, F.; Hu, J.; Ambrozak, D.; et al. Multiple Origins of Virus Persistence during Natural Control of HIV Infection. Cell 2016, 166, 1004–1015. [Google Scholar] [CrossRef]
  171. Moukambi, F.; Rabezanahary, H.; Rodrigues, V.; Racine, G.; Robitaille, L.; Krust, B.; Andreani, G.; Soundaramourty, C.; Silvestre, R.; Laforge, M.; et al. Early Loss of Splenic Tfh Cells in SIV-Infected Rhesus Macaques. PLoS Pathog. 2015, 11, e1005287. [Google Scholar] [CrossRef] [PubMed]
  172. Niessl, J.; Baxter, A.E.; Morou, A.; Brunet-Ratnasingham, E.; Sannier, G.; Gendron-Lepage, G.; Richard, J.; Delgado, G.G.; Brassard, N.; Turcotte, I.; et al. Persistent expansion and Th1-like skewing of HIV-specific circulating T follicular helper cells during antiretroviral therapy. EBioMedicine 2020, 54, 102727. [Google Scholar] [CrossRef] [PubMed]
  173. Morou, A.; Brunet-Ratnasingham, E.; Dubé, M.; Charlebois, R.; Mercier, E.; Darko, S.; Brassard, N.; Nganou-Makamdop, K.; Arumugam, S.; Gendron-Lepage, G.; et al. Altered differentiation is central to HIV-specific CD4+ T cell dysfunction in progressive disease. Nat. Immunol. 2019, 20, 1059–1070. [Google Scholar] [CrossRef] [PubMed]
  174. Yamamoto, T.; Lynch, R.M.; Gautam, R.; Matus-Nicodemos, R.; Schmidt, S.D.; Boswell, K.L.; Darko, S.; Wong, P.; Sheng, Z.; Petrovas, C.; et al. Quality and quantity of TFH cells are critical for broad antibody development in SHIVAD8 infection. Sci. Transl. Med. 2015, 7, 298ra120. [Google Scholar] [CrossRef]
  175. Moukambi, F.; Rabezanahary, H.; Fortier, Y.; Rodrigues, V.; Clain, J.; Benmadid-Laktout, G.; Zghidi-Abouzid, O.; Soundaramourty, C.; Laforge, M.; Estaquier, J. Mucosal T follicular helper cells in SIV-infected rhesus macaques: Contributing role of IL-27. Mucosal Immunol. 2019, 12, 1038–1054. [Google Scholar] [CrossRef]
  176. Bauquet, A.T.; Jin, H.; Paterson, A.M.; Mitsdoerffer, M.; Ho, I.C.; Sharpe, A.H.; Kuchroo, V.K. The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nat. Immunol. 2009, 10, 167–175. [Google Scholar] [CrossRef]
  177. Kroenke, M.A.; Eto, D.; Locci, M.; Cho, M.; Davidson, T.; Haddad, E.K.; Crotty, S. Bcl6 and Maf cooperate to instruct human follicular helper CD4 T cell differentiation. J. Immunol. 2012, 188, 3734–3744. [Google Scholar] [CrossRef]
  178. Oestreich, K.J.; Mohn, S.E.; Weinmann, A.S. Molecular mechanisms that control the expression and activity of Bcl-6 in TH1 cells to regulate flexibility with a TFH-like gene profile. Nat. Immunol. 2012, 13, 405–411. [Google Scholar] [CrossRef]
  179. Johnston, R.J.; Poholek, A.C.; DiToro, D.; Yusuf, I.; Eto, D.; Barnett, B.; Dent, A.L.; Craft, J.; Crotty, S. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 2009, 325, 1006–1010. [Google Scholar] [CrossRef]
  180. Nurieva, R.I.; Chung, Y.; Martinez, G.J.; Yang, X.O.; Tanaka, S.; Matskevitch, T.D.; Wang, Y.H.; Dong, C. Bcl6 mediates the development of T follicular helper cells. Science 2009, 325, 1001–1005. [Google Scholar] [CrossRef]
  181. Lee, J.Y.; Skon, C.N.; Lee, Y.J.; Oh, S.; Taylor, J.J.; Malhotra, D.; Jenkins, M.K.; Rosenfeld, M.G.; Hogquist, K.A.; Jameson, S.C. The transcription factor KLF2 restrains CD4+ T follicular helper cell differentiation. Immunity 2015, 42, 252–264. [Google Scholar] [CrossRef] [PubMed]
  182. Weber, J.P.; Fuhrmann, F.; Feist, R.K.; Lahmann, A.; Al Baz, M.S.; Gentz, L.J.; Vu Van, D.; Mages, H.W.; Haftmann, C.; Riedel, R.; et al. ICOS maintains the T follicular helper cell phenotype by down-regulating Kruppel-like factor 2. J. Exp. Med. 2015, 212, 217–233. [Google Scholar] [CrossRef] [PubMed]
  183. Fabre, S.; Carrette, F.; Chen, J.; Lang, V.; Semichon, M.; Denoyelle, C.; Lazar, V.; Cagnard, N.; Dubart-Kupperschmitt, A.; Mangeney, M.; et al. FOXO1 regulates L-Selectin and a network of human T cell homing molecules downstream of phosphatidylinositol 3-kinase. J. Immunol. 2008, 181, 2980–2989. [Google Scholar] [CrossRef]
  184. Kerdiles, Y.M.; Beisner, D.R.; Tinoco, R.; Dejean, A.S.; Castrillon, D.H.; DePinho, R.A.; Hedrick, S.M. Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nat. Immunol. 2009, 10, 176–184. [Google Scholar] [CrossRef] [PubMed]
  185. Johnston, R.J.; Choi, Y.S.; Diamond, J.A.; Yang, J.A.; Crotty, S. STAT5 is a potent negative regulator of TFH cell differentiation. J. Exp. Med. 2012, 209, 243–250. [Google Scholar] [CrossRef]
  186. Nurieva, R.I.; Podd, A.; Chen, Y.; Alekseev, A.M.; Yu, M.; Qi, X.; Huang, H.; Wen, R.; Wang, J.; Li, H.S.; et al. STAT5 protein negatively regulates T follicular helper (Tfh) cell generation and function. J. Biol. Chem. 2012, 287, 11234–11239. [Google Scholar] [CrossRef]
  187. Ballesteros-Tato, A.; Leon, B.; Graf, B.A.; Moquin, A.; Adams, P.S.; Lund, F.E.; Randall, T.D. Interleukin-2 inhibits germinal center formation by limiting T follicular helper cell differentiation. Immunity 2012, 36, 847–856. [Google Scholar] [CrossRef]
  188. Boswell, K.L.; Paris, R.; Boritz, E.; Ambrozak, D.; Yamamoto, T.; Darko, S.; Wloka, K.; Wheatley, A.; Narpala, S.; McDermott, A.; et al. Loss of circulating CD4 T cells with B cell helper function during chronic HIV infection. PLoS Pathog. 2014, 10, e1003853. [Google Scholar] [CrossRef]
  189. Brenchley, J.M.; Vinton, C.; Tabb, B.; Hao, X.P.; Connick, E.; Paiardini, M.; Lifson, J.D.; Silvestri, G.; Estes, J.D. Differential infection patterns of CD4+ T cells and lymphoid tissue viral burden distinguish progressive and nonprogressive lentiviral infections. Blood 2012, 120, 4172–4181. [Google Scholar] [CrossRef]
  190. Cubas, R.A.; Mudd, J.C.; Savoye, A.L.; Perreau, M.; van Grevenynghe, J.; Metcalf, T.; Connick, E.; Meditz, A.; Freeman, G.J.; Abesada-Terk, G., Jr.; et al. Inadequate T follicular cell help impairs B cell immunity during HIV infection. Nat. Med. 2013, 19, 494–499. [Google Scholar] [CrossRef]
  191. Petrovas, C.; Yamamoto, T.; Gerner, M.Y.; Boswell, K.L.; Wloka, K.; Smith, E.C.; Ambrozak, D.R.; Sandler, N.G.; Timmer, K.J.; Sun, X.; et al. CD4 T follicular helper cell dynamics during SIV infection. J. Clin. Investig. 2012, 122, 3281–3294. [Google Scholar] [CrossRef] [PubMed]
  192. Velu, V.; Mylvaganam, G.H.; Gangadhara, S.; Hong, J.J.; Iyer, S.S.; Gumber, S.; Ibegbu, C.C.; Villinger, F.; Amara, R.R. Induction of Th1-Biased T Follicular Helper (Tfh) Cells in Lymphoid Tissues during Chronic Simian Immunodeficiency Virus Infection Defines Functionally Distinct Germinal Center Tfh Cells. J. Immunol. 2016, 197, 1832–1842. [Google Scholar] [CrossRef] [PubMed]
  193. Monceaux, V.; Estaquier, J.; Fevrier, M.; Cumont, M.C.; Riviere, Y.; Aubertin, A.M.; Ameisen, J.C.; Hurtrel, B. Extensive apoptosis in lymphoid organs during primary SIV infection predicts rapid progression towards AIDS. Aids 2003, 17, 1585–1596. [Google Scholar] [CrossRef] [PubMed]
  194. Dykhuizen, M.; Mitchen, J.L.; Montefiori, D.C.; Thomson, J.; Acker, L.; Lardy, H.; Pauza, C.D. Determinants of disease in the simian immunodeficiency virus-infected rhesus macaque: Characterizing animals with low antibody responses and rapid progression. J. Gen. Virol. 1998, 79 (Pt 10), 2461–2467. [Google Scholar] [CrossRef]
  195. Levesque, M.C.; Moody, M.A.; Hwang, K.K.; Marshall, D.J.; Whitesides, J.F.; Amos, J.D.; Gurley, T.C.; Allgood, S.; Haynes, B.B.; Vandergrift, N.A.; et al. Polyclonal B cell differentiation and loss of gastrointestinal tract germinal centers in the earliest stages of HIV-1 infection. PLoS Med. 2009, 6, e1000107. [Google Scholar] [CrossRef]
  196. Moir, S.; Malaspina, A.; Pickeral, O.K.; Donoghue, E.T.; Vasquez, J.; Miller, N.J.; Krishnan, S.R.; Planta, M.A.; Turney, J.F.; Justement, J.S.; et al. Decreased survival of B cells of HIV-viremic patients mediated by altered expression of receptors of the TNF superfamily. J. Exp. Med. 2004, 200, 587–599. [Google Scholar] [CrossRef]
  197. Li, S.; Rouphael, N.; Duraisingham, S.; Romero-Steiner, S.; Presnell, S.; Davis, C.; Schmidt, D.S.; Johnson, S.E.; Milton, A.; Rajam, G.; et al. Molecular signatures of antibody responses derived from a systems biology study of five human vaccines. Nat. Immunol. 2014, 15, 195–204. [Google Scholar] [CrossRef]
  198. Querec, T.D.; Akondy, R.S.; Lee, E.K.; Cao, W.; Nakaya, H.I.; Teuwen, D.; Pirani, A.; Gernert, K.; Deng, J.; Marzolf, B.; et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat. Immunol. 2009, 10, 116–125. [Google Scholar] [CrossRef]
  199. Moir, S.; Buckner, C.M.; Ho, J.; Wang, W.; Chen, J.; Waldner, A.J.; Posada, J.G.; Kardava, L.; O’Shea, M.A.; Kottilil, S.; et al. B cells in early and chronic HIV infection: Evidence for preservation of immune function associated with early initiation of antiretroviral therapy. Blood 2010, 116, 5571–5579. [Google Scholar] [CrossRef]
  200. Wada, N.I.; Jacobson, L.P.; Margolick, J.B.; Breen, E.C.; Macatangay, B.; Penugonda, S.; Martinez-Maza, O.; Bream, J.H. The effect of HAART-induced HIV suppression on circulating markers of inflammation and immune activation. AIDS 2015, 29, 463–471. [Google Scholar] [CrossRef]
  201. Fontaine, J.; Chagnon-Choquet, J.; Valcke, H.S.; Poudrier, J.; Roger, M.; Montreal Primary, H.I.V.I.; Long-Term Non-Progressor Study, G. High expression levels of B lymphocyte stimulator (BLyS) by dendritic cells correlate with HIV-related B-cell disease progression in humans. Blood 2011, 117, 145–155. [Google Scholar] [CrossRef] [PubMed]
  202. Morris, L.; Binley, J.M.; Clas, B.A.; Bonhoeffer, S.; Astill, T.P.; Kost, R.; Hurley, A.; Cao, Y.; Markowitz, M.; Ho, D.D.; et al. HIV-1 antigen-specific and -nonspecific B cell responses are sensitive to combination antiretroviral therapy. J. Exp. Med. 1998, 188, 233–245. [Google Scholar] [CrossRef] [PubMed]
  203. Titanji, K.; De Milito, A.; Cagigi, A.; Thorstensson, R.; Grutzmeier, S.; Atlas, A.; Hejdeman, B.; Kroon, F.P.; Lopalco, L.; Nilsson, A.; et al. Loss of memory B cells impairs maintenance of long-term serologic memory during HIV-1 infection. Blood 2006, 108, 1580–1587. [Google Scholar] [CrossRef] [PubMed]
  204. Schacker, T.W.; Nguyen, P.L.; Martinez, E.; Reilly, C.; Gatell, J.M.; Horban, A.; Bakowska, E.; Berzins, B.; van Leeuwen, R.; Wolinsky, S.; et al. Persistent abnormalities in lymphoid tissues of human immunodeficiency virus-infected patients successfully treated with highly active antiretroviral therapy. J. Infect. Dis. 2002, 186, 1092–1097. [Google Scholar] [CrossRef] [PubMed]
  205. Schacker, T.W.; Nguyen, P.L.; Beilman, G.J.; Wolinsky, S.; Larson, M.; Reilly, C.; Haase, A.T. Collagen deposition in HIV-1 infected lymphatic tissues and T cell homeostasis. J. Clin. Investig. 2002, 110, 1133–1139. [Google Scholar] [CrossRef]
  206. Zaunders, J.; Danta, M.; Bailey, M.; Mak, G.; Marks, K.; Seddiki, N.; Xu, Y.; Templeton, D.J.; Cooper, D.A.; Boyd, M.A.; et al. CD4+ T Follicular Helper and IgA+ B Cell Numbers in Gut Biopsies from HIV-Infected Subjects on Antiretroviral Therapy Are Similar to HIV-Uninfected Individuals. Front. Immunol. 2016, 7, 438. [Google Scholar] [CrossRef]
  207. Kityo, C.; Makamdop, K.N.; Rothenberger, M.; Chipman, J.G.; Hoskuldsson, T.; Beilman, G.J.; Grzywacz, B.; Mugyenyi, P.; Ssali, F.; Akondy, R.S.; et al. Lymphoid tissue fibrosis is associated with impaired vaccine responses. J. Clin. Investig. 2018, 128, 2763–2773. [Google Scholar] [CrossRef]
  208. Pallikkuth, S.; Parmigiani, A.; Silva, S.Y.; George, V.K.; Fischl, M.; Pahwa, R.; Pahwa, S. Impaired peripheral blood T-follicular helper cell function in HIV-infected nonresponders to the 2009 H1N1/09 vaccine. Blood 2012, 120, 985–993. [Google Scholar] [CrossRef]
  209. Pallikkuth, S.; de Armas, L.R.; Rinaldi, S.; George, V.K.; Pan, L.; Arheart, K.L.; Pahwa, R.; Pahwa, S. Dysfunctional peripheral T follicular helper cells dominate in people with impaired influenza vaccine responses: Results from the FLORAH study. PLoS Biol. 2019, 17, e3000257. [Google Scholar] [CrossRef]
  210. Muro-Cacho, C.A.; Pantaleo, G.; Fauci, A.S. Analysis of apoptosis in lymph nodes of HIV-infected persons. Intensity of apoptosis correlates with the general state of activation of the lymphoid tissue and not with stage of disease or viral burden. J. Immunol. 1995, 154, 5555–5566. [Google Scholar] [CrossRef]
  211. Finkel, T.H.; Tudor-Williams, G.; Banda, N.K.; Cotton, M.F.; Curiel, T.; Monks, C.; Baba, T.W.; Ruprecht, R.M.; Kupfer, A. Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes. Nat. Med. 1995, 1, 129–134. [Google Scholar] [CrossRef] [PubMed]
  212. Gougeon, M.L.; Lecoeur, H.; Dulioust, A.; Enouf, M.G.; Crouvoiser, M.; Goujard, C.; Debord, T.; Montagnier, L. Programmed cell death in peripheral lymphocytes from HIV-infected persons: Increased susceptibility to apoptosis of CD4 and CD8 T cells correlates with lymphocyte activation and with disease progression. J. Immunol. 1996, 156, 3509–3520. [Google Scholar] [CrossRef] [PubMed]
  213. Silvestri, G.; Sodora, D.L.; Koup, R.A.; Paiardini, M.; O’Neil, S.P.; McClure, H.M.; Staprans, S.I.; Feinberg, M.B. Nonpathogenic SIV infection of sooty mangabeys is characterized by limited bystander immunopathology despite chronic high-level viremia. Immunity 2003, 18, 441–452. [Google Scholar] [CrossRef] [PubMed]
  214. Arnoult, D.; Petit, F.; Lelièvre, J.D.; Lecossier, D.; Hance, A.; Monceaux, V.; Hurtrel, B.; Ho Tsong Fang, R.; Ameisen, J.C.; Estaquier, J. Caspase-dependent and -independent T-cell death pathways in pathogenic simian immunodeficiency virus infection: Relationship to disease progression. Cell Death Differ. 2003, 10, 1240–1252. [Google Scholar] [CrossRef]
  215. Mattapallil, J.J.; Douek, D.C.; Hill, B.; Nishimura, Y.; Martin, M.; Roederer, M. Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature 2005, 434, 1093–1097. [Google Scholar] [CrossRef]
  216. Li, Q.; Duan, L.; Estes, J.D.; Ma, Z.M.; Rourke, T.; Wang, Y.; Reilly, C.; Carlis, J.; Miller, C.J.; Haase, A.T. Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells. Nature 2005, 434, 1148–1152. [Google Scholar] [CrossRef]
  217. Terai, C.; Kornbluth, R.S.; Pauza, C.D.; Richman, D.D.; Carson, D.A. Apoptosis as a mechanism of cell death in cultured T lymphoblasts acutely infected with HIV-1. J. Clin. Investig. 1991, 87, 1710–1715. [Google Scholar] [CrossRef]
  218. Petit, F.; Arnoult, D.; Lelièvre, J.D.; Moutouh-de Parseval, L.; Hance, A.J.; Schneider, P.; Corbeil, J.; Ameisen, J.C.; Estaquier, J. Productive HIV-1 infection of primary CD4+ T cells induces mitochondrial membrane permeabilization leading to a caspase-independent cell death. J. Biol. Chem. 2002, 277, 1477–1487. [Google Scholar] [CrossRef]
  219. Laforge, M.; Limou, S.; Harper, F.; Casartelli, N.; Rodrigues, V.; Silvestre, R.; Haloui, H.; Zagury, J.F.; Senik, A.; Estaquier, J. DRAM triggers lysosomal membrane permeabilization and cell death in CD4+ T cells infected with HIV. PLoS Pathog. 2013, 9, e1003328. [Google Scholar] [CrossRef]
  220. Hutcheson, J.; Scatizzi, J.C.; Siddiqui, A.M.; Haines, G.K., 3rd; Wu, T.; Li, Q.Z.; Davis, L.S.; Mohan, C.; Perlman, H. Combined deficiency of proapoptotic regulators Bim and Fas results in the early onset of systemic autoimmunity. Immunity 2008, 28, 206–217. [Google Scholar] [CrossRef]
  221. Hughes, P.D.; Belz, G.T.; Fortner, K.A.; Budd, R.C.; Strasser, A.; Bouillet, P. Apoptosis regulators Fas and Bim cooperate in shutdown of chronic immune responses and prevention of autoimmunity. Immunity 2008, 28, 197–205. [Google Scholar] [CrossRef] [PubMed]
  222. Estaquier, J.; Vallette, F.; Vayssiere, J.L.; Mignotte, B. The mitochondrial pathways of apoptosis. Adv. Exp. Med. Biol. 2012, 942, 157–183. [Google Scholar] [CrossRef] [PubMed]
  223. Chakrabarti, L.A.; Lewin, S.R.; Zhang, L.; Gettie, A.; Luckay, A.; Martin, L.N.; Skulsky, E.; Ho, D.D.; Cheng-Mayer, C.; Marx, P.A. Normal T-cell turnover in sooty mangabeys harboring active simian immunodeficiency virus infection. J. Virol. 2000, 74, 1209–1223. [Google Scholar] [CrossRef] [PubMed]
  224. Monceaux, V.; Ho Tsong Fang, R.; Cumont, M.C.; Hurtrel, B.; Estaquier, J. Distinct cycling CD4+- and CD8+-T-cell profiles during the asymptomatic phase of simian immunodeficiency virus SIVmac251 infection in rhesus macaques. J. Virol. 2003, 77, 10047–10059. [Google Scholar] [CrossRef]
  225. Katsikis, P.D.; Wunderlich, E.S.; Smith, C.A.; Herzenberg, L.A.; Herzenberg, L.A. Fas antigen stimulation induces marked apoptosis of T lymphocytes in human immunodeficiency virus-infected individuals. J. Exp. Med. 1995, 181, 2029–2036. [Google Scholar] [CrossRef]
  226. Banda, N.K.; Bernier, J.; Kurahara, D.K.; Kurrle, R.; Haigwood, N.; Sekaly, R.P.; Finkel, T.H. Crosslinking CD4 by human immunodeficiency virus gp120 primes T cells for activation-induced apoptosis. J. Exp. Med. 1992, 176, 1099–1106. [Google Scholar] [CrossRef]
  227. Desbarats, J.; Freed, J.H.; Campbell, P.A.; Newell, M.K. Fas (CD95) expression and death-mediating function are induced by CD4 cross-linking on CD4+ T cells. Proc. Natl. Acad. Sci. USA 1996, 93, 11014–11018. [Google Scholar] [CrossRef]
  228. Berndt, C.; Mopps, B.; Angermuller, S.; Gierschik, P.; Krammer, P.H. CXCR4 and CD4 mediate a rapid CD95-independent cell death in CD4+ T cells. Proc. Natl. Acad. Sci. USA 1998, 95, 12556–12561. [Google Scholar] [CrossRef]
  229. Cicala, C.; Arthos, J.; Rubbert, A.; Selig, S.; Wildt, K.; Cohen, O.J.; Fauci, A.S. HIV-1 envelope induces activation of caspase-3 and cleavage of focal adhesion kinase in primary human CD4+ T cells. Proc. Natl. Acad. Sci. USA 2000, 97, 1178–1183. [Google Scholar] [CrossRef]
  230. Vlahakis, S.R.; Algeciras-Schimnich, A.; Bou, G.; Heppelmann, C.J.; Villasis-Keever, A.; Collman, R.G.; Paya, C.V. Chemokine-receptor activation by env determines the mechanism of death in HIV-infected and uninfected T lymphocytes. J. Clin. Investig. 2001, 107, 207–215. [Google Scholar] [CrossRef]
  231. Petit, F.; Corbeil, J.; Lelievre, J.D.; Moutouh-de Parseval, L.; Pinon, G.; Green, D.R.; Ameisen, J.C.; Estaquier, J. Role of CD95-activated caspase-1 processing of IL-1beta in TCR-mediated proliferation of HIV-infected CD4+ T cells. Eur. J. Immunol. 2001, 31, 3513–3524. [Google Scholar] [CrossRef] [PubMed]
  232. Estaquier, J.; Lelievre, J.D.; Petit, F.; Brunner, T.; Moutouh-De Parseval, L.; Richman, D.D.; Ameisen, J.C.; Corbeil, J. Effects of antiretroviral drugs on human immunodeficiency virus type 1-induced CD4+ T-cell death. J. Virol. 2002, 76, 5966–5973. [Google Scholar] [CrossRef] [PubMed]
  233. Holm, G.H.; Zhang, C.; Gorry, P.R.; Peden, K.; Schols, D.; De Clercq, E.; Gabuzda, D. Apoptosis of bystander T cells induced by human immunodeficiency virus type 1 with increased envelope/receptor affinity and coreceptor binding site exposure. J. Virol. 2004, 78, 4541–4551. [Google Scholar] [CrossRef] [PubMed]
  234. Lelievre, J.D.; Mammano, F.; Arnoult, D.; Petit, F.; Grodet, A.; Estaquier, J.; Ameisen, J.C. A novel mechanism for HIV1-mediated bystander CD4+ T-cell death: Neighboring dying cells drive the capacity of HIV1 to kill noncycling primary CD4+ T cells. Cell Death Differ. 2004, 11, 1017–1027. [Google Scholar] [CrossRef] [PubMed]
  235. Lelievre, J.D.; Petit, F.; Arnoult, D.; Ameisen, J.C.; Estaquier, J. Interleukin 7 increases human immunodeficiency virus type 1 LAI-mediated Fas-induced T-cell death. J. Virol. 2005, 79, 3195–3199. [Google Scholar] [CrossRef]
  236. Doitsh, G.; Cavrois, M.; Lassen, K.G.; Zepeda, O.; Yang, Z.; Santiago, M.L.; Hebbeler, A.M.; Greene, W.C. Abortive HIV infection mediates CD4 T cell depletion and inflammation in human lymphoid tissue. Cell 2010, 143, 789–801. [Google Scholar] [CrossRef]
  237. Espert, L.; Denizot, M.; Grimaldi, M.; Robert-Hebmann, V.; Gay, B.; Varbanov, M.; Codogno, P.; Biard-Piechaczyk, M. Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. J. Clin. Investig. 2006, 116, 2161–2172. [Google Scholar] [CrossRef]
  238. Wang, Q.; Clark, K.M.; Tiwari, R.; Raju, N.; Tharp, G.K.; Rogers, J.; Harris, R.A.; Raveendran, M.; Bosinger, S.E.; Burdo, T.H.; et al. The CARD8 inflammasome dictates HIV/SIV pathogenesis and disease progression. Cell 2024, 187, 1223–1237.e1216. [Google Scholar] [CrossRef]
  239. Benveniste, O.; Flahault, A.; Rollot, F.; Elbim, C.; Estaquier, J.; Pedron, B.; Duval, X.; Dereuddre-Bosquet, N.; Clayette, P.; Sterkers, G.; et al. Mechanisms involved in the low-level regeneration of CD4+ cells in HIV-1-infected patients receiving highly active antiretroviral therapy who have prolonged undetectable plasma viral loads. J. Infect. Dis. 2005, 191, 1670–1679. [Google Scholar] [CrossRef]
  240. Fernandez, S.; Tanaskovic, S.; Helbig, K.; Rajasuriar, R.; Kramski, M.; Murray, J.M.; Beard, M.; Purcell, D.; Lewin, S.R.; Price, P.; et al. CD4+ T-cell deficiency in HIV patients responding to antiretroviral therapy is associated with increased expression of interferon-stimulated genes in CD4+ T cells. J. Infect. Dis. 2011, 204, 1927–1935. [Google Scholar] [CrossRef]
  241. Merlini, E.; Luzi, K.; Suardi, E.; Barassi, A.; Cerrone, M.; Martinez, J.S.; Bai, F.; D’Eril, G.V.; Monforte, A.D.; Marchetti, G. T-cell phenotypes, apoptosis and inflammation in HIV+ patients on virologically effective cART with early atherosclerosis. PLoS ONE 2012, 7, e46073. [Google Scholar] [CrossRef] [PubMed]
  242. Janossy, G.; Borthwick, N.; Lomnitzer, R.; Medina, E.; Squire, S.B.; Phillips, A.N.; Lipman, M.; Johnson, M.A.; Lee, C.; Bofill, M. Lymphocyte activation in HIV-1 infection. I. Predominant proliferative defects among CD45R0+ cells of the CD4 and CD8 lineages. Aids 1993, 7, 613–624. [Google Scholar] [CrossRef] [PubMed]
  243. Clerici, M.; Sarin, A.; Berzofsky, J.A.; Landay, A.L.; Kessler, H.A.; Hashemi, F.; Hendrix, C.W.; Blatt, S.P.; Rusnak, J.; Dolan, M.J.; et al. Antigen-stimulated apoptotic T-cell death in HIV infection is selective for CD4+ T cells, modulated by cytokines and effected by lymphotoxin. Aids 1996, 10, 603–611. [Google Scholar] [CrossRef] [PubMed]
  244. Gibbs, J.S.; Lackner, A.A.; Lang, S.M.; Simon, M.A.; Sehgal, P.K.; Daniel, M.D.; Desrosiers, R.C. Progression to AIDS in the absence of a gene for vpr or vpx. J. Virol. 1995, 69, 2378–2383. [Google Scholar] [CrossRef]
  245. Laguette, N.; Sobhian, B.; Casartelli, N.; Ringeard, M.; Chable-Bessia, C.; Segeral, E.; Yatim, A.; Emiliani, S.; Schwartz, O.; Benkirane, M. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 2011, 474, 654–657. [Google Scholar] [CrossRef]
Figure 1. (A) The Human Immunodeficiency Virus (HIV-1) pandemic in humans resulted from cross-species transmissions of a strain of Simian Immunodeficiency Virus that infects central African chimpanzees (Pan troglodytes troglodytes) (SIVCPZ). Thus, SIVcpz is responsible for the emergence of the HIV-1 M and N groups. Furthermore, the infection of gorillas leading to the emergence of SIVgor is responsible for the emergence of the HIV-1 O group (see review [29]). SIVsmm from sooty mangabeys is associated with the emergence of HIV-2 in humans, and cross-species transmission to captive rhesus macaques in US primate centers is responsible for the emergence of the SIVmac. SIVs can also be isolated from mandrills (SIVmnd) and from African green monkeys (SIVagm). Whereas the majority of African NHPs manifest a benign course of natural SIV infection when infected with their species-specific SIV strain, monkeys of Asian origin, such as rhesus (Macaca mulatta), pigtailed (Macaca nemestrina), and cynomolgus (Macaca fascicularis) macaques, are susceptible to SIVmac infection. (B) Whereas in the blood, viremia is detected in both pathogenic and non-pathogenic non-human primate models of lentiviral infections, only humans and macaques demonstrate T cell immunodeficiency and AIDS. CD4 T cell apoptosis and immune activation characterize pathogenic lentiviral infections.
Figure 1. (A) The Human Immunodeficiency Virus (HIV-1) pandemic in humans resulted from cross-species transmissions of a strain of Simian Immunodeficiency Virus that infects central African chimpanzees (Pan troglodytes troglodytes) (SIVCPZ). Thus, SIVcpz is responsible for the emergence of the HIV-1 M and N groups. Furthermore, the infection of gorillas leading to the emergence of SIVgor is responsible for the emergence of the HIV-1 O group (see review [29]). SIVsmm from sooty mangabeys is associated with the emergence of HIV-2 in humans, and cross-species transmission to captive rhesus macaques in US primate centers is responsible for the emergence of the SIVmac. SIVs can also be isolated from mandrills (SIVmnd) and from African green monkeys (SIVagm). Whereas the majority of African NHPs manifest a benign course of natural SIV infection when infected with their species-specific SIV strain, monkeys of Asian origin, such as rhesus (Macaca mulatta), pigtailed (Macaca nemestrina), and cynomolgus (Macaca fascicularis) macaques, are susceptible to SIVmac infection. (B) Whereas in the blood, viremia is detected in both pathogenic and non-pathogenic non-human primate models of lentiviral infections, only humans and macaques demonstrate T cell immunodeficiency and AIDS. CD4 T cell apoptosis and immune activation characterize pathogenic lentiviral infections.
Idr 17 00012 g001
Figure 2. Impact of early antiretroviral therapy on the establishment of tissue and cellular reservoirs in SIVmac251-infected rhesus macaques of Chinese origin. Tissue and cellular atlas of viral reservoirs (VRs) in SIVmac251-infected RMs of Chinese origin. From the same individuals, an extensive exploration of lymphoid and myeloid VRs has been performed in blood [80,81] and from different tissues such as brain [82], lung [83], liver [83,84], spleen [80,81], axillary and inguinal lymph nodes (Ax LN and Ing LN) [80] and mesenteric lymph nodes (MLN) [80]. The presence (+) and the absence (−) of VRs is indicated. The nature of cells in which viral DNA has been detected is indicated: macrophages (Macro) and CD4 T cells (CD4). Nd: Not determined at the time of this publication. The references of the different manuscripts in which the results have been published are indicated.
Figure 2. Impact of early antiretroviral therapy on the establishment of tissue and cellular reservoirs in SIVmac251-infected rhesus macaques of Chinese origin. Tissue and cellular atlas of viral reservoirs (VRs) in SIVmac251-infected RMs of Chinese origin. From the same individuals, an extensive exploration of lymphoid and myeloid VRs has been performed in blood [80,81] and from different tissues such as brain [82], lung [83], liver [83,84], spleen [80,81], axillary and inguinal lymph nodes (Ax LN and Ing LN) [80] and mesenteric lymph nodes (MLN) [80]. The presence (+) and the absence (−) of VRs is indicated. The nature of cells in which viral DNA has been detected is indicated: macrophages (Macro) and CD4 T cells (CD4). Nd: Not determined at the time of this publication. The references of the different manuscripts in which the results have been published are indicated.
Idr 17 00012 g002
Figure 3. T follicular helper cells and Simian Immunodeficiency Virus infection. (a) CD4 T cell differentiation. After antigen (Ag) presentation by the major histocompatibility complex (MHC) class II molecules expressed by antigen-presenting cells (APC) to the T cells expressing the T cell receptor (TCR), naïve T cells are activated, leading to their differentiation into central memory (CM), effector memory (EM) or terminally differentiated T (TDT) cells, as defined by the expression of CD45RA and CCR7 molecules. In addition, among EM, there is a subset of CD4 T cells, namely T follicular helper (Tfh) cells, that express the C-X-C chemokine receptor type 5 (CXCR5) and the programmed cell death protein 1 (PD-1) molecules. (b) T and B cell interaction. Tfh cells are essential for B cells by providing co-signals (CD40 and PDL-1) leading to the expression of transcriptional factors such as Bcl-6 (B-cell lymphoma 6) and Pax5 (Paired box protein 5) in B cells. In turn, B cell interaction provided co-signal to Tfh cells in inducing the transcription factors Bcl-6 and c-MAF, (musculoaponeurotic fibrosarcoma), which in turn led to the production of the interleukin 21 (IL-21) and sustained B cell activation and maturation. (c) B cell follicle. The formation of germinal centers depends at least in part on the interaction of Tfh and B cells. Confocal microscopy shows CXCR5, PD-1, and CD4 expressions from the spleen of a naïve rhesus macaque. (d) SIV replication. Viral replication is determined by in situ hybridization using a specific SIV nef probe (dark spots) demonstrating strong staining in the region of B cell follicles, as well as the accumulation of viral RNA in the follicular dendritic cell (FDC) network that may represent viral particles trapped at the surface of the FDCs.
Figure 3. T follicular helper cells and Simian Immunodeficiency Virus infection. (a) CD4 T cell differentiation. After antigen (Ag) presentation by the major histocompatibility complex (MHC) class II molecules expressed by antigen-presenting cells (APC) to the T cells expressing the T cell receptor (TCR), naïve T cells are activated, leading to their differentiation into central memory (CM), effector memory (EM) or terminally differentiated T (TDT) cells, as defined by the expression of CD45RA and CCR7 molecules. In addition, among EM, there is a subset of CD4 T cells, namely T follicular helper (Tfh) cells, that express the C-X-C chemokine receptor type 5 (CXCR5) and the programmed cell death protein 1 (PD-1) molecules. (b) T and B cell interaction. Tfh cells are essential for B cells by providing co-signals (CD40 and PDL-1) leading to the expression of transcriptional factors such as Bcl-6 (B-cell lymphoma 6) and Pax5 (Paired box protein 5) in B cells. In turn, B cell interaction provided co-signal to Tfh cells in inducing the transcription factors Bcl-6 and c-MAF, (musculoaponeurotic fibrosarcoma), which in turn led to the production of the interleukin 21 (IL-21) and sustained B cell activation and maturation. (c) B cell follicle. The formation of germinal centers depends at least in part on the interaction of Tfh and B cells. Confocal microscopy shows CXCR5, PD-1, and CD4 expressions from the spleen of a naïve rhesus macaque. (d) SIV replication. Viral replication is determined by in situ hybridization using a specific SIV nef probe (dark spots) demonstrating strong staining in the region of B cell follicles, as well as the accumulation of viral RNA in the follicular dendritic cell (FDC) network that may represent viral particles trapped at the surface of the FDCs.
Idr 17 00012 g003
Table 1. Comparative analysis of disease progression and immunological features across non-human primate models and humans. RMs: rhesus macaques; PLWH: people living with HIV; peripheral lymph nodes: PLN; C-C chemokine receptor type 5: CCR5; MHC: major histocompatibility complex. The “+” signs indicate the level of viremia: +++: high, ++: moderate and +: low. The “*”refers to the allele’s specific nomenclature in the context of the major histocompatibility complex (MHC). For example, in Mamu-A*01, “Mamu” refers to the rhesus macaque MHC, “A” is the gene locus, and “*01” specifies the allele variant.
Table 1. Comparative analysis of disease progression and immunological features across non-human primate models and humans. RMs: rhesus macaques; PLWH: people living with HIV; peripheral lymph nodes: PLN; C-C chemokine receptor type 5: CCR5; MHC: major histocompatibility complex. The “+” signs indicate the level of viremia: +++: high, ++: moderate and +: low. The “*”refers to the allele’s specific nomenclature in the context of the major histocompatibility complex (MHC). For example, in Mamu-A*01, “Mamu” refers to the rhesus macaque MHC, “A” is the gene locus, and “*01” specifies the allele variant.
FeaturesRMs of Indian OriginRMs of Chinese OriginPigtail Macaques (United States)Cynomolgus
(Mauritian)
African Green MonkeysPLWH
Virus and Disease progressionBlood Viremia
PLN Viremia
+++
+++
++
++
+++
+++
++
+
++
No
++
++
Progression to AIDSRapid
Less than 1 year
Moderate
1 to 5 years
Rapid
Less than 6 Months
Low
Controller
No
Controller
Moderate
5 to 10 years
Immunological parametersCD4 T depletionFastModerateFastLowNoGradual depletion
Immune activationLowModerate to HighLowLowLowModerate to high
CCR5 expression
and after infection
High
Full depletion
Low
Increase
High
Full depletion
Low
No increase
Low
No increase
Low
Increase
SIV-specific antibodiesLowHighLowLowLowHigh
MHC molecules
(most frequent)
Mamu-A*01, Mamu-B*01, Mamu-B*17Mamu-A*02
Mamu-B*08
Mane-A* 10Mafa, M1 to M7Chae-A and
Chae-B
HLA-A2, HLA-A3 and HLA-B7
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Clain, J.A.; Picard, M.; Rabezanahary, H.; André, S.; Boutrais, S.; Goma Matsetse, E.; Dewatines, J.; Dueymes, Q.; Thiboutot, E.; Racine, G.; et al. Immune Alterations and Viral Reservoir Atlas in SIV-Infected Chinese Rhesus Macaques. Infect. Dis. Rep. 2025, 17, 12. https://doi.org/10.3390/idr17010012

AMA Style

Clain JA, Picard M, Rabezanahary H, André S, Boutrais S, Goma Matsetse E, Dewatines J, Dueymes Q, Thiboutot E, Racine G, et al. Immune Alterations and Viral Reservoir Atlas in SIV-Infected Chinese Rhesus Macaques. Infectious Disease Reports. 2025; 17(1):12. https://doi.org/10.3390/idr17010012

Chicago/Turabian Style

Clain, Julien A., Morgane Picard, Henintsoa Rabezanahary, Sonia André, Steven Boutrais, Ella Goma Matsetse, Juliette Dewatines, Quentin Dueymes, Elise Thiboutot, Gina Racine, and et al. 2025. "Immune Alterations and Viral Reservoir Atlas in SIV-Infected Chinese Rhesus Macaques" Infectious Disease Reports 17, no. 1: 12. https://doi.org/10.3390/idr17010012

APA Style

Clain, J. A., Picard, M., Rabezanahary, H., André, S., Boutrais, S., Goma Matsetse, E., Dewatines, J., Dueymes, Q., Thiboutot, E., Racine, G., Soundaramourty, C., Mammano, F., Corbeau, P., Zghidi-Abouzid, O., & Estaquier, J. (2025). Immune Alterations and Viral Reservoir Atlas in SIV-Infected Chinese Rhesus Macaques. Infectious Disease Reports, 17(1), 12. https://doi.org/10.3390/idr17010012

Article Metrics

Back to TopTop