Effect of Different Approaches to Antimicrobial Therapy with Cefmetazole and Meropenem on the Time to Defervescence in Non-Severe Extended-Spectrum β-Lactamase-Producing Escherichia coli Bacteremia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Study Endpoints and Data Collection
2.3. Statistical Analysis
3. Results
3.1. Target Patients
3.2. Primary Endpoint
3.3. Secondary Endpoints
3.4. Cox Proportional Hazards Analysis for the Time to Defervescence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonnet, R. Growing group of extended-spectrum β-lactamases: The CTX-M enzymes. Antimicrob. Agents Chemother. 2004, 48, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Rana, C.; Rajput, S.; Behera, M.; Gautam, D.; Vikas, V.; Vats, A.; Roshan, M.; Ghorai, S.M.; De, S. Global epidemiology of CTX-M-type β-lactam resistance in human and animal. Comp. Immunol. Microbiol. Infect. Dis. 2022, 86, 101815. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Kämpfer, P.; Nordmann, P. Chromosome-encoded ambler Class A β-lactamase of Kluyvera georgiana, a probable progenitor of a subgroup of CTX-M extended-spectrum β-lactamases. Antimicrob. Agents Chemother. 2002, 46, 4038–4040. [Google Scholar] [CrossRef] [PubMed]
- Ling, W.; Paterson, D.L.; Harris, P.N.A.; Furuya-Kanamori, L.; Edwards, F.; Laupland, K.B. Mortality, hospital length of stay, and recurrent bloodstream infections associated with extended-spectrum beta-lactamase-producing Escherichia coli in a low prevalence region: A 20-year population-based large cohort study. Int. J. Infect. Dis. 2024, 138, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Haruki, Y.; Hagiya, H.; Haruki, M.; Sugiyama, T. Clinical characteristics and outcome of critically ill patients with bacteremia causedby extended-spectrum β-lactamase-producing and non-producing Escherichia coli. J. Infect. Chemother. 2018, 24, 944–947. [Google Scholar] [CrossRef] [PubMed]
- Nordmann, P.; Lartigue, M.F.; Poirel, L. Beta-lactam induction of ISEcp1B-mediated mobilization of the naturally occurring bla (CTX-M) beta-lactamase gene of Kluyvera ascorbata. FEMS Microbiol. Lett. 2008, 288, 247–249. [Google Scholar] [CrossRef] [PubMed]
- Woerther, P.L.; Burdet, C.; Chachaty, E.; Andremont, A. Trends in human fecal carriage of extended-spectrum β-lactamases in the community: Toward the globalization of CTX-M. Clin. Microbiol. Rev. 2013, 26, 744–758. [Google Scholar] [CrossRef] [PubMed]
- Lepeule, R.; Leflon-Guibout, V.; Vanjak, D.; Zahar, J.R.; Lafaurie, M.; Besson, C.; Lefort, A. Groupe des Référents en Infectiologie d’Île-de-France (GRIF). Clinical spectrum of urine cultures positive for ESBL-producing Escherichia coli in hospitalized patients and impact on antibiotic use. Med. Mal. Infect. 2014, 44, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report: 2021. Available online: https://www.who.int/publications-detail-redirect/9789240027336 (accessed on 24 September 2023).
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). Clin. Infect. Dis. 2021, 72, 1109–1116. [Google Scholar] [CrossRef] [PubMed]
- Doi, A.; Shimada, T.; Harada, S.; Iwata, K.; Kamiya, T. The efficacy of cefmetazole against pyelonephritis caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae. Int. J. Infect. Dis. 2013, 17, e159–e163. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yan, C.Y.; Li, S.R.; Fan, T.T.; Cao, S.S.; Cui, B.; Li, M.Y.; Fan, B.Y.; Ji, B.; Wang, L.; et al. Efficacy and safety of piperacillin–tazobactam compared with meropenem in treating complicated urinary tract infections including acute pyelonephritis due to extended-spectrum β-lactamase-producing Enterobacteriaceae. Front. Cell. Infect. Microbiol. 2023, 13, 1093842. [Google Scholar] [CrossRef] [PubMed]
- Namikawa, H.; Yamada, K.; Fujimoto, H.; Oinuma, K.; Tochino, Y.; Takemoto, Y.; Kaneko, Y.; Shuto, H.; Kakeya, H. Clinical characteristics of bacteremia caused by extended-spectrum beta-lactamase-producing Escherichia coli at a tertiary hospital. Intern. Med. 2017, 56, 1807–1815. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, Y.; Yamamoto, M.; Nagao, M.; Komori, T.; Fujita, N.; Hayashi, A.; Simizu, T.; Watanabe, H.; Doi, S.; Tanaka, S.; et al. Multicenter retrospective study of cefmetazole and flomoxef to treat extended-spectrum-β-lactamase-producing Escherichia coli bacteremia. Antimicrob Agents Chemother. 2015, 59, 5107–5113. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, S.; Imai, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A. Collaborators developing the Japanese equation for estimated GFR. Revised equations for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 31st ed.; M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2021. [Google Scholar]
- Fukuchi, T.; Iwata, K.; Kobayashi, S.; Nakamura, T.; Ohji, G. Cefmetazole for bacteremia caused by ESBL-producing enterobacteriaceae comparing with carbapenems. BMC Infect. Dis. 2016, 16, 427. [Google Scholar] [CrossRef] [PubMed]
- Mita, Y.; Shigemura, K.; Osawa, K.; Kitagawa, K.; Kotaki, T.; Shirakawa, T.; Miyara, T.; Fujisawa, M. Clinical risk factors for death caused by extended-spectrum beta-lactamase: Producing bacteria. Urol. Int. 2019, 102, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Kuwana, T.; Yamaguchi, J.; Kinoshita, K.; Hori, S.; Ihara, S.; Taniguchi, T. Successful de-escalation antibiotic therapy using cephamycins for sepsis caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae bacteremia: A sequential 25-case series. Open Med. 2020, 15, 782–786. [Google Scholar] [CrossRef] [PubMed]
- Hamada, Y.; Matsumura, Y.; Nagashima, M.; Akazawa, T.; Doi, Y.; Hayakawa, K. Retrospective evaluation of appropriate dosing of cefmetazole for invasive urinary tract infection due to extended-spectrum β-lactamase-producing Escherichia coli. J. Infect. Chemother. 2021, 27, 1602–1606. [Google Scholar] [CrossRef] [PubMed]
- Takemura, W.; Tashiro, S.; Hayashi, M.; Igarashi, Y.; Liu, X.; Mizukami, Y.; Kojima, N.; Morita, T.; Enoki, Y.; Taguchi, K.; et al. Cefmetazole as an alternative to carbapenems against extended-spectrum beta-lactamase-producing Escherichia coli infections based on in vitro and in vivo pharmacokinetics/pharmacodynamics experiments. Pharm. Res. 2021, 38, 1839–1846. [Google Scholar] [CrossRef] [PubMed]
- Nakai, M.; Oka, K.; Watanabe, G.; Kamei, K.; Tsukada, N.; Mori, R.; Nagaya, M.; Ukai, Y.; Morioka, H.; Tetsuka, N.; et al. Epidemiology and molecular characterization of fecal carriage of third-generation cephalosporin-resistant Enterobacterales among elderly residents in Japan. J. Infect. Chemother. 2022, 28, 569–575. [Google Scholar] [CrossRef] [PubMed]
Characteristic | CMZ (n = 14) | MEPM (n = 8) | dCMZ (n = 9) | eMEPM (n = 11) | p-Value | |
---|---|---|---|---|---|---|
Age (years) | 87.5 (81.8–91.3) | 86.5 (82.0–89.8) | 87.0 (79.5–89.0) | 85.0 (81.0–87.0) | 0.849 | |
Sex, male (%) | 4 (28.7) | 3 (37.5) | 5 (55.6) | 7 (63.6) | 0.302 | |
Respiratory rate | 18 (17–20) | 17 (15–22) | 18 (17–24) | 20 (18–25) | 0.311 | |
SBP (mmHg) | 136 (118–146) | 107 (106–136) | 125 (97–147) | 125 (106–155) | 0.464 | |
Comorbidities (%) | ||||||
Renal dysfunction (eGFR < 30 mL/min/1.73 m2) | 3 (21.4) | 2 (25.0) | 2 (22.2) | 2 (18.2) | 0.988 | |
Cerebrovascular disease | 6 (42.9) | 3 (37.5) | 2 (22.2) | 4 (36.4) | 0.792 | |
Circulatory disease | 6 (42.9) | 2 (25.0) | 2 (22.2) | 2 (18.2) | 0.530 | |
Diabetes | 5 (35.7) | 2 (25.0) | 0 (0) | 3 (27.3) | 0.263 | |
Cancer | 5 (35.7) | 3 (37.5) | 4 (44.4) | 2 (18.2) | 0.629 | |
Source of bacteremia (%) | 0.329 | |||||
Urinary tract | 10 (71.4) | 7 (87.5) | 8 (88.9) | 9 (81.8) | ||
Respiratory | 1 (7.1) | 1 (12.5) | 0 (0) | 2 (18.2) | ||
Biliary tract | 0 (0) | 0 (0) | 0 (0) | 0 (0) | ||
Others | 3 (21.4) | 0 (0) | 1 (11.1) | 0 (0) | ||
Laboratory Data | ||||||
CRP (mg/dL) | 6.9 (3.9–11.9) | 9.7 (3.5–13.3) | 10.6 (5.9–16.9) | 4.5 (0.7–15.3) | 0.521 | |
WBC (103/µL) | 11.5 (8.3–16.3) | 14.7 (7.1–25.3) | 13.4 (11.0–14.4) | 12.5 (9.2–20.3) | 0.916 | |
Albumin (mg/dL) | 2.4 (2.1–3.2) | 2.5 (2.2–3.1) | 2.8 (2.3–3.1) | 3.4 (3.0–3.6) | 0.040 | |
Platelet (×104/µL) | 14.8 (11.9–17.4) | 15.6 (11.6–25.2) | 17.5 (9.4–24.2) | 15.3 (11.7–25.4) | 0.957 | |
Prothrombin activity (%) | 79.3 (66.9–88.2) | 76.4 (25.2–93.5) | 66.6 (65.5–72.9) | 73.3 (57.0–85.1) | 0.473 | |
Total-bilirubin (mg/dL) | 0.8 (0.3–1.1) | 0.8 (0.5–1.2) | 0.7 (0.5–1.4) | 1.1 (0.4–1.3) | 0.867 | |
eGFR (mL/min/1.73 m2) | 42.7 (32.9–89.3) | 56.5 (32.9–92.3) | 58.4 (31.1–74.0) | 46.8 (39.8–61.2) | 0.908 | |
AST (mg/dL) | 29 (18–75) | 23 (15–28) | 20 (15–44) | 21 (18–37) | 0.556 | |
ALT (mg/dL) | 17 (10–77) | 20 (12–25) | 17 (10–27) | 16 (10–21) | 0.859 | |
Blood sugar level (mg/dL) | 123 (107–168) | 111 (94–132) | 90.5 (69–118) | 122 (96–147) | 0.125 | |
CMZ MIC distribution (%) | 0.090 | |||||
MIC < 4 | 13 (92.9) | 7 (87.5) | 9 (100.0) | 7 (63.6) | ||
MIC < 8 | 1 (7.1) | 1 (12.5) | 0 (0) | 4 (36.4) | ||
Others | ||||||
Time to defervescence (day) | 3.5 (1.0–7.3) | 1.0 (1.0–3.8) | 2.0 (1.0–3.0) | 4.0 (3.0–7.0) | 0.069 | |
Use of antipyretics for more than 3 days (%) | 3 (21.4) | 1 (12.5) | 0 (0) | 2 (18.2) | 0.524 | |
Duration of treatment initiation (day) | 0 (−1–1) | 0 (−2–0.5) | 0 (0–0.5) | 0 (0–0) | 0.267 | |
Duration of treatment (day) | 14.5 (12.8–17.0) | 13.0 (12.0–15.0) | 13.0 (12.3–19.3) | 17.0 (15.0–19.0) | 0.069 | |
Duration of hospitalization (day) | 24.0 (14.0–32.3) | 23.0 (12.0–47.0) | 37.0 (24.0–55.3) | 22.0 (19.0–27.0) | 0.232 | |
Readmission Rate (%) | 1 (7.1) | 0 (0) | 0 (0) | 0 (0) | 0.562 | |
Cost of antimicrobial therapy (USD) | 98.2 (75.1–132.4) | 216.9 (143.5–243.6) | 167.4 (138.1–191.7) | 236.2 (181.0–265.1) | <0.001 | |
30-day recurrence rate (%) | 0 (0) | 0 (0) | 0 (0) | 1 (9.1) | 0.409 | |
30-day mortality rate (%) | 0 (0) | 1 (12.5) | 1 (11.1) | 0 (0) | 0.376 |
Hazard Ratio | p-Value | 95% Confidence Interval | ||
---|---|---|---|---|
Time to defervescence (day) | ||||
CMZ (vs. MEPM) | 0.378 | 0.046 | 0.145–0.984 | |
dCMZ (vs. MEPM) | 0.922 | 0.868 | 0.352–2.412 | |
eMEPM (vs. MEPM) | 0.389 | 0.056 | 0.147–1.022 | |
Duration of treatment (day) | ||||
CMZ (vs. MEPM) | 0.476 | 0.127 | 0.184–1.235 | |
dCMZ (vs. MEPM) | 0.328 | 0.053 | 0.106–1.013 | |
eMEPM (vs. MEPM) | 0.276 | 0.015 | 0.098–0.774 | |
Duration of hospitalization (day) | ||||
CMZ (vs. MEPM) | 0.945 | 0.906 | 0.373–2.397 | |
dCMZ (vs. MEPM) | 0.583 | 0.303 | 0.209–1.625 | |
eMEPM (vs. MEPM) | 1.067 | 0.911 | 0.403–2.773 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoshi, T.; Fujii, S.; Watanabe, K.; Fukumura, Y.; Miyazaki, K.; Takahashi, M.; Taniguchi, S.; Kimura, S.; Saito, A.; Wada, N.; et al. Effect of Different Approaches to Antimicrobial Therapy with Cefmetazole and Meropenem on the Time to Defervescence in Non-Severe Extended-Spectrum β-Lactamase-Producing Escherichia coli Bacteremia. Infect. Dis. Rep. 2024, 16, 26-34. https://doi.org/10.3390/idr16010003
Hoshi T, Fujii S, Watanabe K, Fukumura Y, Miyazaki K, Takahashi M, Taniguchi S, Kimura S, Saito A, Wada N, et al. Effect of Different Approaches to Antimicrobial Therapy with Cefmetazole and Meropenem on the Time to Defervescence in Non-Severe Extended-Spectrum β-Lactamase-Producing Escherichia coli Bacteremia. Infectious Disease Reports. 2024; 16(1):26-34. https://doi.org/10.3390/idr16010003
Chicago/Turabian StyleHoshi, Takanobu, Satoshi Fujii, Kei Watanabe, Yuta Fukumura, Koji Miyazaki, Madoka Takahashi, Sakae Taniguchi, Shingo Kimura, Arisa Saito, Naoki Wada, and et al. 2024. "Effect of Different Approaches to Antimicrobial Therapy with Cefmetazole and Meropenem on the Time to Defervescence in Non-Severe Extended-Spectrum β-Lactamase-Producing Escherichia coli Bacteremia" Infectious Disease Reports 16, no. 1: 26-34. https://doi.org/10.3390/idr16010003
APA StyleHoshi, T., Fujii, S., Watanabe, K., Fukumura, Y., Miyazaki, K., Takahashi, M., Taniguchi, S., Kimura, S., Saito, A., Wada, N., Saijo, M., Yamada, K., Iwayama, K., Itaya, M., & Sato, H. (2024). Effect of Different Approaches to Antimicrobial Therapy with Cefmetazole and Meropenem on the Time to Defervescence in Non-Severe Extended-Spectrum β-Lactamase-Producing Escherichia coli Bacteremia. Infectious Disease Reports, 16(1), 26-34. https://doi.org/10.3390/idr16010003