COVID-19 and Clostridioides difficile Coinfection Outcomes among Hospitalized Patients in the United States: An Insight from National Inpatient Database
Abstract
:1. Introduction
2. Methods
2.1. Covariates
- Patient characteristics: age, race, sex, comorbidities, insurance status, mean income in patient’s zip code, and disposition.
- Hospital: location, teaching status, bed size, and region.
- Illness severity: length of stay, mortality, hospitalization cost, and Elixhauser comorbidity score.
- In-hospital complications: as detailed below.
2.2. Study Outcomes
2.3. Statistical Methods
3. Results
3.1. Baseline Characteristics
3.2. In-Hospital Mortality
3.3. In-Hospital Complications
3.4. In-Hospital Quality Measures and Disposition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bentivegna, E.; Alessio, G.; Spuntarelli, V.; Luciani, M.; Santino, I.; Simmaco, M.; Martelletti, P. Impact of COVID-19 prevention measures on risk of health care-associated Clostridium difficile infection. Am. J. Infect. Control 2021, 49, 640–642. [Google Scholar] [CrossRef] [PubMed]
- Granata, G.; Petrosillo, N.; Al Moghazi, S.; Caraffa, E.; Puro, V.; Tillotson, G.; Cataldo, M.A. The burden of Clostridioides difficile infection in COVID-19 patients: A systematic review and meta-analysis. Anaerobe 2022, 74, 102484. [Google Scholar] [CrossRef] [PubMed]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Soucy, J.-P.R.; Westwood, D.; Daneman, N.; MacFadden, D.R. Antibiotic prescribing in patients with COVID-19: Rapid review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 520–531. [Google Scholar] [CrossRef] [PubMed]
- Linares-García, L.; Cárdenas-Barragán, M.E.; Hernández-Ceballos, W.; Pérez-Solano, C.S.; Morales-Guzmán, A.S.; Miller, D.S.; Schmulson, M. Bacterial and Fungal Gut Dysbiosis and Clostridium difficile in COVID-19: A Review. J. Clin. Gastroenterol. 2022, 56, 285–298. [Google Scholar] [CrossRef]
- Laszkowska, M.; Kim, J.; Faye, A.S.; Joelson, A.M.; Ingram, M.; Truong, H.; Silver, E.R.; May, B.; Greendyke, W.G.; Zucker, J.; et al. Prevalence of Clostridioides difficile and Other Gastrointestinal Pathogens in Patients with COVID-19. Dig. Dis. Sci. 2021, 66, 4398–4405. [Google Scholar] [CrossRef]
- Lewandowski, K.; Rosołowski, M.; Kaniewska, M.; Kucha, P.; Meler, A.; Wierzba, W.; Rydzewska, G. Clostridioides difficile infection in coronavirus disease 2019 (COVID-19): An underestimated problem? Pol. Arch. Intern. Med. 2021, 131, 121–127. [Google Scholar] [CrossRef]
- Granata, G.; Schiavone, F.; Pipitone, G.; Taglietti, F.; Petrosillo, N. Antibiotics Use in COVID-19 Patients: A Systematic Literature Review. J. Clin. Med. 2022, 11, 7207. [Google Scholar] [CrossRef]
- NIS Database Documentation. Available online: https://hcup-us.ahrq.gov/db/nation/nis/nisdbdocumentation.jsp (accessed on 25 November 2022).
- Federal Policy for the Protection of Human Subjects (‘Common Rule’|HHS.gov). Available online: https://www.hhs.gov/ohrp/regulations-and-policy/regulations/common-rule/index.html (accessed on 2 February 2023).
- Micek, S.T.; Schramm, G.; Morrow, L.; Frazee, E.; Personett, H.; Doherty, J.A.; Hampton, N.; Hoban, A.; Lieu, A.; McKenzie, M.; et al. Clostridium difficile infection: A multicenter study of epidemiology and outcomes in mechanically ventilated patients. Crit. Care Med. 2013, 41, 1968–1975. [Google Scholar] [CrossRef]
- Zuin, M.; Rigatelli, G.; Bilato, C.; Rigatelli, A.; Roncon, L.; Ribichini, F. Preexisting coronary artery disease among coronavirus disease 2019 patients: A systematic review and meta-analysis. J. Cardiovasc. Med. 2022, 23, 535–545. [Google Scholar] [CrossRef]
- Peterson, E.; Lo, K.B.; DeJoy, R.; Salacup, G.; Pelayo, J.; Bhargav, R.; Gul, F.; Albano, J.; Azmaiparashvili, Z.; Amanullah, A.; et al. The relationship between coronary artery disease and clinical outcomes in COVID-19: A single-center retrospective analysis. Coron. Artery Dis. 2021, 32, 367–371. [Google Scholar] [CrossRef]
- Angeli, F.; Marazzato, J.; Verdecchia, P.; Balestrino, A.; Bruschi, C.; Ceriana, P.; Chiovato, L.; Dalla Vecchia, L.A.; De Ponti, R.; Fanfulla, F.; et al. Joint effect of heart failure and coronary artery disease on the risk of death during hospitalization for COVID-19. Eur. J. Intern. Med. 2021, 89, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.E.; Guha, A.; Khera, R.; Chouairi, F.; Ahmad, T.; Nasir, K.; Addison, D.; Desai, N.R. National Trends in Healthcare-Associated Infections for Five Common Cardiovascular Conditions. Am. J. Cardiol. 2019, 124, 1140–1148. [Google Scholar] [CrossRef] [PubMed]
- Mamic, P.; Heidenreich, P.A.; Hedlin, H.; Tennakoon, L.; Staudenmayer, K.L. Hospitalized Patients with Heart Failure and Common Bacterial Infections: A Nationwide Analysis of Concomitant Clostridium Difficile Infection Rates and In-Hospital Mortality. J. Card. Fail. 2016, 22, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Bailón, M.; Jiménez-García, R.; Hernández-Barrera, V.; de Miguel-Díez, J.; de Miguel-Yanes, J.M.; Muñoz-Rivas, N.; Lorenzo-Villalba, N.; Carabantes-Alarcon, D.; Zamorano-León, J.J.; Astasio-Arbiza, P.; et al. Heart Failure Is a Risk Factor for Suffering and Dying of Clostridium difficile Infection. Results of a 15-Year Nationwide Study in Spain. J. Clin. Med. 2020, 9, 614. [Google Scholar] [CrossRef]
- Qu, H.-Q.; Jiang, Z.-D. Clostridium difficile infection in diabetes. Diabetes Res. Clin. Pract. 2014, 105, 285–294. [Google Scholar] [CrossRef]
- Lima-Martínez, M.M.; Carrera Boada, C.; Madera-Silva, M.D.; Marín, W.; Contreras, M. COVID-19 and diabetes: A bidirectional relationship. Clin. Investig. Arterioscler. 2021, 33, 151–157. [Google Scholar] [CrossRef]
- Olanipekun, T.O.; Salemi, J.L.; Mejia de Grubb, M.C.; Gonzalez, S.J.; Zoorob, R.J. Clostridium difficile infection in patients hospitalized with type 2 diabetes mellitus and its impact on morbidity, mortality, and the costs of inpatient care. Diabetes Res. Clin. Pract. 2016, 116, 68–79. [Google Scholar] [CrossRef]
- Hassan, S.A.; Rahman, R.A.; Huda, N.; Wan Bebakar, W.M.; Lee, Y.Y. Hospital-acquired Clostridium difficile infection among patients with type 2 diabetes mellitus in acute medical wards. J. R. Coll. Physicians Edinb. 2013, 43, 103–107. [Google Scholar] [CrossRef]
- Dotson, K.M.; Aitken, S.L.; Sofjan, A.K.; Shah, D.N.; Aparasu, R.R.; Garey, K.W. Outcomes associated with Clostridium difficile infection in patients with chronic liver disease. Epidemiol. Infect. 2018, 146, 1101–1105. [Google Scholar] [CrossRef]
- Marjot, T.; Webb, G.J.; Barritt, A.S.; Moon, A.M.; Stamataki, Z.; Wong, V.W.; Barnes, E. COVID-19 and liver disease: Mechanistic and clinical perspectives. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 348–364. [Google Scholar] [CrossRef]
- Šamadan, L.; Jeličić, M.; Vince, A.; Papić, N. Nonalcoholic Fatty Liver Disease-A Novel Risk Factor for Recurrent Clostridioides difficile Infection. Antibiotics 2021, 10, 780. [Google Scholar] [CrossRef]
- Sahra, S.; Abureesh, M.; Amarnath, S.; Alkhayyat, M.; Badran, R.; Jahangir, A.; Gumaste, V. Clostridioides difficile infection in liver cirrhosis patients: A population-based study in United States. World J. Hepatol. 2021, 13, 926–938. [Google Scholar] [CrossRef]
- Amjad, W.; Qureshi, W.; Malik, A.; Singh, R.; Jafri, S.-M. The outcomes of Clostridioides difficile infection in inpatient liver transplant population. Transpl. Infect. Dis. 2022, 24, e13750. [Google Scholar] [CrossRef]
- Marjot, T.; Moon, A.M.; Cook, J.A.; Abd-Elsalam, S.; Aloman, C.; Armstrong, M.J.; Pose, E.; Brenner, E.J.; Cargill, T.; Catana, M.-A.; et al. Outcomes following SARS-CoV-2 infection in patients with chronic liver disease: An international registry study. J. Hepatol. 2021, 74, 567–577. [Google Scholar] [CrossRef]
- Mohseni Afshar, Z.; Hosseinzadeh, R.; Barary, M.; Ebrahimpour, S.; Alijanpour, A.; Sayad, B.; Hosseinzadeh, D.; Miri, S.R.; Sio, T.T.; Sullman, M.J.M.; et al. Challenges posed by COVID-19 in cancer patients: A narrative review. Cancer Med. 2022, 11, 1119–1135. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Raza, S.; Batul, S.A.; Khan, M.; Aksoy, T.; Baig, M.A.; Berger, B.J. The evolution of Clostridium difficile infection in cancer patients: Epidemiology, pathophysiology, and guidelines for prevention and management. Recent Pat. Anti-Infect. Drug Discov. 2012, 7, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, S.; Pandey, R.K.; Dahal, S.; Shahreyar, M.; Dhakal, B.; Jha, P.; Venkatesan, T.; Saeian, K. Risk, Outcomes, and Predictors of Clostridium difficile Infection in Lymphoma: A Nationwide Study. South. Med. J. 2018, 111, 628–633. [Google Scholar] [CrossRef]
- Adamczak, M.; Surma, S.; Więcek, A. Acute kidney injury in patients with COVID-19: Epidemiology, pathogenesis and treatment. Adv. Clin. Exp. Med. 2022, 31, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Kaye, A.D.; Okeagu, C.N.; Tortorich, G.; Pham, A.D.; Ly, E.I.; Brondeel, K.C.; Eng, M.R.; Luedi, M.M.; Urman, R.D.; Cornett, E.M. COVID-19 impact on the renal system: Pathophysiology and clinical outcomes. Best Pract. Res. Clin. Anaesthesiol. 2021, 35, 449–459. [Google Scholar] [CrossRef]
- Moledina, D.G.; Simonov, M.; Yamamoto, Y.; Alausa, J.; Arora, T.; Biswas, A.; Cantley, L.G.; Ghazi, L.; Greenberg, J.H.; Hinchcliff, M.; et al. The Association of COVID-19 With Acute Kidney Injury Independent of Severity of Illness: A Multicenter Cohort Study. Am. J. Kidney Dis. 2021, 77, 490–499.e1. [Google Scholar] [CrossRef]
- Ng, J.H.; Hirsch, J.S.; Hazzan, A.; Wanchoo, R.; Shah, H.H.; Malieckal, D.A.; Ross, D.W.; Sharma, P.; Sakhiya, V.; Fishbane, S.; et al. Northwell Nephrology COVID-19 Research Consortium Outcomes Among Patients Hospitalized With COVID-19 and Acute Kidney Injury. Am. J. Kidney Dis. 2021, 77, 204–215.e1. [Google Scholar] [CrossRef] [PubMed]
- Eddi, R.; Malik, M.N.; Shakov, R.; Baddoura, W.J.; Chandran, C.; Debari, V.A. Chronic kidney disease as a risk factor for Clostridium difficile infection. Nephrology 2010, 15, 471–475. [Google Scholar] [CrossRef]
- Cimolai, N. Are Clostridium difficile toxins nephrotoxic? Med. Hypotheses 2019, 126, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.; Elhusseiny, K.M.; Yeh, Y.-C.; Sun, W.-Z. COVID-19 ICU and mechanical ventilation patient characteristics and outcomes-A systematic review and meta-analysis. PLoS ONE 2021, 16, e0246318. [Google Scholar] [CrossRef] [PubMed]
- Zilberberg, M.D.; Nathanson, B.H.; Sadigov, S.; Higgins, T.L.; Kollef, M.H.; Shorr, A.F. Epidemiology and outcomes of clostridium difficile-associated disease among patients on prolonged acute mechanical ventilation. Chest 2009, 136, 752–758. [Google Scholar] [CrossRef]
- Bardi, T.; Pintado, V.; Gomez-Rojo, M.; Escudero-Sanchez, R.; Azzam Lopez, A.; Diez-Remesal, Y.; Martinez Castro, N.; Ruiz-Garbajosa, P.; Pestaña, D. Nosocomial infections associated to COVID-19 in the intensive care unit: Clinical characteristics and outcome. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, K.; Goyal, A.; Chada, A.; Kakkera, K.S.; Corwin, H.L. National Trends (2007–2013) of Clostridium difficile Infection in Patients with Septic Shock: Impact on Outcome. J. Hosp. Med. 2017, 12, 717–722. [Google Scholar] [CrossRef]
- Abou Chakra, C.N.; McGeer, A.; Labbé, A.-C.; Simor, A.E.; Gold, W.L.; Muller, M.P.; Powis, J.; Katz, K.; Garneau, J.R.; Fortier, L.-C.; et al. Factors Associated With Complications of Clostridium difficile Infection in a Multicenter Prospective Cohort. Clin. Infect. Dis. 2015, 61, 1781–1788. [Google Scholar] [CrossRef]
- Gosai, F.; Covut, F.; Alomari, M.; Hitawala, A.; Singh, A.; Kisangani, G.; Lopez, R.; Shen, B. Obesity Is Associated with Decreased Risk of Clostridium difficile Infection in Hospitalized Patients with Pouchitis. Dig. Dis. Sci. 2020, 65, 1423–1428. [Google Scholar] [CrossRef]
- Meier, K.; Nordestgaard, A.T.; Eid, A.I.; Kongkaewpaisan, N.; Lee, J.M.; Kongwibulwut, M.; Han, K.R.; Kokoroskos, N.; Mendoza, A.E.; Saillant, N.; et al. Obesity as protective against, rather than a risk factor for, postoperative Clostridium difficile infection: A nationwide retrospective analysis of 1,426,807 surgical patients. J. Trauma Acute Care Surg. 2019, 86, 1001–1009. [Google Scholar] [CrossRef]
- Argamany, J.R.; Delgado, A.; Reveles, K.R. Clostridium difficile infection health disparities by race among hospitalized adults in the United States, 2001 to 2010. BMC Infect. Dis. 2016, 16, 454. [Google Scholar] [CrossRef] [PubMed]
- Bailey, Z.D.; Krieger, N.; Agénor, M.; Graves, J.; Linos, N.; Bassett, M.T. Structural racism and health inequities in the USA: Evidence and interventions. Lancet 2017, 389, 1453–1463. [Google Scholar] [CrossRef] [PubMed]
- Archived HCUP Projections. Available online: https://hcup-us.ahrq.gov/reports/projections/projections_rpts.jsp (accessed on 18 March 2023).
- Vangay, P.; Ward, T.; Gerber, J.S.; Knights, D. Antibiotics, pediatric dysbiosis, and disease. Cell Host Microbe 2015, 17, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Leffler, D.A.; Lamont, J.T. Clostridium difficile infection. N. Engl. J. Med. 2015, 372, 1539–1548. [Google Scholar] [CrossRef] [PubMed]
- Rawson, T.M.; Moore, L.S.P.; Zhu, N.; Ranganathan, N.; Skolimowska, K.; Gilchrist, M.; Satta, G.; Cooke, G.; Holmes, A. Bacterial and Fungal Coinfection in Individuals With Coronavirus: A Rapid Review To Support COVID-19 Antimicrobial Prescribing. Clin. Infect. Dis. 2020, 71, 2459–2468. [Google Scholar] [CrossRef]
- WHO Global action plan on antimicrobial resistance. Microbe Mag. 2015, 10, 354–355. [CrossRef]
- Magill, S.S.; O’Leary, E.; Ray, S.M.; Kainer, M.A.; Evans, C.; Bamberg, W.M.; Johnston, H.; Janelle, S.J.; Oyewumi, T.; Lynfield, R.; et al. Emerging Infections Program Hospital Prevalence Survey Team Assessment of the appropriateness of antimicrobial use in US hospitals. JAMA Netw. Open 2021, 4, e212007. [Google Scholar] [CrossRef]
Characteristics | COVID-19 Patients with Clostridioides difficile Infection N (%) | COVID-19 Patients without Clostridioides difficile Infection N (%) | p-Value |
---|---|---|---|
N = 1,659,040 | N = 10,710 (0.64%) | N = 1,648,330 (99.35%) | |
Sex (Female) | 5610 (52.38%) | 789,715 (47.91%) | 0.001 |
Mean age years (SD) | |||
Male | 67.6 (14.7) | 63.3 (16.2) | |
Female | 70.4 (14.8) | 63.01 (18.8) | |
Age groups | <0.001 | ||
≥18–29 | 180 (1.68%) | 81,758 (4.96%) | |
30–49 | 955 (8.92%) | 277,743 (16.85%) | |
50–69 | 3615 (33.75%) | 614,167 (37.26%) | |
≥70 | 5960 (55.65%) | 674,661 (40.93%) | |
Race | <0.001 | ||
Caucasians | 6369 (59.47%) | 838,341 (50.86%) | |
African American | 2213 (20.67%) | 313,842 (19.04%) | |
Hispanics | 1444 (13.48%) | 354,720 (21.52%) | |
Asian or Pacific Islander | 226 (2.11%) | 53,736 (3.26%) | |
Native American | 118 (1.1%) | 16,978 (1.03%) | |
Others | 340 (3.17%) | 70,713 (4.29%) | |
Median household income | 0.12 | ||
<49,999$ | 3388 (31.63%) | 562,575 (34.13%) | |
50,000–64,999$ | 3038 (28.37%) | 448,180 (27.19%) | |
65,000–85,999$ | 2511 (23.45%) | 365,105 (22.15%) | |
>86,000$ | 1773 (16.55%) | 2,724,689 (16.53%) | |
Insurance status | <0.001 | ||
Medicare | 7733 (72.2%) | 875,428 (53.11%) | |
Medicaid | 1280 (11.95%) | 250,216 (15.18%) | |
Private | 1548 (14.45%) | 457,081 (27.73%) | |
Self-pay | 149 (1.39%) | 65,604 (3.98%) | |
Hospital division | <0.001 | ||
New England | 440 (4.11%) | 62,472 (3.79%) | |
Middle Atlantic | 1550 (14.47%) | 240,821 (14.61%) | |
East-North Central | 2035 (19%) | 255,820 (15.52%) | |
West-North Central | 880 (8.22%) | 110,932 (6.73%) | |
South Atlantic | 2145 (20.03%) | 330,984 (20.08%) | |
East-South Central | 605 (5.65%) | 110,768 (6.72%) | |
West-South Central | 1109 (10.36%) | 236,371 (14.34%) | |
Mountain | 785 (7.33%) | 113,899 (6.91%) | |
Pacific | 1160 (10.83%) | 186,261 (11.3%) | |
Hospital Bed size | <0.001 | ||
Small | 2194 (20.49%) | 401,368 (24.35%) | |
Medium | 2885 (26.94%) | 478,016 (29%) | |
Large | 5630 (52.57%) | 1,179,050 (46.64%) | |
Hospital teaching status | 0.24 | ||
Rural | 960 (8.96%) | 161,701 (9.81%) | |
Urban non-teaching | 1880 (17.55%) | 307,578 (18.66%) | |
Urban teaching | 7870 (73.48%) | 1,179,050 (71.53%) | |
Comorbidities | |||
Coronary artery disease | 2485 (23.2%) | 295,546 (17.93%) | <0.001 |
Congestive heart failure | 3380 (31.56%) | 288,128 (17.48%) | <0.001 |
Hypertension | 5220 (48.74%) | 446,862 (27.11%) | <0.001 |
Diabetes mellitus | 4990 (46.59%) | 656,365 (39.82%) | <0.001 |
Chronic liver disease | 960 (8.96%) | 89,669 (5.44%) | <0.001 |
Cancer | 810 (7.56%) | 57,361 (3.48%) | <0.001 |
Chronic pulmonary disease | 2550 (23.81%) | 362,468 (21.99%) | 0.04 |
Collagen vascular disorders | 570 (5.32%) | 47,968 (2.91%) | <0.001 |
Chronic kidney disease | 4440 (41.46%) | 338,732 (20.55%) | <0.001 |
Obesity | 2070 (19.33%) | 423,291 (25.68%) | <0.001 |
Smoking | 2515 (23.48%) | 422,302 (25.62%) | 0.03 |
Variable | COVID-19 Patients with Clostridioides difficile Infection N (%) | COVID-19 Patients without Clostridioides difficile Infection N (%) | Adjusted Odds Ratio 1 | p-Value |
---|---|---|---|---|
In-hospital mortality (N = 222,490) | 2464 (23.02%) | 220,216 (13.36%) | 1.3 (95% CI 1.15–1.46) | <0.001 |
Septic shock | 2250 (21.01%) | 119,009 (7.22%) | 2.33 (95% CI 2.06–2.65) | <0.001 |
Acute kidney injury | 5110 (47.71%) | 469,939 (28.51%) | 1.45 (95% CI 1.3–1.6) | <0.001 |
Acute kidney injury requiring HD | 820 (7.66%) | 39,724 (2.41%) | 2.01 (95% CI 1.68–2.41) | <0.001 |
Mechanical ventilation | 2994 (27.96%) | 260,930 (15.83%) | 1.42 (95% CI 1.27–1.58) | <0.001 |
Mean total hospitalization charge [USD(SD 2)] | 196,012 (36,605) | 91,162 (17,349) | USD 80,602 | <0.001 |
Mean length of stay (days) | 15.14 | 7.99 | 5.46 day higher | <0.001 |
Ileus | 290 (2.71%) | 12,527 (0.76%) | <0.001 | |
Peritonitis | 84 (0.79%) | 2637 (0.16%) | <0.001 | |
Fluid and electrolyte disorders | 8004 (74.74%) | 828,121 (50.24%) | <0.001 | |
Intestinal perforation | 45 (0.42%) | 824 (0.05%) | <0.001 | |
Ascites | 264 (2.47%) | 8406 (0.51%) | <0.001 | |
Disposition | <0.001 | |||
Home/Routine | 2315 (28.07%) | 874,720 (61.25%) | ||
SNF 3/LTAC 4/Nursing home | 4099 (49.72%) | 314,613 (22.03%) | ||
Home health | 1744 (21.15%) | 219,258 (15.36%) | ||
AMA 5 | 88 (1.07%) | 19,280 (1.35%) |
Variable | COVID-19 Patients with Clostridioides difficile Infection N (%) | COVID-19 Patients without Clostridioides difficile Infection N (%) | p-Value |
---|---|---|---|
Total deceased (222,490) | 2465 | 220,025 | |
Sex | <0.001 | ||
Male | 1230 (49.9%) | 128,846 (58.56%) | |
Female | 1235 (50.1%) | 91,178 (41.44%) | |
Age groups | |||
≥18–29 | 10 (0.41%) | 1320 (0.6%) | 0.56 |
30–49 | 145 (5.88%) | 10,825 (4.92%) | 0.32 |
50–69 | 770 (31.24%) | 67,130 (30.51%) | 0.73 |
≥70 | 1540 (62.47%) | 140,727 (63.96%) | 0.48 |
Race | |||
Caucasians | 1425 (57.81%) | 113,136 (51.42%) | 0.006 |
African American | 514 (20.89%) | 370,008 (16.82%) | 0.02 |
Hispanics | 324 (13.18%) | 43,257 (19.66%) | 0.002 |
Asian or Pacific Islander | 50 (2.03%) | 7415 (3.37%) | 0.09 |
Native American | 35 (1.42%) | 2684 (1.22%) | 0.72 |
Others | 65 (2.64%) | 9725 (4.42%) | 0.04 |
Variable | COVID-19 Patients with Clostridioides difficile Infection N (%) | COVID-19 Patients without Clostridioides difficile Infection N (%) | Adjusted Odds Ratio 1 | p-Value |
---|---|---|---|---|
In-hospital mortality (N = 4035) | 2325 (23.2%) | 1710 (17.07%) | 1.2 (95% CI 1.02–1.65) | 0.02 |
Septic shock | 2110 (21.06%) | 915 (9.13%) | 2.28 (95% CI 1.64–3.15) | <0.001 |
Acute kidney injury | 4780 (47.7%) | 3410 (34.03%) | 1.59 (95% CI 1.25–2.01) | <0.001 |
Acute kidney injury requiring hemodialysis | 755 (7.53%) | 240 (2.4%) | 2.18 (95% CI 1.22–3.9) | <0.001 |
Mechanical ventilation | 2790 (27.84%) | 1690 (16.87%) | 1.43 (95% CI 1.08–1.9) | 0.01 |
Mean total hospitalization charge [USD(SD 2)] | 193,014 (26,490) | 66,695 (8674) | USD 99,456 | <0.001 |
Mean length of stay (days) | 15.1 | 8.5 | 6.4 day higher | <0.001 |
Disposition | <0.001 | |||
Home/Routine | 2148 (27.24%) | 3413 (41.07%) | ||
SNF 3/LTAC 4/Nursing home | 3929 (49.83%) | 2922 (35.16%) | ||
Home health | 1723 (21.86%) | 1902 (22.89%) | ||
AMA 5 | 85 (1.08%) | 73 (0.88%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awan, R.U.; Gangu, K.; Nguyen, A.; Chourasia, P.; Borja Montes, O.F.; Butt, M.A.; Muzammil, T.S.; Afzal, R.M.; Nabeel, A.; Shekhar, R.; et al. COVID-19 and Clostridioides difficile Coinfection Outcomes among Hospitalized Patients in the United States: An Insight from National Inpatient Database. Infect. Dis. Rep. 2023, 15, 279-291. https://doi.org/10.3390/idr15030028
Awan RU, Gangu K, Nguyen A, Chourasia P, Borja Montes OF, Butt MA, Muzammil TS, Afzal RM, Nabeel A, Shekhar R, et al. COVID-19 and Clostridioides difficile Coinfection Outcomes among Hospitalized Patients in the United States: An Insight from National Inpatient Database. Infectious Disease Reports. 2023; 15(3):279-291. https://doi.org/10.3390/idr15030028
Chicago/Turabian StyleAwan, Rehmat Ullah, Karthik Gangu, Anthony Nguyen, Prabal Chourasia, Oscar F. Borja Montes, Muhammad Ali Butt, Taimur Sohail Muzammil, Rao Mujtaba Afzal, Ambreen Nabeel, Rahul Shekhar, and et al. 2023. "COVID-19 and Clostridioides difficile Coinfection Outcomes among Hospitalized Patients in the United States: An Insight from National Inpatient Database" Infectious Disease Reports 15, no. 3: 279-291. https://doi.org/10.3390/idr15030028