Monoclonal Antibody Therapy for COVID-19: A Retrospective Observational Study at a Regional Hospital
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Treatment
2.2. Statistical Analysis
3. Results
3.1. Distribution of Risk Factors between Treated and Untreated Patients
3.2. Distribution of COVID-19 Symptoms
3.3. Hospitalization Time and Outcome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Phan, T. Novel Coronavirus: From Discovery to Clinical Diagnostics. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2020, 79, 104211. [Google Scholar] [CrossRef] [PubMed]
- WHO Weekly Epidemiological Update on COVID-19—21 December 2022. Available online: https://www.who.int/publications/m/item/covid-19-weekly-epidemiological-update–21-december-2022 (accessed on 2 January 2023).
- Kreuzberger, N.; Hirsch, C.; Chai, K.L.; Tomlinson, E.; Khosravi, Z.; Popp, M.; Neidhardt, M.; Piechotta, V.; Salomon, S.; Valk, S.J.; et al. SARS-CoV-2-Neutralising Monoclonal Antibodies for Treatment of COVID-19. Cochrane Database Syst. Rev. 2021, 9, CD013825. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.-C.; Lu, R.-M.; Su, S.-C.; Chiang, P.-Y.; Ko, S.-H.; Ke, F.-Y.; Liang, K.-H.; Hsieh, T.-Y.; Wu, H.-C. Monoclonal Antibodies for COVID-19 Therapy and SARS-CoV-2 Detection. J. Biomed. Sci. 2022, 29, 1. [Google Scholar] [CrossRef]
- Weichel, H.-M.; Kobbe, R.; Schulze Zur Wiesch, J.; Lütgehetmann, M.; Schmiedel, S.; Addo, M.M. Erste klinische Erfahrungen über die passive Immunisierung mit monoklonalen SARS-CoV-2-spezifischen Antikörpern bei Risikopatienten und -patientinnen in der frühen Phase einer SARS-CoV-2-Infektion. Epid. Bull. 2021, 41, 3–8. [Google Scholar] [CrossRef]
- Dougan, M.; Nirula, A.; Azizad, M.; Mocherla, B.; Gottlieb, R.L.; Chen, P.; Hebert, C.; Perry, R.; Boscia, J.; Heller, B.; et al. Bamlanivimab plus Etesevimab in Mild or Moderate COVID-19. N. Engl. J. Med. 2021, 385, 1382–1392. [Google Scholar] [CrossRef] [PubMed]
- Weinreich, D.M.; Sivapalasingam, S.; Norton, T.; Ali, S.; Gao, H.; Bhore, R.; Musser, B.J.; Soo, Y.; Rofail, D.; Im, J.; et al. REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with COVID-19. N. Engl. J. Med. 2021, 384, 238–251. [Google Scholar] [CrossRef] [PubMed]
- Esmaeilzadeh, A.; Rostami, S.; Yeganeh, P.M.; Tahmasebi, S.; Ahmadi, M. Recent Advances in Antibody-Based Immunotherapy Strategies for COVID-19. J. Cell. Biochem. 2021, 122, 1389–1412. [Google Scholar] [CrossRef] [PubMed]
- Ash, J.; Leavitt, R.; Dietrich, T.; Schritter, S.; Wells, J.; Santarelli, A.; Ashurst, J. Real World Utilization of REGEN-COV2 at a Community Hospital. Am. J. Emerg. Med. 2021, 50, 129–131. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, R.; Philpot, L.M.; Bierle, D.M.; Anderson, R.J.; Arndt, L.L.; Arndt, R.F.; Culbertson, T.L.; Destro Borgen, M.J.; Hanson, S.N.; Kennedy, B.D.; et al. Real-World Clinical Outcomes of Bamlanivimab and Casirivimab-Imdevimab Among High-Risk Patients With Mild to Moderate Coronavirus Disease 2019. J. Infect. Dis. 2021, 224, 1278–1286. [Google Scholar] [CrossRef] [PubMed]
- Leavitt, R.; Ash, J.; Hasenbalg, P.; Santarelli, A.; Dietrich, T.; Schritter, S.; Wells, J.; Dawson, A.; Ashurst, J. Real World Utilization of Bamlanivimab at a Rural Community Hospital. Cureus 2021, 13, e19747. [Google Scholar] [CrossRef] [PubMed]
- Markowicz, S.; Trioux, T.; Rulquin, C.; Le Guillou, C.; Ouissa, R.; Loraux, C.; Saliege, M.; Roger, P.-M. Real-World Effectiveness of Casirivimab plus Indevimab in a Dedicated Ambulatory Unit Created for Patients with Early COVID-19 during a Massive Delta Variant Wave. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2022, 41, 1145–1149. [Google Scholar] [CrossRef] [PubMed]
- Wynia, M.K.; Beaty, L.E.; Bennett, T.D.; Carlson, N.E.; Davis, C.B.; Kwan, B.M.; Mayer, D.A.; Ong, T.C.; Russell, S.; Steele, J.D.; et al. Real-World Evidence of Neutralizing Monoclonal Antibodies for Preventing Hospitalization and Mortality in COVID-19 Outpatients. Chest 2022. [Google Scholar] [CrossRef] [PubMed]
- Pannier, J.; Nass, N.; Behre, G. Monoclonal Antibodies Therapy for COVID-19—Experiences at a Regional Hospital. medRxiv 2021. [Google Scholar] [CrossRef]
- Chen, P.; Behre, G.; Hebert, C.; Kumar, P.; Farmer Macpherson, L.; Graham-Clarke, P.L.; De La Torre, I.; Nichols, R.M.; Hufford, M.M.; Patel, D.R.; et al. Bamlanivimab and Etesevimab Improve Symptoms and Associated Outcomes in Ambulatory Patients at Increased Risk for Severe Coronavirus Disease 2019: Results From the Placebo-Controlled Double-Blind Phase 3 BLAZE-1 Trial. Open Forum Infect. Dis. 2022, 9, ofac172. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Yisimayi, A.; Jian, F.; Song, W.; Xiao, T.; Wang, L.; Du, S.; Wang, J.; Li, Q.; Chen, X.; et al. BA.2.12.1, BA.4 and BA.5 Escape Antibodies Elicited by Omicron Infection. Nature 2022, 608, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Walsh, K.A.; Jordan, K.; Clyne, B.; Rohde, D.; Drummond, L.; Byrne, P.; Ahern, S.; Carty, P.G.; O’Brien, K.K.; O’Murchu, E.; et al. SARS-CoV-2 Detection, Viral Load and Infectivity over the Course of an Infection. J. Infect. 2020, 81, 357–371. [Google Scholar] [CrossRef] [PubMed]
- Arora, P.; Kempf, A.; Nehlmeier, I.; Graichen, L.; Sidarovich, A.; Winkler, M.S.; Schulz, S.; Jäck, H.-M.; Stankov, M.V.; Behrens, G.M.N.; et al. Delta Variant (B.1.617.2) Sublineages Do Not Show Increased Neutralization Resistance. Cell. Mol. Immunol. 2021, 18, 2557–2559. [Google Scholar] [CrossRef] [PubMed]
- Carethers, J.M. Insights into Disparities Observed with COVID-19. J. Intern. Med. 2021, 289, 463–473. [Google Scholar] [CrossRef] [PubMed]
Parameter | All Patients | ||
---|---|---|---|
All | Untreated | Treated | |
Number | 315 | 90 | 225 |
Age | 67.1 ± 17.0 | 66.9 ± 20.9 | 67.2 ± 15.2 |
Symptoms | |||
Coughing (n/y) % yes | 146/156 51.7% | 52/31 37.3% | 94/125 ** 57.1% |
Dyspnea (n/y) % yes | 207/95 31.5% | 44/39 44.0% | 163/56 ** 25.6% |
Syncope (n/y) % yes | 280/22 7.3% | 73/10 12.0% | 207/12 + 5.5% |
Blood pressure systolic | 127.7 ± 20.1 | 124.9 ± 22.4 | 128.5 ± 19.3 |
Blood pressure diastolic | 67.6 ± 12.8 | 73.4 ± 11.7 | 77.5 ± 13.1 * |
Blood gas analysis | |||
pO2 | 10.0 ± 3.3 | 9.7 ± 4.5 | 10.2 ± 2.6 |
pCO2 | 4.7 ± 0.8 | 4.7 ± 0.8 | 4.7 ± 0.8 |
O2 saturation % | 93.6 ± 4.9 | 92.3 ± 4.9 | 94.1 ± 4.8 ** |
Clinical chemistry | |||
CRP (mg/L) | 52.0 ± 57.9 | 69.7 ± 69.5 | 44.4 ± 50.4 ** |
PCR (Ct) | 24.8 ± 5.0 | 26.7 ± 4.9 | 24.0 ± 4.9 ** |
Hospitalization (d) | 10.3 ± 9.9 | 14.4 ± 11.1 | 8.6 ± 8.9 ** |
Death (n/y) % yes | 276/33 10.7% | 71/16 205/17 | 205/17 * 7.7% |
Parameter | Untreated | CI Group | B Group | BE Group | p |
---|---|---|---|---|---|
A | |||||
Age | 65.6 ± 21.2 | 64.1 ± 16.2 | 76.2 ± 11.4 | 71.0 ± 14.7 | 0.037 |
CRP (mg/L) | 69.2 ± 69.3 | 34.3 ± 48.2 * | 10.6 ± 14.0 * | 40.0 ± 39.9 * | <0.001 |
PCR (Ct) | 26.7 ± 4.9 | 24.2 ± 5.3 * | 25.6 ± 5.8 | 24.9 ± 4.3 | <0.01 |
O2 saturation (%) | 92.5 ± 4.9 | 94.3 ± 5.4 * | 92.2 ± 5.8 | 94.3 ± 3.0 | 0.017 |
Blood pressure diastolic | 73.6 ± 11.7 | 78.4 ± 12.3 * | 76.0 ± 15.2 | 78.4 ± 12.8 | 0.034 |
Hospitalization time | 14.4 ± 11.1 | 4.0 ± 7.4 * | 14.0 ± 12.9 | 8.8 ± 9.1 *$ | <0.001 |
B | |||||
Age | 65.6 ± 21.2 | 67.2 ± 15.2 | 76.2 ± 11.5 | 72.6 ± 14.1 | 0.24 |
CRP (mg/L) | 69.2 ± 69.3 | 44.4 ± 50.4 | 10.6 ± 14.0 | 41.8 ± 41.6 | <0.01 |
PCR (Ct) | 26.7 ± 4.9 | 24.0 ± 4.9 ** | 25.6 ± 5.8 | 24.7 ± 4.3 | <0.01 |
O2 saturation (%) | 92.5 ± 4.9 | 94.1 ± 4.8 * | 92.2 ± 5.8 | 93.5 ± 3.0 | <0.05 |
Blood pressure diastolic | 73.6 ± 11.7 | 77.5 ± 13.1 | 76.0 ± 15.2 | 79.0 ± 13.8 | 0.13 |
Hospitalization time | 14.4 ± 11.1 | 8.6 ± 8.8 ** | 14.0 ± 12.9 | 11.5 ± 8.8 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pannier, J.; Nass, N.; Yaakoub, M.-K.; Stelzner, F.M.M.; Veit, S.; Kalomoiri, M.; Yassine, M.; Behre, G. Monoclonal Antibody Therapy for COVID-19: A Retrospective Observational Study at a Regional Hospital. Infect. Dis. Rep. 2023, 15, 125-131. https://doi.org/10.3390/idr15010013
Pannier J, Nass N, Yaakoub M-K, Stelzner FMM, Veit S, Kalomoiri M, Yassine M, Behre G. Monoclonal Antibody Therapy for COVID-19: A Retrospective Observational Study at a Regional Hospital. Infectious Disease Reports. 2023; 15(1):125-131. https://doi.org/10.3390/idr15010013
Chicago/Turabian StylePannier, Judith, Norbert Nass, Mohamad-Kamal Yaakoub, Florian Michael Maria Stelzner, Susann Veit, Margarita Kalomoiri, Mahdi Yassine, and Gerhard Behre. 2023. "Monoclonal Antibody Therapy for COVID-19: A Retrospective Observational Study at a Regional Hospital" Infectious Disease Reports 15, no. 1: 125-131. https://doi.org/10.3390/idr15010013