Corynebacterium striatum Bacteremia during SARS-CoV2 Infection: Case Report, Literature Review, and Clinical Considerations
Abstract
1. Introduction
2. Case Presentation
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fattorini, L.; Creti, R.; Palma, C.; Pantosti, A.; Palma, C.; Barbanti, F.; Camilli, R.; Ciervo, A.; Dattilo, R.; Del Grosso, M.; et al. Bacterial coinfections in COVID-19: An underestimated adversary. Ann. Ist. Super. Sanita 2020, 56, 359–364. [Google Scholar] [CrossRef]
- He, S.; Liu, W.; Jiang, M.; Huang, P.; Xiang, Z.; Deng, D.; Chen, P.; Xie, L. Clinical characteristics of COVID-19 patients with clinically diagnosed bacterial co-infection: A multi-center study. PLoS ONE 2021, 16, e0249668. [Google Scholar] [CrossRef]
- Milosavljevic, M.N.; Milosavljevic, J.Z.; Kocovic, A.G.; Stefanovic, S.M.; Jankovic, S.M.; Djesevic, M.; Milentijevic, M.N. Antimicrobial treatment of corynebacterium striatum invasive infections: A systematic review. Rev. Inst. Med. Trop. Sao Paulo 2021, 63, e49. [Google Scholar] [CrossRef]
- Ridaura, V.K.; Bouladoux, N.; Claesen, J.; Erin Chen, Y.; Byrd, A.L.; Constantinides, M.G.; Merrill, E.D.; Tamoutounour, S.; Fischbach, M.A.; Belkaid, Y. Contextual control of skin immunity and inflammation by Corynebacterium. J. Exp. Med. 2018, 215, 785–799. [Google Scholar] [CrossRef]
- Silva-Santana, G.; Silva, C.M.F.; Olivella, J.G.B.; Silva, I.F.; Fernandes, L.M.O.; Sued-Karam, B.R.; Santos, C.S.; Souza, C.; Mattos-Guaraldi, A.L. Worldwide survey of Corynebacterium striatum increasingly associated with human invasive infections, nosocomial outbreak, and antimicrobial multidrug-resistance, 1976–2020. Arch. Microbiol. 2021, 203, 1863–1880. [Google Scholar] [CrossRef]
- Rawson, T.M.; Wilson, R.C.; Holmes, A. Understanding the role of bacterial and fungal infection in COVID-19. Clin. Microbiol. Infect. 2021, 27, 9–11. [Google Scholar] [CrossRef]
- Zhu, X.; Ge, Y.; Wu, T.; Zhao, K.; Chen, Y.; Wu, B.; Zhu, F.; Zhu, B.; Cui, L. Co-infection with respiratory pathogens among COVID-2019 cases. Virus Res. 2020, 285, 198005. [Google Scholar] [CrossRef]
- McMullen, A.R.; Anderson, N.; Wallace, M.A.; Shupe, A.; Burnham, C.A.D. When good bugs go bad: Epidemiology and antimicrobial resistance profiles of corynebacterium striatum, an emerging multidrug-resistant, opportunistic pathogen. Antimicrob. Agents Chemother. 2017, 61, e01111–e01117. [Google Scholar] [CrossRef]
- Chen, F.L.; Hsueh, P.R.; Teng, S.O.; Ou, T.Y.; Lee, W. Sen Corynebacterium striatum bacteremia associated with central venous catheter infection. J. Microbiol. Immunol. Infect. 2012, 45, 255–258. [Google Scholar] [CrossRef]
- Verroken, A.; Bauraing, C.; Deplano, A.; Bogaerts, P.; Huang, D.; Wauters, G.; Glupczynski, Y. Epidemiological investigation of a nosocomial outbreak of multidrug-resistant Corynebacterium striatum at one Belgian university hospital. Clin. Microbiol. Infect. 2014, 20, 44–50. [Google Scholar] [CrossRef]
- Otsuka, Y.; Ohkusu, K.; Kawamura, Y.; Baba, S.; Ezaki, T.; Kimura, S. Emergence of multidrug-resistant Corynebacterium striatum as a nosocomial pathogen in long-term hospitalized patients with underlying diseases. Diagn. Microbiol. Infect. Dis. 2006, 54, 109–114. [Google Scholar] [CrossRef]
- Saito, S.; Kawamura, I.; Tsukahara, M.; Uemura, K.; Ohkusu, K.; Kurai, H. Cellulitis and bacteremia due to corynebacterium striatum identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Intern. Med. 2016, 55, 1203–1205. [Google Scholar] [CrossRef]
- Noussair, L.; Salomon, E.; El Sayed, F.; Duran, C.; Bouchand, F.; Roux, A.L.; Gaillard, J.L.; Bauer, T.; Rottman, M.; Dinh, A. Monomicrobial bone and joint infection due to Corynebacterium striatum: Literature review and amoxicillin-rifampin combination as treatment perspective. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1269–1278. [Google Scholar] [CrossRef]
- Weiss, K.; Labbé, A.C.; Laverdière, M. Corynebacterium striatum meningitis: Case report and review of an increasingly important Corynebacterium species. Clin. Infect. Dis. 1996, 23, 1246–1248. [Google Scholar] [CrossRef]
- Shariff, M.; Aditi, A.; Beri, K. Corynebacterium striatum: An emerging respiratory pathogen. J. Infect. Dev. Ctries. 2018, 12, 581–586. [Google Scholar] [CrossRef]
- Elkayam, N.; Urazov, A.; Tuneev, K.; Chapnick, E. Corynebacterium striatum bacteremia associated with cellulitis in a patient with cirrhosis. IDCases 2019, 17, e00575. [Google Scholar] [CrossRef]
- Daisuke, U.; Oishi, T.; Yamane, K.; Terada, K. Corynebacterium striatum bacteremia associated with a catheter-related blood stream infection. Case Rep. Infect. Dis. 2017, 2017, 2682149. [Google Scholar] [CrossRef]
- Hagiya, H.; Kimura, K.; Okuno, H.; Hamaguchi, S.; Morii, D.; Yoshida, H.; Mitsui, T.; Nishi, I.; Tomono, K. Bacteremia due to high-level daptomycin-resistant Corynebacterium striatum: A case report with genetic investigation. J. Infect. Chemother. 2019, 25, 906–908. [Google Scholar] [CrossRef]
- Topić, A.; Čivljak, R.; Butić, I.; Gužvinec, M.; Kuzman, I. Relapsing bacteraemia due to Corynebacterium striatum in a patient with peripheral arterial disease. Pol. J. Microbiol. 2015, 64, 295–298. [Google Scholar] [CrossRef]
- Garcia, C.M.; McKenna, J.; Fan, L.; Shah, A. Corynebacterium striatum bacteremia in end-stage renal disease: A case series and review of literature. R. I. Med. J. 2020, 103, 46–49. [Google Scholar]
- Khan, D.; Shadi, M.; Mustafa, A.; Karam, B.; Munir, A.B.; Lafferty, J.; Glaser, A.; Mobarakai, N. A wolf in sheep’s clothing; Case reports and literature review of Corynebacterium striatum endocarditis. IDCases 2021, 24, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.J.; Choi, S.M.; Choi, J.A.; Choi, J.U.; Oh, T.H.; Kim, S.E.; Kim, U.J.; Won, E.J.; Jang, H.C.; Park, K.H.; et al. Factors affecting the clinical relevance of Corynebacterium striatum isolated from blood cultures. PLoS ONE 2018, 13, e0199454. [Google Scholar] [CrossRef] [PubMed]
- Iaria, C.; Stassi, G.; Costa, G.B.; Biondo, C.; Gerace, E.; Noto, A.; Spinella, S.G.; David, A.; Cascio, A. Outbreak of multi-resistant Corynebacterium striatum infection in an Italian general intensive care unit. J. Hosp. Infect. 2007, 67, 102–104. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.L.; Koh, H.I.; Lee, A.J. Native valve endocarditis due to Corynebacterium striatum confirmed by 16S ribosomal RNA sequencing: A case report and literature review. Infect. Chemother. 2016, 48, 239–245. [Google Scholar] [CrossRef]
- Ishiwada, N.; Watanabe, M.; Murata, S.; Takeuchi, N.; Taniguchi, T.; Igari, H. Clinical and bacteriological analyses of bacteremia due to Corynebacterium striatum. J. Infect. Chemother. 2016, 22, 790–793. [Google Scholar] [CrossRef]
- Yamamuro, R.; Hosokawa, N.; Otsuka, Y.; Osawa, R. Clinical characteristics of corynebacterium bacteremia caused by different species, Japan, 2014–2020. Emerg. Infect. Dis. 2021, 27, 2981–2987. [Google Scholar] [CrossRef]
- Abe, M.; Kimura, M.; Maruyama, H.; Watari, T.; Ogura, S.; Takagi, S.; Uchida, N.; Otsuka, Y.; Taniguchi, S.; Araoka, H. Clinical characteristics and drug susceptibility patterns of Corynebacterium species in bacteremic patients with hematological disorders. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2095–2104. [Google Scholar] [CrossRef]
- Mushtaq, A.; Chen, D.J.; Strand, G.J.; Dylla, B.L.; Cole, N.C.; Mandrekar, J.; Patel, R. Clinical significance of coryneform gram-positive rods from blood identified by MALDI-TOF mass spectrometry and their susceptibility profiles—A retrospective chart review. Diagn. Microbiol. Infect. Dis. 2016, 85, 372–376. [Google Scholar] [CrossRef]
- Ramos, J.N.; Souza, C.; Faria, Y.V.; Da Silva, E.C.; Veras, J.F.C.; Baio, P.V.P.; Seabra, S.H.; De Oliveira Moreira, L.; Hirata Júnior, R.; Mattos-Guaraldi, A.L.; et al. Bloodstream and catheter-related infections due to different clones of multidrug-resistant and biofilm producer Corynebacterium striatum. BMC Infect. Dis. 2019, 19, 672. [Google Scholar] [CrossRef]
- Ozdemir, S.; Aydogan, O.; Koksal Cakirlar, F. Biofilm formation and antimicrobial susceptibility of non-diphtheriae corynebacterium strains isolated from blood cultures: First report from Turkey. Medeni. Med. J. 2021, 36, 123–129. [Google Scholar] [CrossRef]
- De Souza, C.; Faria, Y.V.; de Oliveira Sant’Anna, L.; Viana, V.G.; Seabra, S.H.; de Souza, M.C.; Vieira, V.V.; Júnior, R.H.; de Oliveira Moreira, L.; de Mattos-Guaraldi, A.L. Biofilm production by multiresistant Corynebacterium striatum associated with nosocomial outbreak. Mem. Inst. Oswaldo Cruz 2015, 110, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Di Domenico, E.G.; Rimoldi, S.G.; Cavallo, I.; D’Agosto, G.; Trento, E.; Cagnoni, G.; Palazzin, A.; Pagani, C.; Romeri, F.; De Vecchi, E.; et al. Microbial biofilm correlates with an increased antibiotic tolerance and poor therapeutic outcome in infective endocarditis. BMC Microbiol. 2019, 19, 228. [Google Scholar] [CrossRef] [PubMed]
- Marino, A.; Munafò, A.; Zagami, A.; Ceccarelli, M.; Di Mauro, R.; Cantarella, G.; Bernardini, R.; Nunnari, G.; Cacopardo, B. Ampicillin plus ceftriaxone regimen against enterococcus faecalis endocarditis: A literature review. J. Clin. Med. 2021, 10, 4594. [Google Scholar] [CrossRef] [PubMed]
- Boltin, D.; Katzir, M.; Bugoslavsky, V.; Yalashvili, I.; Brosh-Nissimov, T.; Fried, M.; Elkayam, O. Corynebacterium striatum-A classic pathogen eluding diagnosis. Eur. J. Intern. Med. 2009, 20, e49–e52. [Google Scholar] [CrossRef] [PubMed]
- Mansour, M.K.; Al-Messabi, A.H.; Ahmed, S.A.; Jabeen, F.; Moumne, I.S.; Nsutebu, E.F. Corynebacterium striatum prosthetic valve endocarditis. A case report and literature review. Clin. Infect. Pract. 2020, 7–8, 100055. [Google Scholar] [CrossRef]
- European Society of Clinical Microbiology and Infectious Diseases EUCAST: Clinical Breakpoints and Dosing of Antibiotics. Available online: https://www.eucast.org/clinical_breakpoints/ (accessed on 16 April 2022).
- Alibi, S.; Ferjani, A.; Boukadida, J.; Cano, M.E.; Fernández-Martínez, M.; Martínez-Martínez, L.; Navas, J. Occurrence of Corynebacterium striatum as an emerging antibiotic-resistant nosocomial pathogen in a Tunisian hospital. Sci. Rep. 2017, 7, 9704. [Google Scholar] [CrossRef] [PubMed]
- Song, S.A.; Shin, J.H. Microbiological Characteristics of Corynebacterium striatum, an Emerging Pathogen. Hanyang Med. Rev. 2018, 38, 93–98. [Google Scholar] [CrossRef][Green Version]
- Asgin, N.; Otlu, B. Antimicrobial resistance and molecular epidemiology of corynebacterium striatum isolated in a tertiary hospital in Turkey. Pathogens 2020, 9, 136. [Google Scholar] [CrossRef]
- Biscarini, S.; Colaneri, M.; Mariani, B.; Pieri, T.C.; Bruno, R.; Seminari, E. A case of Corynebacterium striatum endocarditis successfully treated with an early switch to oral antimicrobial therapy. Infez. Med. 2021, 29, 138–144. [Google Scholar]
- Hahn, W.O.; Werth, B.J.; Butler-Wu, S.M.; Rakita, R.M. Multidrug-resistant Corynebacterium striatum associated with increased use of parenteral antimicrobial drugs. Emerg. Infect. Dis. 2016, 22, 1908–1914. [Google Scholar] [CrossRef]
- Barnass, S.; Holland, K.; Tabaqchali, S. Vancomycin-resistant Corynebacterium species causing prosthetic valve endocarditis successfully treated with imipenem and ciprofloxacin. J. Infect. 1991, 22, 161–169. [Google Scholar] [CrossRef]
- EUCAST. Enterobacterales Calibration of Zone Diameter Breakpoints to MIC Values; EUCAST: Växjö, Sweden, 2022. [Google Scholar]
- Fernandez-Roblas, R.; Adames, H.; Martín-de-Hijas, N.Z.; García Almeida, D.; Gadea, I.; Esteban, J. In vitro activity of tigecycline and 10 other antimicrobials against clinical isolates of the genus Corynebacterium. Int. J. Antimicrob. Agents 2009, 33, 453–455. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, K.F.; McElvania, E.; Wallace, M.A.; Droske, L.E.; Robertson, A.E.; Westblade, L.F.; Burnham, C.A.D. Evaluating the rapid emergence of daptomycin resistance in Corynebacterium: A multicenter study. J. Clin. Microbiol. 2021, 59, e02052-20. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Pérez, A.; Martín-De-Hijas, N.Z.; Esteban, J.; Fernández-Natal, M.I.; García-Cía, J.I.; Fernández-Roblas, R. High frequency of macrolide resistance mechanisms in clinical isolates of Corynebacterium species. Microb. Drug Resist. 2010, 16, 273–277. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, X.; Zhang, J.; Wang, Y.; Lv, Y.; Du, X.; ChaoLuMen, Q.Q.G.; Wang, J. Wide spread and diversity of mutation in the gyrA gene of quinolone-resistant Corynebacterium striatum strains isolated from three tertiary hospitals in China. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 71. [Google Scholar] [CrossRef]
- Navas, J.; Fernández-Martínez, M.; Salas, C.; Cano, M.E.; Martínez-Martínez, L. Susceptibility to aminoglycosides and distribution of aph and aac(3)-xi genes among corynebacterium striatum clinical isolates. PLoS ONE 2016, 11, e0167856. [Google Scholar] [CrossRef]
- Marino, A.; Zafarana, G.; Ceccarelli, M.; Cosentino, F.; Moscatt, V.; Bruno, G.; Bruno, R.; Benanti, F.; Cacopardo, B.; Celesia, B.M. Immunological and clinical impact of DAA-Mediated HCV eradication in a cohort of HIV/HCV coinfected patients: Monocentric Italian experience. Diagnostics 2021, 11, 2336. [Google Scholar] [CrossRef]
- Marino, A.; Cosentino, F.; Ceccarelli, M.; Moscatt, V.; Pampaloni, A.; Scuderi, D.; D’andrea, F.; Venanzi Rullo, E.; Nunnari, G.; Benanti, F.; et al. Entecavir resistance in a patient with treatment-naïve hbv: A case report. Mol. Clin. Oncol. 2021, 14, 113. [Google Scholar] [CrossRef]
- Celesia, B.M.; Marino, A.; Borracino, S.; Arcadipane, A.F.; Pantò, G.; Gussio, M.; Coniglio, S.; Pennisi, A.; Cacopardo, B.; Panarello, G. Successful extracorporeal membrane oxygenation treatment in an acquired immune deficiency syndrome (AIDS) patient with acute respiratory distress syndrome (ARDS) complicating pneumocystis jirovecii pneumonia: A challenging case. Am. J. Case Rep. 2020, 21, e919570-1–e919570-5. [Google Scholar] [CrossRef]
- Cosentino, F.; Moscatt, V.; Marino, A.; Pampaloni, A.; Scuderi, D.; Ceccarelli, M.; Benanti, F.; Gussio, M.; Larocca, L.; Boscia, V.; et al. Clinical characteristics and predictors of death among hospitalized patients infected with SARS-CoV-2 in Sicily, Italy: A retrospective observational study. Biomed. Rep. 2022, 16, 34. [Google Scholar] [CrossRef]
- Marino, A.; Pampaloni, A.; Scuderi, D.; Cosentino, F.; Moscatt, V.; Ceccarelli, M.; Gussio, M.; Celesia, B.M.; Bruno, R.; Borraccino, S.; et al. High-flow nasal cannula oxygenation and tocilizumab administration in patients critically ill with COVID-19: A report of three cases and a literature review. World Acad. Sci. J. 2020, 2, 23. [Google Scholar] [CrossRef]
- Ceccarelli, M.; Marino, A.; Cosentino, F.; Moscatt, V.; Celesia, B.M.; Gussio, M.; Bruno, R.; Rullo, E.V.; Nunnari, G.; Cacopardo, B.S. Post-infectious ST elevation myocardial infarction following a COVID-19 infection: A case report. Biomed. Rep. 2022, 16, 10. [Google Scholar] [CrossRef] [PubMed]
- Erdem, H.; Hargreaves, S.; Ankarali, H.; Caskurlu, H.; Ceviker, S.A.; Bahar-Kacmaz, A.; Meric-Koc, M.; Altindis, M.; Yildiz-Kirazaldi, Y.; Kizilates, F.; et al. Managing adult patients with infectious diseases in emergency departments: International ID-IRI study. J. Chemother. 2021, 33, 302–318. [Google Scholar] [CrossRef] [PubMed]
- El-Sokkary, R.; Uysal, S.; Erdem, H.; Kullar, R.; Pekok, A.U.; Amer, F.; Grgić, S.; Carevic, B.; El-Kholy, A.; Liskova, A.; et al. Profiles of multidrug-resistant organisms among patients with bacteremia in intensive care units: An international ID-IRI survey. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2323–2334. [Google Scholar] [CrossRef] [PubMed]
Lab Parameters (Reference Range) | Time of Admission | Time of Blood Cultures | Day of Exitus |
---|---|---|---|
WBC, cells/mmc (4000–10,000) | 9600 | 4200 | 1200 |
Neutrophils, % (40–75) | 82.3 | 87.3 | 84.4 |
Lymphocytes, % (25–50) | 12.8 | 9 | 11.7 |
Monocytes, % (2–10) | 4.1 | 2.9 | 1.5 |
Platelets, cells/mmc × 103 (150–400) | 267 | 50 | 31 |
Haemoglobin, g/dL (12–16) | 11.1 | 8.4 | 7.1 |
AST, UI/L (15–35) | 35 | 25 | 51 |
ALT, UI/L (15–35) | 22 | 12 | 10 |
LDH, UI/L (80–250) | 370 | 324 | 577 |
Creatinine, mg/dL (0.8–1.2) | 1 | 0.77 | 1.07 |
Na+, mEq/L (135–145) | 143 | 135 | 129 |
K+, mEq/L (3.4–5.1) | 2.7 | 2.8 | 4.4 |
Cl−, mEq/L (98–107) | 100 | 96 | 93 |
CRP, mg/dL (0–0.5) | 7.15 | 12.29 | 1.25 |
ESR, mm/h (0–10) | 48 | 80 | 100 |
Procalcitonin, µg/L (<0.5) | 0.17 | 7.68 | 0.71 |
INR, (0.8–1.1) | 1 | 1.40 | 1.39 |
D-dimer, ng/mL (<250) | 1827 | 431 | 1932 |
Fibrinogen, mg/dL (200–400) | 100 | 100 | 100 |
Ferritin, ng/mL (20–200) | 220 | >2000 | >2000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marino, A.; Campanella, E.; Stracquadanio, S.; Ceccarelli, M.; Zagami, A.; Nunnari, G.; Cacopardo, B. Corynebacterium striatum Bacteremia during SARS-CoV2 Infection: Case Report, Literature Review, and Clinical Considerations. Infect. Dis. Rep. 2022, 14, 383-390. https://doi.org/10.3390/idr14030042
Marino A, Campanella E, Stracquadanio S, Ceccarelli M, Zagami A, Nunnari G, Cacopardo B. Corynebacterium striatum Bacteremia during SARS-CoV2 Infection: Case Report, Literature Review, and Clinical Considerations. Infectious Disease Reports. 2022; 14(3):383-390. https://doi.org/10.3390/idr14030042
Chicago/Turabian StyleMarino, Andrea, Edoardo Campanella, Stefano Stracquadanio, Manuela Ceccarelli, Aldo Zagami, Giuseppe Nunnari, and Bruno Cacopardo. 2022. "Corynebacterium striatum Bacteremia during SARS-CoV2 Infection: Case Report, Literature Review, and Clinical Considerations" Infectious Disease Reports 14, no. 3: 383-390. https://doi.org/10.3390/idr14030042
APA StyleMarino, A., Campanella, E., Stracquadanio, S., Ceccarelli, M., Zagami, A., Nunnari, G., & Cacopardo, B. (2022). Corynebacterium striatum Bacteremia during SARS-CoV2 Infection: Case Report, Literature Review, and Clinical Considerations. Infectious Disease Reports, 14(3), 383-390. https://doi.org/10.3390/idr14030042