Smoking and Risk of Fatty Liver Disease: A Meta-Analysis of Cohort Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection and Data Extraction
2.3. Assessment of Methodological Quality
2.4. Main and Subgroup Analyses
2.5. Statistical Analysis
3. Results
3.1. Study Selection
3.2. General Characteristics of Included Studies
3.3. Methodological Quality of Studies
3.4. Association Between Smoking and Risk of FLD
3.5. Subgroup Meta-Analyses
3.6. Publication Bias
4. Discussion
Strengths and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adams, L.A.; Lymp, J.F.; St Sauver, J.; Sanderson, S.O.; Lindor, K.D.; Feldstein, A.; Angulo, P. The natural history of nonalcoholic fatty liver disease: A population-based cohort study. Gastroenterology 2005, 129, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Nascimbeni, F.; Pais, R.; Bellentani, S.; Day, C.P.; Ratziu, V.; Loria, P.; Lonardo, A. From NAFLD in clinical practice to answers from guidelines. J. Hepatol. 2013, 59, 859–871. [Google Scholar] [CrossRef]
- Crabb, D.W.; Galli, A.; Fischer, M.; You, M. Molecular mechanisms of alcoholic fatty liver: Role of peroxisome proliferator-activated receptor alpha. Alcohol 2004, 34, 35–38. [Google Scholar] [CrossRef]
- Machado, M.; Cortez-Pinto, H. Non-alcoholic steatohepatitis and metabolic syndrome. Curr. Opin. Clin. Nutr. Metab. Care 2006, 9, 637–642. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.V.; Cortez-Pinto, H. Management of fatty liver disease with the metabolic syndrome. Expert Rev. Gastroenterol. Hepatol. 2014, 8, 487–500. [Google Scholar] [CrossRef]
- Riazi, K.; Azhari, H.; Charette, J.H.; Underwood, F.E.; King, J.A.; Afshar, E.E.; Swain, M.G.; Congly, S.E.; Kaplan, G.G.; Shaheen, A.A. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2022, 7, 851–861. [Google Scholar] [CrossRef] [PubMed]
- Browning, J.D.; Szczepaniak, L.S.; Dobbins, R.; Nuremberg, P.; Horton, J.D.; Cohen, J.C.; Grundy, S.M.; Hobbs, H.H. Prevalence of hepatic steatosis in an urban population in the United States: Impact of ethnicity. Hepatology 2004, 40, 1387–1395. [Google Scholar] [CrossRef]
- Ko, E.; Yoon, E.L.; Jun, D.W. Risk factors in nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2023, 29, S79–S85. [Google Scholar] [CrossRef]
- Yuan, H.; Shyy, J.Y.; Martins-Green, M. Second-hand smoke stimulates lipid accumulation in the liver by modulating AMPK and SREBP-1. J. Hepatol. 2009, 51, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Azzalini, L.; Ferrer, E.; Ramalho, L.N.; Moreno, M.; Domínguez, M.; Colmenero, J.; Peinado, V.I.; Barberà, J.A.; Arroyo, V.; Ginès, P.; et al. Cigarette smoking exacerbates nonalcoholic fatty liver disease in obese rats. Hepatology 2010, 51, 1567–1576. [Google Scholar] [CrossRef]
- Tsuneto, A.; Hida, A.; Sera, N.; Imaizumi, M.; Ichimaru, S.; Nakashima, E.; Seto, S.; Maemura, K.; Akahoshi, M. Fatty liver incidence and predictive variables. Hypertens. Res. 2010, 33, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Hamabe, A.; Uto, H.; Imamura, Y.; Kusano, K.; Mawatari, S.; Kumagai, K.; Kure, T.; Tamai, T.; Moriuchi, A.; Sakiyama, T.; et al. Impact of cigarette smoking on onset of nonalcoholic fatty liver disease over a 10-year period. J. Gastroenterol. 2011, 46, 769–778. [Google Scholar] [CrossRef]
- Koch, M.; Borggrefe, J.; Schlesinger, S.; Barbaresko, J.; Groth, G.; Jacobs, G.; Lieb, W.; Laudes, M.; Müller, M.J.; Bosy-Westphal, A.; et al. Association of a lifestyle index with MRI-determined liver fat content in a general population study. J. Epidemiol. Community Health 2015, 69, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Suomela, E.; Oikonen, M.; Virtanen, J.; Parkkola, R.; Jokinen, E.; Laitinen, T.; Hutri-Kähönen, N.; Kähönen, M.; Lehtimäki, T.; Taittonen, L.; et al. Prevalence and determinants of fatty liver in normal-weight and overweight young adults. The Cardiovascular Risk in Young Finns Study. Ann. Med. 2015, 47, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhang, C.; Zhang, Y.; Tang, F.; Li, H.; Zhang, Q.; Lin, H.; Wu, S.; Liu, Y.; Xue, F. Metabolic syndrome and its components as predictors of nonalcoholic fatty liver disease in a northern urban Han Chinese population: A prospective cohort study. Atherosclerosis 2015, 240, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.J.; Sinn, D.H.; Min, Y.W.; Son, H.J.; Kim, J.J.; Chang, Y.; Baek, S.Y.; Ahn, S.H.; Lee, H.; Ryu, S. A cohort study on Helicobacter pylori infection associated with nonalcoholic fatty liver disease. J. Gastroenterol. 2017, 52, 1201–1210. [Google Scholar] [CrossRef]
- Liu, P.; Xu, Y.; Tang, Y.; Du, M.; Yu, X.; Sun, J.; Xiao, L.; He, M.; Wei, S.; Yuan, J.; et al. Independent and joint effects of moderate alcohol consumption and smoking on the risks of non-alcoholic fatty liver disease in elderly Chinese men. PLoS ONE 2017, 12, e0181497. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, E.H.; Amini, M.; Schreuder, T.C.; Dullaart, R.P.; Faber, K.N.; Alizadeh, B.Z.; Blokzijl, H. Prevalence and determinants of non-alcoholic fatty liver disease in lifelines: A large Dutch population cohort. PLoS ONE 2017, 12, e0171502. [Google Scholar] [CrossRef]
- Bayerl, C.; Lorbeer, R.; Heier, M.; Meisinger, C.; Rospleszcz, S.; Schafnitzel, A.; Patscheider, H.; Auweter, S.; Peters, A.; Ertl-Wagner, B.; et al. Alcohol consumption, but not smoking is associated with higher MR-derived liver fat in an asymptomatic study population. PLoS ONE 2018, 13, e0192448. [Google Scholar] [CrossRef]
- Okamoto, M.; Miyake, T.; Kitai, K.; Furukawa, S.; Yamamoto, S.; Senba, H.; Kanzaki, S.; Deguchi, A.; Koizumi, M.; Ishihara, T.; et al. Cigarette smoking is a risk factor for the onset of fatty liver disease in nondrinkers: A longitudinal cohort study. PLoS ONE 2018, 13, e0195147. [Google Scholar] [CrossRef]
- Okamura, T.; Hashimoto, Y.; Hamaguchi, M.; Obora, A.; Kojima, T.; Fukui, M. Low urine pH is a risk for non-alcoholic fatty liver disease: A population-based longitudinal study. Clin. Res. Hepatol. Gastroenterol. 2018, 42, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, M.; Zhao, Z.; Xu, M.; Lu, J.; Wang, T.; Chen, Y.; Wang, S.; Dai, M.; Hou, Y.; et al. Ideal Cardiovascular Health Is Inversely Associated with Nonalcoholic Fatty Liver Disease: A Prospective Analysis. Am. J. Med. 2018, 131, e1511–e1515. [Google Scholar] [CrossRef]
- Jung, H.S.; Chang, Y.; Kwon, M.J.; Sung, E.; Yun, K.E.; Cho, Y.K.; Shin, H.; Ryu, S. Smoking and the Risk of Non-Alcoholic Fatty Liver Disease: A Cohort Study. Am. J. Gastroenterol. 2019, 114, 453–463. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, E.H.; Gruppen, E.G.; Blokzijl, H.; Bakker, S.J.L.; Dullaart, R.P.F. Higher Sodium Intake Assessed by 24 Hour Urinary Sodium Excretion Is Associated with Non-Alcoholic Fatty Liver Disease: The PREVEND Cohort Study. J. Clin. Med. 2019, 8, 2157. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ma, T.; Yip, R.; Perumalswami, P.V.; Branch, A.D.; Lewis, S.; Crane, M.; Yankelevitz, D.F.; Henschke, C.I. Elevated prevalence of moderate-to-severe hepatic steatosis in World Trade Center General Responder Cohort in a program of CT lung screening. Clin. Imaging 2020, 60, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Okamura, T.; Hashimoto, Y.; Hamaguchi, M.; Obora, A.; Kojima, T.; Fukui, M. Creatinine-to-bodyweight ratio is a predictor of incident non-alcoholic fatty liver disease: A population-based longitudinal study. Hepatol. Res. 2020, 50, 57–66. [Google Scholar] [CrossRef]
- Takenaka, H.; Fujita, T.; Masuda, A.; Yano, Y.; Watanabe, A.; Kodama, Y. Non-Alcoholic Fatty Liver Disease Is Strongly Associated with Smoking Status and Is Improved by Smoking Cessation in Japanese Males: A Retrospective Study. Kobe J. Med. Sci. 2020, 66, E102–E112. [Google Scholar] [PubMed]
- Zhang, Q.; Ma, X.; Xing, J.; Shi, H.; Yang, R.; Jiao, Y.; Chen, S.; Wu, S.; Zhang, S.; Sun, X. Serum Uric Acid Is a Mediator of the Association Between Obesity and Incident Nonalcoholic Fatty Liver Disease: A Prospective Cohort Study. Front. Endocrinol. 2021, 12, 657856. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.; Oh, Y.H.; Choi, S.; Chang, J.; Kim, S.M.; Park, S.J.; Cho, Y.; Son, J.S.; Lee, G.; Park, S.M. Association of Change in Smoking Status and Subsequent Weight Change with Risk of Nonalcoholic Fatty Liver Disease. Gut Liver 2023, 17, 150–158. [Google Scholar] [CrossRef]
- Sadeghianpour, Z.; Cheraghian, B.; Farshchi, H.R.; Asadi-Lari, M. Non-alcoholic fatty liver disease and socioeconomic determinants in an Iranian cohort study. BMC Gastroenterol. 2023, 23, 350. [Google Scholar] [CrossRef]
- Akhavan Rezayat, A.; Dadgar Moghadam, M.; Ghasemi Nour, M.; Shirazinia, M.; Ghodsi, H.; Rouhbakhsh Zahmatkesh, M.R.; Tavakolizadeh Noghabi, M.; Hoseini, B.; Akhavan Rezayat, K. Association between smoking and non-alcoholic fatty liver disease: A systematic review and meta-analysis. SAGE Open Med. 2018, 6, 2050312117745223. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef] [PubMed]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.; Rothstein, H.R. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res. Synth. Methods 2010, 1, 97–111. [Google Scholar] [CrossRef] [PubMed]
- Artese, A.; Stamford, B.A.; Moffatt, R.J. Cigarette Smoking: An Accessory to the Development of Insulin Resistance. Am. J. Lifestyle Med. 2017, 13, 602–605. [Google Scholar] [CrossRef]
- Cetin, E.G.; Demir, N.; Sen, I. The Relationship between Insulin Resistance and Liver Damage in non-alcoholic Fatty Liver Patients. Sisli Etfal Hastan. Tıp Bul. 2020, 54, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Eliasson, B.; Attvall, S.; Taskinen, M.R.; Smith, U. The insulin resistance syndrome in smokers is related to smoking habits. Arterioscler. Thromb. 1994, 14, 1946–1950. [Google Scholar] [CrossRef]
- Utzschneider, K.M.; Kahn, S.E. Review: The role of insulin resistance in nonalcoholic fatty liver disease. J. Clin. Endocrinol. Metab. 2006, 91, 4753–4761. [Google Scholar] [CrossRef]
- Jia, W.P. The impact of cigarette smoking on metabolic syndrome. Biomed. Environ. Sci. 2013, 26, 947–952. [Google Scholar]
- Zhang, C.X.; Guo, L.K.; Qin, Y.M.; Li, G.Y. Association of polymorphisms of adiponectin gene promoter-11377C/G, glutathione peroxidase-1 gene C594T, and cigarette smoking in nonalcoholic fatty liver disease. J. Chin. Med. Assoc. 2016, 79, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Myung, S.K. How to review and assess a systematic review and meta-analysis article: A methodological study (secondary publication). J. Educ. Eval. Health Prof. 2023, 20, 24. [Google Scholar] [CrossRef] [PubMed]
- Mackay, J.; Eriksen, M.P.; Shafey, O.; American Cancer Society. The Tobacco Atlas, 2nd ed.; American Cancer Society: Atlanta, GA, USA, 2006; p 1 atlas; 128p. [Google Scholar]
- Jung-Choi, K.H.; Khang, Y.H.; Cho, H.J. Hidden female smokers in Asia: A comparison of self-reported with cotinine-verified smoking prevalence rates in representative national data from an Asian population. Tob. Control 2012, 21, 536–542. [Google Scholar] [CrossRef]
- Hwang, J.-e.; Choi, Y.; Yang, Y.-s.; Oh, Y. Gender differences in the perceived effectiveness of female-focused graphic health warnings against smoking in South Korea. Health Educ. J. 2020, 79, 58–72. [Google Scholar] [CrossRef]
- Seo, D.C.; Torabi, M.R.; Kim, N.; Lee, C.G.; Choe, S. Smoking among East Asian college students: Prevalence and correlates. Am. J. Health Behav. 2013, 37, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Nakhaee, N.; Divsalar, K.; Bahreinifar, S. Prevalence of and factors associated with cigarette smoking among university students: A study from Iran. Asia Pac. J. Public Health 2011, 23, 151–156. [Google Scholar] [CrossRef]
Study | Region | Type of Study | Gender | Study Participants (% of Men) | Comparison | Odds Ratio, Relative Risk, or Hazard Ratio, and 95% Confidence Interval | Outcomes | Adjusted Variables |
---|---|---|---|---|---|---|---|---|
2010 Tsuneto [11] | Asia | Prospective | Both | A total of 1635 atomic bomb survivors who underwent biennial examinations in Nagasaki without NAFLD at baseline | Ex-smoker or current smoker vs. none | 0.92 (0.64–13.4) | FLD | Age, sex, BMI, DM, HTN, dyslipidemia, drinking habits, and atomic radiation dose |
2011 Hamabe [12] | Asia | Retrospective | Both | A total of 1560 subjects without NAFLD who underwent a complete medical health checkup at the Kagoshima Kouseiren Medical Healthcare Center | Cigarette smoking vs. no smoking | 1.44 (0.86–2.42) | NAFLD | Age, sex, obesity, HTN, dyslipidemia, dysglycemia, and alcohol intake |
2015 Koch [13] | Europe | Cross-sectional | Both | A total of 747 official population registeries in Kiel | Cigarette smoking vs. no smoking | 1.14 (0.71–1.82) | FLD | Age, sex, years of education, total energy intake, physical activity, and waist circumference |
2015 Suomela [14] | Europe | Cross-sectional | Both | A total of 3592 Young Finns | Current smoker vs. none | 2.56 (1.18–5.52) | FLD | Age, sex, BMI, and waist circumference |
2015 Zhang [15] | Asia | Prospective | Both | A total of 15,791 health check-up participants at the Center for Health Management of Shandong Provincial Qianfoshan Hospital and Shandong Provincial Hospital | Current smoker vs. none | 1.03 (0.95–1.11) | NAFLD | Baseline Mets status, sex, age, diet, smoking status, and regular exercise |
2017 Kim [16] | Asia | Retrospective | Both | A total of 17,028 health-screening exam participants at the Center for Health Promotion of the Samsung Medical Center, South Korea | Current smoker vs. none | 0.96 (0.81–1.15) | NAFLD | Age, sex, body mass index, year of screening exam, alcohol intake, regular exercise, and education level |
2017 Liu [17] | Asia | Cross-sectional | Male | A total of 9432 DFTJ cohort study among retirees of Dong feng Motor corporation | Current smoker vs. none | 1.52 (1.22–1.88) | NAFLD | Age, body mass index, waist circumference alcohol intake, DM, HTN, dyslipidemia, and past history of CHD |
2017 van den Berg [18] | Europe | Cross-sectional | Both | A total of 37,496 participants in the Framework of the Lifelines Cohort Study | Current smoker vs. none | 1.32 (1.21–1.43) | FLD | Age, sex, Hemoglobin, ALT/ALP/Albumin, HBA1c, type 2 DM, dyslipidemia, and past history of CHD |
2018 Bayerl [19] | Europe | Cross-sectional | Both | A total of 1282 persons from Cooperative Health Research in the German region | Ex-smoker or current smoker vs. none | 0.56 (0.27–1.17) | FLD | Age, sex, DM, and alcohol intake |
2018 Okamoto [20] | Asia | Retrospective | Both | A total of 7905 persons who underwent a health checkup at the Ehime General Healthcare Association | Current smoker vs. none | 2.25 (1.10–4.38) | FLD | Age, sex, BMI, DM, HTN, CVD, dyslipidemia, and snacking habit |
2018 Okamura [21] | Asia | Retrospective | Both | A total of 29,555 people in the medical examination program at the Murakami Memorial Hospital using the NAGALA (NAFLD in the Gifu Area, Longitudinal Analysis) database | Current smoker vs. none | 0.88 (0.78–0.99) | NAFLD | Age, sex, BMI, ALT, triglycerides, exercise habit, alcohol consumption, systolic blood pressure, fasting plasma glucose, and uric acid |
2018 Wang [22] | Asia | Prospective | Both | A total of 10,375 participants from community residents in the Jiading District of Shangia | Current smoker or quit < 12 mo vs. none | 1.11 (0.78–1.56) | NAFLD | Age, sex, alcohol consumption, education, and HOMA-IR |
2019 Jung [23] | Asia | Prospective | Both | A total of 199,468 persons who underwent a health checkup by the Kangbuk Samsung Health Study | Ex-smoker or current smoker vs. none | Men: 1.15 (1.12–1.18) Women: 1.14 (1.03–1.27) | FLD | Age, sex, BMI, DM, HTN, dyslipidemia, alcohol drinking, education level, physical activity, waist circumference, and laboratory test |
2019 van den Berg [24] | Europe | Cross-sectional | Both | A total of 6132 participants in the prevention of Renal and Vascular End-stage Disease cohort study | Current smoker vs. none | 1.24 (1.05–1.46) | NAFLD | Age, sex, BMI, DM, HTN, dyslipidemia, alcohol drinking, estimated GFR, urine albumin excretion, use of antihypertensive medication, glucose lowering drugs, lipid lowering drugs, and HOMA-IR |
2020 Chen [25] | US | Cross-sectional | Both | A total of 154 World Trade Center participants in NIOSH | Current smoker vs. none | 0.41 (0.17–0.99) | FLD | Age, sex, Ethnicity, BMI, DM, HTN, COPD, and membership in the WTC |
2020 Okamura [26] | Asia | Retrospective | Both | A total of 13,728 population-based longitudinal study of participants in a medical checkup program at Asahi University Hospital | Current smoker vs. none | 1.16 (0.88–1.52) | NAFLD | Age, aspartate aminotransferase, fasting plasma glucose, triglyceride to high-density lipoprotein cholesterol ratio, systolic blood pressure, alcohol consumption, and exercise. |
2020 Takenaka [27] | Asia | Cross-sectional | Both | A total of 8297 health check-up participants at Yodogawa Christian Hospital | Current smoker vs. none | 1.31 (1.17–1.47) | NAFLD | Age, sex, presence of metabolic syndrome, and light alcohol consumption |
2021 Zhang [28] | Asia | Prospective | Both | A total of 16,839 participants who received the Kailuan Group’s detailed and thorough medical examination at Tangshan City, China | Current smoker vs. none | 1.15 (1.06–1.25) | NAFLD | Age, sex, marital status, working type, education level, physical activity, systolic blood pressure, lipid profile, CRP, and Cr |
2023 Jeong [29] | Asia | Retrospective | Both | A total of 296,033 in the NHIS of Korea | Current smoker vs. none | 1.64 (1.39–1.94) | FLD | Age, sex, household income, BMI, HTN, DM, HL, physical activity, and Charlson comorbidity index |
2023 Sadeghianpour [30] | Asia | Cross-sectional | Both | A total of 180,000 Iranian adults in a Hoveyzeh Cohort Study | Current smoker vs. none | 0.63 (0.50–0.79) | FLD | Age, sex, area, physical activity, Energy intake household income, DM, HL, education level, wealth status, and skill level |
Studies | Selection | Comparability | Exposure | Total Score | |||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 1 | 1 | 2 | 3 | ||
Representativeness of the Exposed Cohort | Selection of the Non-Exposed Cohort | Ascertainment of Exposure | Outcome of Interest Not Present at Start of the Study | Comparability of Cohorts | Assessment of Outcome | Adequate Follow-Up Period for Outcome of Interest | Adequacy of Follow-Up of Cohorts | ||
2010 Tsuneto [11] | 0 | 1 | 1 | 1 | 2 | 1 | 1 | 0 | 7 |
2011 Hamabe [12] | 1 | 1 | 0 | 1 | 2 | 1 | 1 | 0 | 7 |
2015 Zhang [15] | 1 | 1 | 0 | 1 | 2 | 1 | 1 | 1 | 8 |
2017 Kim [16] | 1 | 1 | 0 | 1 | 2 | 1 | 1 | 1 | 8 |
2018 Okamoto [20] | 1 | 1 | 0 | 1 | 2 | 1 | 1 | 1 | 8 |
2018 Okamura [21] | 1 | 1 | 0 | 1 | 2 | 1 | 1 | 0 | 7 |
2018 Wang [22] | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 0 | 8 |
2019 Jung [23] | 1 | 1 | 0 | 1 | 2 | 1 | 1 | 0 | 7 |
2020 Okamura [26] | 1 | 1 | 0 | 1 | 2 | 1 | 1 | 1 | 8 |
2021 Zhang [28] | 1 | 1 | 0 | 1 | 2 | 1 | 1 | 0 | 7 |
2023 Jeong [29] | 1 | 1 | 0 | 1 | 2 | 1 | 1 | 1 | 8 |
Factor | No. of Studies | RR (95% CI) | Heterogeneity I2 (%) |
---|---|---|---|
All Studies | 20 | 1.14 (1.05–1.24) * | 83.7 |
Type of cohort study | |||
Prospective | 5 | 1.15 (1.05–1.18) * | 51.7 |
Retrospective | 6 | 1.23 (0.94–1.62) | 88.4 |
Cross-sectional | 9 | 1.12 (0.92–1.36) | 85.2 |
Region | |||
Europe | 8 | 1.32 (1.16–1.50) * | 82.1 |
Asia | 10 | 1.03 (0.91–1.18) | 83.5 |
US | 2 | 0.75 (0.28–2.06) | 79.5 |
Type of fatty liver disease | |||
Fatty liver disease | 6 | 1.27 (1.01–1.59) * | 72.7 |
Non-alcoholic fatty liver disease | 14 | 1.09 (1.00–1.19) * | 83.2 |
Gender (All from Asia) | |||
Men | 4 | 1.15 (1.06–1.25) * | 71.2 |
Women | 4 | 1.12 (0.94–1.34) | 47.8 |
Follow-up period | |||
<5 years | 3 | 1.44 (0.95–2.13) | 93.0 |
>5 years | 7 | 1.08 (0.98–1.19) | 70.9 |
Quality of study † | |||
High | 6 | 1.16 (0.94–1.42) | 85.3 |
Low | 5 | 1.07 (0.95–1.20) | 67.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.; Myung, S.-K.; Lee, S.H.; Chang, Y. Smoking and Risk of Fatty Liver Disease: A Meta-Analysis of Cohort Studies. Gastroenterol. Insights 2025, 16, 1. https://doi.org/10.3390/gastroent16010001
Lee M, Myung S-K, Lee SH, Chang Y. Smoking and Risk of Fatty Liver Disease: A Meta-Analysis of Cohort Studies. Gastroenterology Insights. 2025; 16(1):1. https://doi.org/10.3390/gastroent16010001
Chicago/Turabian StyleLee, Moonhyung, Seung-Kwon Myung, Sang Hee Lee, and Yoosoo Chang. 2025. "Smoking and Risk of Fatty Liver Disease: A Meta-Analysis of Cohort Studies" Gastroenterology Insights 16, no. 1: 1. https://doi.org/10.3390/gastroent16010001
APA StyleLee, M., Myung, S.-K., Lee, S. H., & Chang, Y. (2025). Smoking and Risk of Fatty Liver Disease: A Meta-Analysis of Cohort Studies. Gastroenterology Insights, 16(1), 1. https://doi.org/10.3390/gastroent16010001