The Concomitant Effect of the Antiepileptic Drug Lacosamide and rTMS on an SH-SY5Y Model of Neuronal Excitability
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Chemicals
2.3. Differentiation Protocol
2.4. Calcium Imaging
2.5. Lacosamide and rTMS
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
rTMS | repetitive transcranial magnetic stimulation |
DRE | Drug resistant epilepsy |
FDA | Food and drug administration |
MRI | Magnetic resonance imaging |
ACh | Acetycholine |
AChE | Acetylcholinesterase |
ChAT | Choline acetyltransferase |
CaMK | Calmodulin-dependent kinase |
CREB | cAMP response element binding |
CRMP-2 | Collapsin response mediator protein 2 |
MS | Multiple sclerosis |
GAD | Generalized anxiety disorder |
PTSD | Post-traumatic stress disorder |
BDNF | Brain-derived neurotrophic factor |
DMEM | Dulbecco Modified Eagle’s Medium |
EMEM | Eagle’s Minimum Essential Medium |
DMSO | Dimethylsufloxide |
FBS | Fetal bovine serum |
CNS | Central nervous system |
4-AP | 4-aminopyridine |
SLEs | Seizure-like events |
LTD | Long term depression |
MEP | Motor evoked potential |
PD | Pharmacodynamic |
PK | Pharmacokinetic |
References
- Rogers, S.K.; Shapiro, L.A.; Tobin, R.P.; Tow, B.; Zuzek, A.; Mukherjee, S.; Newell-Rogers, M.K. Levetiracetam differentially alters CD95 expression of neuronal cells and the mitochondrial membrane potential of immune and neuronal cells in vitro. Front. Neurol. 2014, 5, 17. [Google Scholar] [CrossRef] [PubMed]
- French, J.A.; Gazzola, D.M. New generation antiepileptic drugs: What do they offer in terms of improved tolerability and safety? Ther. Adv. Drug Saf. 2011, 2, 141–158. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Li, K.; Liang, X.; Kong, D.; Li, Z.; Sun, F.; Liu, X.; Xu, Z.; Wei, X.; Lan, S.; et al. MR-guided laser interstitial thermal therapy for drug-resistant lesional epilepsy: A single-center experience. Chin. Neurosurg. J. 2023, 9, 258–266. [Google Scholar] [CrossRef]
- Serrano, E.; Kanner, A.M. Recent treatment advances and novel therapeutic approaches in epilepsy. F1000Prime Rep. 2015, 7, 61. [Google Scholar] [CrossRef]
- Zündorf, G.; Reiser, G. Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxid. Redox Signal. 2011, 14, 1275–1288. [Google Scholar] [CrossRef]
- Wang, G.; Zhu, Z.; Xu, D.; Sun, L. Advances in understanding CREB signaling-mediated regulation of the pathogenesis and progression of epilepsy. Clin. Neurol. Neurosurg. 2020, 196, 106018. [Google Scholar] [CrossRef]
- Strzelczyk, A.; Zöllner, J.P.; Willems, L.M.; Jost, J.; Paule, E.; Schubert-Bast, S.; Rosenow, F.; Bauer, S. Lacosamide in status epilepticus: Systematic review of current evidence. Epilepsia 2017, 58, 933–950. [Google Scholar] [CrossRef]
- Li, J.; Sun, M.; Wang, X. The adverse-effect profile of lacosamide. Expert Opin. Drug Saf. 2020, 19, 131–138. [Google Scholar] [CrossRef]
- Bauer, S.; Willems, L.M.; Paule, E.; Petschow, C.; Zöllner, J.P.; Rosenow, F.; Strzelczyk, A. The efficacy of lacosamide as monotherapy and adjunctive therapy in focal epilepsy and its use in status epilepticus: Clinical trial evidence and experience. Ther. Adv. Neurol. Disord. 2017, 10, 103–126. [Google Scholar] [CrossRef]
- Doty, P.; Rudd, G.D.; Stoehr, T.; Thomas, D. Lacosamide. Neurotherapeutics 2007, 4, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Beyreuther, B.K.; Freitag, J.; Heers, C.; Krebsfänger, N.; Scharfenecker, U.; Stöhr, T. Lacosamide: A review of preclinical properties. CNS Drug Rev. 2007, 13, 21–42. [Google Scholar] [CrossRef] [PubMed]
- Klomjai, W.; Katz, R.; Lackmy-Vallée, A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann. Phys. Rehabil. Med. 2015, 58, 208–213. [Google Scholar] [CrossRef]
- Pourzitaki, C.; Dardalas, I.; Poutoglidou, F.; Kouvelas, D.; Kimiskidis, V.K. The combination of rTMS and pharmacotherapy on in vitro models: A mini-review. CNS Neurol. Disord. Drug Targets 2020, 19, 220–226. [Google Scholar] [CrossRef]
- Kozel, F.A. Clinical repetitive transcranial magnetic stimulation for posttraumatic stress disorder, generalized anxiety disorder, and bipolar disorder. Psychiatr. Clin. N. Am. 2018, 41, 433–446. [Google Scholar] [CrossRef]
- Tikka, S.K.; Siddiqui, M.A.; Garg, S.; Pattojoshi, A.; Gautam, M. Clinical practice guidelines for the therapeutic use of repetitive transcranial magnetic stimulation in neuropsychiatric disorders. Indian J. Psychiatry 2023, 65, 270–288. [Google Scholar] [CrossRef]
- Şahin, M.; Öncü, G.; Yılmaz, M.A.; Özkan, D.; Saybaşılı, H. Transformation of SH-SY5Y cell line into neuron-like cells: Investigation of electrophysiological and biomechanical changes. Neurosci. Lett. 2021, 745, 135628. [Google Scholar] [CrossRef]
- Forster, J.I.; Köglsberger, S.; Trefois, C.; Boyd, O.; Baumuratov, A.S.; Buck, L.; Balling, R.; Antony, P.M. Characterization of differentiated SH-SY5Y as neuronal screening model reveals increased oxidative vulnerability. J. Biomol. Screen. 2016, 21, 496–509. [Google Scholar] [CrossRef]
- Grainger, A.I.; King, M.C.; Nagel, D.A.; Parri, H.R.; Coleman, M.D.; Hill, E.J. In vitro models for seizure-liability testing using induced pluripotent stem cells. Front. Neurosci. 2018, 12, 590. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, Z.; Xiao, L.; Zhong, Y.; Liu, Y.; Wu, J.; Tao, H. Intracellular calcium homeostasis and its dysregulation underlying epileptic seizures. Seizure 2022, 103, 126–136. [Google Scholar] [CrossRef] [PubMed]
- D’Aloia, A.; Pastori, V.; Blasa, S.; Campioni, G.; Peri, F.; Sacco, E.; Costa, B. A new advanced cellular model of functional cholinergic-like neurons developed by reprogramming the human SH-SY5Y neuroblastoma cell line. Cell Death Discov. 2024, 10, 24. [Google Scholar] [CrossRef] [PubMed]
- de Medeiros, L.M.; De Bastiani, M.A.; Rico, E.P.; Schonhofen, P.; Pfaffenseller, B.; Wollenhaupt-Aguiar, B.; Klamt, F. Cholinergic differentiation of human neuroblastoma SH-SY5Y cell line and its potential use as an in vitro model for Alzheimer’s disease studies. Mol. Neurobiol. 2019, 56, 7355–7367. [Google Scholar] [CrossRef]
- Kalinovskii, A.P.; Osmakov, D.I.; Koshelev, S.G.; Lubova, K.I.; Korolkova, Y.V.; Kozlov, S.A.; Andreev, Y.A. Retinoic acid-differentiated neuroblastoma SH-SY5Y is an accessible in vitro model to study native human acid-sensing ion channels 1a (ASIC1a). Biology 2022, 11, 167. [Google Scholar] [CrossRef]
- Riddoch, F.C.; Brown, A.M.; Rowbotham, S.E.; Redfern, C.P.; Cheek, T.R. Changes in functional properties of the caffeine-sensitive Ca2+ store during differentiation of human SH-SY5Y neuroblastoma cells. Cell Calcium. 2007, 41, 195–206. [Google Scholar] [CrossRef]
- Zabolocki, M.; McCormack, K.; van den Hurk, M.; Milky, B.; Shoubridge, A.P.; Adams, R.; Tran, J.; Mahadevan-Jansen, A.; Reineck, P.; Thomas, J.; et al. BrainPhys neuronal medium optimized for imaging and optogenetics in vitro. Nat. Commun. 2020, 11, 5550. [Google Scholar] [CrossRef]
- Van Acker, K.; Bautmans, B.; Bultynck, G.; Maes, K.; Weidema, A.F.; De Smet, P.; Parys, J.B.; De Smedt, H.; Missiaen, L.; Callewaert, G. Mapping of IP3-mediated Ca2+ signals in single human neuroblastoma SH-SY5Y cells: Cell volume shaping the Ca2+ signal. J. Neurophysiol. 2000, 83, 1052–1057. [Google Scholar] [CrossRef]
- Buhner, S.; Barki, N.; Greiter, W.; Giesbertz, P.; Demir, I.E.; Ceyhan, G.O.; Zeller, F.; Daniel, H.; Schemann, M. Calcium imaging of nerve-mast cell signaling in the human intestine. Front. Physiol. 2017, 8, 971. [Google Scholar] [CrossRef]
- Khire, T.S.; Nehilla, B.J.; Getpreecharsawas, J.; Gracheva, M.E.; Waugh, R.E.; McGrath, J.L. Finite element modeling to analyze TEER values across silicon nanomembranes. Biomed. Microdevices 2018, 20, 1. [Google Scholar] [CrossRef] [PubMed]
- Dardalas, I.; Kosmidis, E.K.; Lagoudaki, R.; Kimiskidis, V.K.; Samaras, T.; Moysiadis, T.; Kouvelas, D.; Pourzitaki, C. Low-Frequency rTMS and Diazepam Exert Synergistic Effects on the Excitability of an SH-SY5Y Model of Epileptiform Activity. Biomedicines 2025, 13, 1857. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, L.Y. A simple and fast method to image calcium activity of neurons from intact dorsal root ganglia using fluorescent chemical Ca2+ indicators. Mol. Pain 2017, 13, 1744806917748051. [Google Scholar] [CrossRef] [PubMed]
- Reyes, A.P.; Martinez Torres, A.; Carreon Castro, M.D.; Rodríguez Talavera, J.R.; Muñoz, S.V.; Aguilar, V.M.; Torres, M.G. Novel poly(3-hydroxybutyrate-g-vinyl alcohol) polyurethane scaffold for tissue engineering. Sci. Rep. 2016, 6, 31140. [Google Scholar] [CrossRef]
- Labau, J.I.; Alsaloum, M.; Estacion, M.; Tanaka, B.; Dib-Hajj, F.B.; Lauria, G.; Smeets, H.J.; Faber, C.G.; Dib-Hajj, S.; Waxman, S.G. Lacosamide inhibition of NaV1.7 channels depends on its interaction with the voltage sensor domain and the channel pore. Front. Pharmacol. 2021, 12, 791740. [Google Scholar] [CrossRef]
- Wang, Y.; Khanna, R. Voltage-gated calcium channels are not affected by the novel anti-epileptic drug lacosamide. Transl. Neurosci. 2011, 2, 13–22. [Google Scholar] [CrossRef]
- Shipley, M.M.; Mangold, C.A.; Szpara, M.L. Differentiation of the SH-SY5Y human neuroblastoma cell line. J. Vis. Exp. 2016, 108, 53193. [Google Scholar] [CrossRef]
- Encinas, M.; Iglesias, M.; Liu, Y.; Wang, H.; Muhaisen, A.; Ceña, V.; Gallego, C.; Comella, J.X. Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. J. Neurochem. 2000, 75, 991–1003. [Google Scholar] [CrossRef]
- Vetter, I.; Mozar, C.A.; Durek, T.; Wingerd, J.S.; Alewood, P.F.; Christie, M.J.; Lewis, R.J. Characterisation of Nav types endogenously expressed in human SH-SY5Y neuroblastoma cells. Biochem. Pharmacol. 2012, 83, 1562–1571. [Google Scholar] [CrossRef]
- Cullen, C.L.; Young, K.M. How does transcranial magnetic stimulation influence glial cells in the central nervous system? Front. Neural Circuits 2016, 10, 26. [Google Scholar] [CrossRef] [PubMed]
- Kantak, S.S.; Fisher, B.E.; Sullivan, K.J.; Winstein, C.J. Effects of different doses of low frequency rTMS on motor corticospinal excitability. J. Neurol. Neurophysiol. 2010, 1, 102. [Google Scholar] [CrossRef]
- Volnova, A.; Tsytsarev, V.; Ganina, O.; Vélez-Crespo, G.E.; Alves, J.M.; Ignashchenkova, A.; Inyushin, M. The anti-epileptic effects of carbenoxolone in vitro and in vivo. Int. J. Mol. Sci. 2022, 23, 663. [Google Scholar] [CrossRef]
- Kim, I.S.; Ganesan, P.; Choi, D.K. Cx43 mediates resistance against MPP+-induced apoptosis in SH-SY5Y neuroblastoma cells via modulating the mitochondrial apoptosis pathway. Int. J. Mol. Sci. 2016, 17, 1819. [Google Scholar] [CrossRef]
- Corvace, F.; Faustmann, T.J.; Faustmann, P.M.; Ismail, F.S. Anti-inflammatory properties of lacosamide in an astrocyte-microglia co-culture model of inflammation. Eur. J. Pharmacol. 2022, 915, 174696. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, Z.; Su, Z.; Wang, X.; Tian, H.; Su, M. Repetitive transcranial magnetic stimulation promotes motor function recovery in mice after spinal cord injury via regulation of the Cx43-autophagy loop. J. Orthop. Surg. Res. 2024, 19, 387. [Google Scholar] [CrossRef]
- Chen, S.; Xu, D.; Fan, L.; Fang, Z.; Wang, X.; Li, M. Roles of N-Methyl-D-Aspartate Receptors (NMDARs) in Epilepsy. Front. Mol. Neurosci. 2022, 14, 797253. [Google Scholar] [CrossRef]
- Krasilnikova, A.P.; Egorova, A.V.; Voronkov, D.N.; Poydasheva, A.G.; Glinkina, V.V.; Sukhorukov, V.S. Cellular and molecular mechanisms underlying transcranial magnetic stimulation: Experimental data for evaluating changes in nervous tissue. Ann. Clin. Exp. Neurol. 2024, 18, 96–109. [Google Scholar] [CrossRef]
- Langton, R.L.; Sharma, S.; Tiarks, G.C.; Bassuk, A.G.; Glykys, J. Lacosamide decreases neonatal seizures without increasing apoptosis. Epilepsia 2022, 63, 3051–3065. [Google Scholar] [CrossRef]
- Gáll, Z.; Orbán-Kis, K.; Szilágyi, T. Differential effects of sodium channel blockers on in vitro induced epileptiform activities. Arch. Pharmacal Res. 2017, 40, 112–121. [Google Scholar] [CrossRef]
- Heuzeroth, H.; Wawra, M.; Fidzinski, P.; Dag, R.; Holtkamp, M. The 4-aminopyridine model of acute seizures in vitro elucidates efficacy of new antiepileptic drugs. Front. Neurosci. 2019, 13, 677. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.M.; Classen, J.; Gerloff, C.; Celnik, P.; Wassermann, E.M.; Hallett, M.; Cohen, L.G. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 1997, 48, 1398–1403. [Google Scholar] [CrossRef] [PubMed]
- D’Arcangelo, G.; Panuccio, G.; Tancredi, V.; Avoli, M. Repetitive low-frequency stimulation reduces epileptiform synchronization in limbic neuronal networks. Neurobiol. Dis. 2005, 19, 119–128. [Google Scholar] [CrossRef]
- Iyer, M.B.; Schleper, N.; Wassermann, E.M. Priming stimulation enhances the depressant effect of low-frequency repetitive transcranial magnetic stimulation. J. Neurosci. 2003, 23, 10867–10872. [Google Scholar] [CrossRef]
- Reis, J.; Wentrup, A.; Hamer, H.M.; Mueller, H.H.; Knake, S.; Tergau, F.; Oertel, W.H.; Rosenow, F. Levetiracetam influences human motor cortex excitability mainly by modulation of ion channel function—A TMS study. Epilepsy Res. 2004, 62, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Lang, N.; Rothkegel, H.; Peckolt, H.; Deuschl, G. Effects of lacosamide and carbamazepine on human motor cortex excitability: A double-blind, placebo-controlled transcranial magnetic stimulation study. Seizure 2013, 22, 726–730. [Google Scholar] [CrossRef] [PubMed]
(A) | |||
Groups | Median | Mean | Std. Deviation |
Control | 66.70 | 62.88 | 22.86 |
TMS | 23.70 | 23.12 | 7.27 |
Lacosamide | 17.11 | 16.82 | 5.81 |
TMS + Lacosamide | 9.15 | 9.84 | 4.73 |
(B) | |||
Group 1/Group 2 | Dunn’s Test Statistic | Unadjusted p-Value | Adjusted p-Value (Using Benjamini–Hochberg) |
Control vs. TMS | 32.47 | <0.001 | <0.001 |
Control vs. Lacosamide | 51.89 | <0.001 | <0.001 |
Control vs. TMS + Lacosamide | 77.17 | <0.001 | <0.001 |
TMS vs. Lacosamide | 19.42 | 0.018 | 0.018 |
TMS vs. TMS + Lacosamide | 44.70 | <0.001 | <0.001 |
Lacosamide vs. TMS + Lacosamide | 25.28 | 0.002 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dardalas, I.; Kosmidis, E.K.; Kimiskidis, V.K.; Lagoudaki, R.; Samaras, T.; Moysiadis, T.; Kouvelas, D.; Pourzitaki, C. The Concomitant Effect of the Antiepileptic Drug Lacosamide and rTMS on an SH-SY5Y Model of Neuronal Excitability. Neurol. Int. 2025, 17, 152. https://doi.org/10.3390/neurolint17100152
Dardalas I, Kosmidis EK, Kimiskidis VK, Lagoudaki R, Samaras T, Moysiadis T, Kouvelas D, Pourzitaki C. The Concomitant Effect of the Antiepileptic Drug Lacosamide and rTMS on an SH-SY5Y Model of Neuronal Excitability. Neurology International. 2025; 17(10):152. https://doi.org/10.3390/neurolint17100152
Chicago/Turabian StyleDardalas, Ioannis, Efstratios K. Kosmidis, Vasilios K. Kimiskidis, Roza Lagoudaki, Theodoros Samaras, Theodoros Moysiadis, Dimitrios Kouvelas, and Chryssa Pourzitaki. 2025. "The Concomitant Effect of the Antiepileptic Drug Lacosamide and rTMS on an SH-SY5Y Model of Neuronal Excitability" Neurology International 17, no. 10: 152. https://doi.org/10.3390/neurolint17100152
APA StyleDardalas, I., Kosmidis, E. K., Kimiskidis, V. K., Lagoudaki, R., Samaras, T., Moysiadis, T., Kouvelas, D., & Pourzitaki, C. (2025). The Concomitant Effect of the Antiepileptic Drug Lacosamide and rTMS on an SH-SY5Y Model of Neuronal Excitability. Neurology International, 17(10), 152. https://doi.org/10.3390/neurolint17100152