Next Article in Journal
Having a Cutting Point - Testing and Development Environment at TU Dortmund University
Previous Article in Journal
Demonstrating Demand Management: How Intelligent EV Charging Can Benefit Everyone
World Electric Vehicle Journal is published by MDPI from Volume 9 issue 1 (2018). Articles in this Issue were published by The World Electric Vehicle Association (WEVA) and its member the European Association for e-Mobility (AVERE), the Electric Drive Transportation Association (EDTA), and the Electric Vehicle Association of Asia Pacific (EVAAP). They are hosted by MDPI on as a courtesy and upon agreement with AVERE.
Open AccessArticle

Motor performance improvement via ArcelorMittal’s iCARe® electrical steel range for automotive applications

ArcelorMittal Global R&D Gent, Technologiepark 935, B-9052 Zwijnaarde, Belgium
(corresp. author) ArcelorMittal Global R&D, Technologiepark 935, B-9052 Zwijnaarde, Belgium
ArcelorMittal Saint-Chély d’Apcher, Rue des Martyrs du Maquis, 48200 Saint-Chély d’Apcher, France
Author to whom correspondence should be addressed.
World Electr. Veh. J. 2015, 7(2), 173-178;
Published: 26 June 2015
PDF [224 KB, uploaded 18 May 2018]


As previously reported [1-3], ArcelorMittal has a specific electrical steel product line for core laminations, which optimises the performance for automotive traction electrical machines. This iCARe® product family consists of Save grades allowing for higher efficiency, Torque grades allowing for higher torque density and Speed grades for high speed rotors. The iCARe® electrical steels now have been developed towards further loss reduction and polarisation increase. This paper shows the improved machine performance achievable by using these new iCARe® grades. Automotive traction machines require high power density, high efficiency and high torque, to maximise the powertrain’s performance and minimise the use of battery power. Permanent magnet synchronous machines (PMSM) are the preferred choice for electric and hybrid vehicles. When searching for cost reduction via eliminating the need for permanent magnets, wound rotor synchronous machines (WRSM) are an alternative. In this paper, a material comparison study is presented for both a PMSM and a WRSM having the same nominal speed and rated mechanical power. The reference case uses M330-35A electrical steel. The impact of switching to either Save or Torque grades of the latest generation is compared numerically: to determine the efficiency of each combination of machine topology and lamination type, the ArcelorMittal loss model is used [4], an extension of Bertotti’s loss model [5]. The impact of each grade is checked by varying the stack height whilst keeping the output power level constant. Hence the bill of materials is affected, reflecting the amount of active materials (laminations, magnets, windings) needed within each machine type, depending on the chosen electrical steel grade. The results show the efficiency benefits when using low loss Save grades and the torque density benefits when using Torque grades. Moreover, the new Torque grades with lower losses present a new potential for further machine performance enhancement: for instance the Torque 27 grade combines outstanding increase of torque density with high efficiency.
Keywords: electric motors & generators; propulsion systems and subsystems; magnetic material; efficiency, torque electric motors & generators; propulsion systems and subsystems; magnetic material; efficiency, torque
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Vandenbossche, L.; Jacobs, S.; Attrazic, E., 3. Motor performance improvement via ArcelorMittal’s iCARe® electrical steel range for automotive applications. World Electr. Veh. J. 2015, 7, 173-178.

Show more citation formats Show less citations formats

Article Metrics

Article Access Statistics



[Return to top]
World Electr. Veh. J. EISSN 2032-6653 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top