# Catenary-Powered Electric Traction Network Modeling: A Data-Driven Analysis for Trolleybus System Simulation

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Bologna Trolleybus System Infrastructure

#### 2.1. Case Study of Feeding Section Marconi Trento–Trieste

#### 2.2. Bus Line 14 of Feeding Section Marconi Trento–Trieste

#### 2.3. Bus Line 15 of Feeding Section Marconi Trento–Trieste

## 3. Modeling of the Vehicles’ Current Absorption

#### 3.1. Modeling of Conventional Trolleybuses

#### 3.2. Modeling of IMC Trolleybuses

- IMC vehicles feature higher gross weight owing to the room dedicated to the battery pack;
- during braking (deceleration), it is assumed that the energy recovered by the electric drive is fully fed into the battery, and hence no regenerative braking current is injected to the OCL;
- a greater absorption of electrical power by the IMC buses is required to guarantee both the energy for traction and the energy for recharging the batteries to be used for the stretches without a contact line;
- the IMC trolleybus absorbs a maximum current of $80\phantom{\rule{3.33333pt}{0ex}}\mathrm{A}$ when it is traveling at a speed of less than $5\phantom{\rule{3.33333pt}{0ex}}\mathrm{km}/\mathrm{h}$, due to the thermal limitations on the contact shoes (current collectors).

#### 3.3. The Inclusion of the Vehicles’ Current Absorption in the Simulation Model

## 4. Data-Based Analysis and Model Reinforcement

#### 4.1. Analysis of the Available Measurements

#### 4.2. Comparison of Measurements and Simulation Results

#### 4.3. Estimation of the Vehicle Weight during the Day

#### 4.4. Improvement of the Traction Diagrams According to Weight Evolution

## 5. Simulation Results and Future Scenarios Prediction

#### 5.1. Comparison of Measurements and Vehicles’ Weight-Based Simulation Results

#### 5.2. Scenario Considering the IMC Trolleybuses

## 6. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- International Energy Agency (IEA). Railway Handbook. Available online: https://www.iea.org/reports/railway-handbook-2017 (accessed on 15 July 2022).
- International Energy Agency (IEA). World Energy Outlook. Available online: https://www.iea.org/reports/world-energy-outlook-2021 (accessed on 15 July 2022).
- Weisbach, M.; Schneider, T.; Maune, D.; Fechtner, H.; Spaeth, U.; Wegener, R.; Soter, S.; Schmuelling, B. Intelligent multi-vehicle dc/dc charging station powered by a trolley bus catenary grid. Energies
**2021**, 14, 8399. [Google Scholar] [CrossRef] - Diab, I.; Saffirio, A.; Mouli, G.R.C.; Tomar, A.S.; Bauer, P. A Complete DC Trolleybus Grid Model With Bilateral Connections, Feeder Cables, and Bus Auxiliaries. IEEE Trans. Intell. Transport. Syst.
**2022**, X, 1–12. [Google Scholar] [CrossRef] - Barbone, R.; Mandrioli, R.; Ricco, M.; Paternost, R.F.; Cirimele, V.; Grandi, G. Novel Multi-Vehicle Motion-Based Model of Trolleybus Grids towards Smarter Urban Mobility. Electronics
**2022**, 11, 915. [Google Scholar] [CrossRef] - Barbone, R.; Mandrioli, R.; Ricco, M.; Paternost, R.F.P.; Lo Franco, F.; Grandi, G. Flexible and Modular Model for Smart Trolleybus Grids. In Proceedings of the 16th International Conference on Compatibility, Power Electronics and Power Engineering (IEEE CPE-POWERENG 2022), Birmingham, UK, 29 June–1 July 2022; pp. 2579–2582. [Google Scholar]
- Jakubowski, A.; Jarzebowicz, L.; Bartłomiejczyk, M.; Skibicki, J.; Judek, S.; Wilk, A.; Płonka, M. Modeling of electrified transportation systems featuring multiple vehicles and complex power supply layout. Energies
**2021**, 14, 8196. [Google Scholar] [CrossRef] - Barbone, R.; Mandrioli, R.; Ricco, M.; Paternost, R.F.P.; Cirimele, V.; Grandi, G. Modelling Trolleybus Networks: A Critical Review. In Proceedings of the 2022 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Sorrento, Italy, 22–24 June 2022. [Google Scholar]
- Meng, M.; Guo, M.; Yuan, Y.; Jiang, L.; Liu, J.; Hu, D.; Cong, H.; Hao, D. DC micro-grid based on DC traction power supply system and electric vehicle batteries charging & discharging system. In Proceedings of the 2014 17th International Conference on Electrical Machines and Systems (ICEMS), Hangzhou, China, 22–25 October 2014; pp. 2579–2582. [Google Scholar] [CrossRef]
- Pouget, J.; Guo, B.; Bossoney, L.; Coppex, J.; Roggo, D.; Ellert, C. Energetic simulation of DC railway micro-grid interconnecting with PV solar panels, EV charger infrastructures and electrical railway network. In Proceedings of the 2020 IEEE Vehicle Power and Propulsion Conference (VPPC), Gijon, Spain, 18 November–16 December 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Rufer, A.; Hotellier, D.; Barrade, P. A supercapacitor-based energy storage substation for voltage compensation in weak transportation networks. IEEE Trans. Power Deliv.
**2004**, 19, 629–636. [Google Scholar] [CrossRef] - Bartlomiejczyk, M.; Mirchevski, S. Reducing of energy consumption in public transport - Results of experimental exploitation of super capacitor energy bank in Gdynia trolleybus system. In Proceedings of the 16th International Power Electronics and Motion Control Conference and Exposition, PEMC 2014, Antalya, Turkey, 21–24 September 2014; pp. 94–101. [Google Scholar] [CrossRef]
- Ovalle, A.; Pouget, J.; Bacha, S.; Gerbaud, L.; Vinot, E.; Sonier, B. Energy storage sizing methodology for mass-transit direct-current wayside support: Application to French railway company case study. Appl. Energy
**2018**, 230, 1673–1684. [Google Scholar] [CrossRef] - Graber, G.; Calderaro, V.; Galdi, V.; Piccolo, A.; Lamedica, R.; Ruvio, A. Techno-economic sizing of auxiliary-battery-based substations in DC railway systems. IEEE Transa. Transport. Electr.
**2018**, 4, 616–625. [Google Scholar] [CrossRef] - Paternost, R.F.P.; Mandrioli, R.; Barbone, R.; Cirimele, V.; Loncarski, J.; Ricco, M. Impact of a Stationary Energy Storage System in a DC Trolleybus Network. In Proceedings of the 2022 IEEE Transportation Electrification Conference & Expo (ITEC), Anaheim, CA, USA, 15–17 June 2022; pp. 1211–1216. [Google Scholar] [CrossRef]
- Paternost, R.F.P.; Mandrioli, R.; Ricco, M.; Barbone, R.; Bonora, G.; Cirimele, V.; Grandi, G. Energy Storage Management in Support of Trolleybus Traction Power Systems. In Proceedings of the 2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Sorrento, Italy, 22–24 June 2022; pp. 1211–1216. [Google Scholar]
- Bartłomiejczyk, M.; Jarzebowicz, L.; Kohout, J. Compensation of Voltage Drops in Trolleybus Supply System Using Battery-Based Buffer Station. Energies
**2022**, 15, 1629. [Google Scholar] [CrossRef] - Bergk, F.; Biemann, K.; Lambrecht, U.; Prof, D.; Pütz, R. Potential of In-Motion Charging Buses for the Electrification of Urban Bus Lines. J. Earth Sci. Geotech. Eng.
**2016**, 6, 347–362. [Google Scholar] - Bartłomiejczyk, M.; Połom, M. Dynamic Charging of Electric Buses as a Way to Reduce Investment Risks of Urban Transport System Electrification. In Proceedings of the TRANSBALTICA XI: Transportation Science and Technology: Proceedings of the International Conference, Vilnius, Lithuania, 2–3 May 2019; pp. 297–308. [Google Scholar]
- Wołek, M.; Szmelter-Jarosz, A.; Koniak, M.; Golejewska, A. Transformation of trolleybus transport in Poland. Does in-motion charging (technology) matter? Sustainability
**2020**, 12, 9744. [Google Scholar] [CrossRef] - Wołek, M.; Wolański, M.; Bartłomiejczyk, M.; Wyszomirski, O.; Grzelec, K.; Hebel, K. Ensuring sustainable development of urban public transport: A case study of the trolleybus system in Gdynia and Sopot (Poland). J. Clean. Prod.
**2021**, 279. [Google Scholar] [CrossRef] - Bartlomiejczyk, M. Practical application of in motion charging: Trolleybuses service on bus lines. In Proceedings of the 2017 18th International Scientific Conference on Electric Power Engineering (EPE), Kouty nad Desnou, Czech Republic, 1–19 May 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Diab, I.; Mouli, G.R.C.; Bauer, P. Toward a Better Estimation of the Charging Corridor Length of In-Motion-Charging Trolleybuses. In Proceedings of the 2022 IEEE Transportation Electrification Conference & Expo (ITEC), Anaheim, CA, USA, 15–17 June 2022; pp. 557–562. [Google Scholar] [CrossRef]
- Weisbach, M.; Spaeth, U.; Schmuelling, B. Energy consumption behavior model for an urban transportation system using multidimensional correlation structures: Applied at the trolley bus system in Solingen (North Rhine-Westphalia, Germany). In Proceedings of the International Conference on Intelligent Transportation Engineering, ICITE 2019, Singapore, 5–7 September 2019; pp. 152–158. [Google Scholar] [CrossRef]
- Weisbach, M.; Spaeth, U.; Ghobadi, M.; Schmuelling, B. Power Demand Prediction of Battery Overhead Line Buses based on a Neural Network Optimization. In Proceedings of the 2020 IEEE Green Technologies Conference(GreenTech), Oklahoma City, OK, USA, 1–3 April 2020; pp. 133–135. [Google Scholar] [CrossRef]
- Weisbach, M.; Herklotz, K.; Fechtner, H.; Spaeth, U.; Gipp, B.; Schmuelling, B. Predicting Power Demand in Urban Transportation Systems using an Evolutionary Neural Network. In Proceedings of the 2022 IEEE Transportation Electrification Conference & Expo (ITEC), Anaheim, CA, USA, 15–17 June 2022; pp. 1231–1235. [Google Scholar] [CrossRef]
- Spaeth, U.; Weisbach, M.; Fechtner, H.; Herklotz, K.; Schmuelling, B.; Troullier, C. Mass detection using piezoresistive pressure sensors to optimize range prediction of full electric buses. In Proceedings of the International Conference on Sensing Technology, ICST, Sydney, NSW, Australia, 2–4 December 2019; pp. 2–7. [Google Scholar] [CrossRef]
- Spaeth, U.; Fechtner, H.; Weisbach, M.; Schmuelling, B. Potential of pressure sensor based mass estimation methods for electric buses. Electronics
**2020**, 9, 711. [Google Scholar] [CrossRef] - Spaeth, U.; Fechtner, H.; Weisbach, M.; Popp, A.; Schmuelling, B. Passenger Weight Detection by Air Suspension Pressure Monitoring for Smart Grid Integration of Electric Buses. In Proceedings of the IEEE Energy Conversion Congress and Exposition, ECCE 2021, Vancouver, BC, Canada, 10–14 October 2021; pp. 674–680. [Google Scholar] [CrossRef]
- EN 50163:2004+A2:2020; Railway Applications—Supply Voltages of Traction Systems. CENELEC: Brussels, Belgium, 2020.
- EN 50119:2009+A1:2013; Railway Applications—Fixed Installations — Electric Traction Overhead Contact Lines. CENELEC: Brussels, Belgium, 2013.
- EN 50119:2020; Railway Application —Fixed Installations — Electric Traction Overhead Contact Lines. CENELEC: Brussels, Belgium, 2020.
- Van Hool. The Exqui. City Design Mettis. Available online: http://exquicity.be/en/ (accessed on 22 June 2022).
- Kiepe Electric Trolleybus Van Hool for Linz Linien-Technical Specifications Motor. Available online: https://www.tsa.at/tsa_referenzen/kiepe-electric-trolleybus-van-hool-for-linz-linien/ (accessed on 22 June 2022).
- Infrastructure for In Motion Charging Trolleybus Systems. Available online: https://cms.uitp.org/wp/wp-content/uploads/2021/07/Knowledge-Brief-IMC.pdf (accessed on 22 June 2022).
- In Motion Charging Innovative Trolleybus. Available online: https://cms.uitp.org/wp/wp-content/uploads/2021/01/Knowledge-Brief-Infrastructure-May-2019-FINAL.pdf (accessed on 22 June 2022).
- EN 50160:2010+A3:2019; Voltage Characteristics of Electricity Supplied by Public Electricity Networks. CENELEC: Brussels, Belgium, 2019.

**Figure 1.**Topology of FS MTT. Green and yellow circles represent the location of feeders and reinforcement feeders, respectively. Dashed lines represent the connection with the TSs. Arrows indicate the trolleybuses’ travel direction.

**Figure 2.**Bus stops of line 14 in FS MTT. Initial and final stops for outward and return journey (black points); intermediate stops for outward journey (blue); intermediate stops for return journey (grey). Arrows indicate the trolleybuses’ travel direction.

**Figure 3.**Bus stops scheme for line 14. Initial and final stops (black points) for outward (top) and return (bottom) journeys; intermediate stops for outward journey (blue); intermediate stops for return journey (grey).

**Figure 4.**Bus stops of line 15 in FS MTT. Initial and final stops for outward and return journey (black points); intermediate stops for outward journey (blue); intermediate stops for return journey (grey); common stop for outward and return journey (yellow). Arrows indicate the trolleybuses’ travel direction.

**Figure 5.**Bus stops scheme for line 15. Initial and final stops (black points) for outward (

**top**) and return (

**bottom**) journeys; intermediate stops for outward journey (blue); intermediate stops for return journey (grey); common stop for outward and return journey (yellow).

**Figure 6.**Traction diagram speed (green traces) and currents (blue traces) of conventional trolleybuses covering the paths of line 14 (upper figures) and line 15 (bottom figures). Outward journeys are on the left side; return journeys on the right side.

**Figure 7.**Traction diagram speed (green traces) and currents (blue traces) of IMC trolleybuses covering the paths of line 14 (upper figures) and line 15 (bottom figures). Outward journeys are on the left side; return journeys on the right side.

**Figure 8.**Voltage (

**left**) and current (

**right**) measurements in TS T-T in an average window of 5 s. The plots cover a 24-h simulation scenario.

**Figure 9.**Voltage (

**left**) and current (

**right**) measurements in TS T-T in an average window of 5 min. The plots cover a 24-h simulation scenario.

**Figure 10.**Voltage (

**left**) and current (

**right**) measurements in TS T-T in an average window of 15 min. The plots cover a 24-h simulation scenario.

**Figure 11.**Measurement (black) and simulations (yellow) of voltage (

**left**) and current (

**right**) in TS T-T in an average window of 5 min. The plots cover a 24-h simulation scenario.

**Figure 12.**Measurement (black) and simulations (yellow) of voltage (

**left**) and current (

**right**) in TS T-T in an average window of 15 min. The plots cover a 24-h simulation scenario.

**Figure 13.**Number of trolleybuses operating in FS MTT in function of the time (5 min averaged). The plot covers a 24-h simulation scenario.

**Figure 14.**Current supplied by the TS T-T divided by the number of vehicles in operation according to the period of the day. The plot covers a 24-h simulation scenario.

**Figure 15.**Estimated weight of the trolleybuses according to the period of the day. The plot covers the period from 04:00 to 24:00.

**Figure 16.**Current of conventional trolleybuses according to the vehicle’s weight covering the outgoing (

**left**) and return (

**right**) journeys of line 14. The weights start at 30 t (upper blue line) and decrease to 20 t (bottom red line) with 2 t steps.

**Figure 17.**Current of conventional trolleybuses according to the vehicle’s weight covering the outgoing (

**left**) and return (

**right**) journeys of line 15. The weights start at 30 t (upper blue line) and decrease to 20 t (bottom red line) with 2 t steps.

**Figure 18.**Current of IMC trolleybuses according to the vehicle’s weight covering the outgoing (

**left**) and return (

**right**) journeys of line 14. The weights start at 30 t (upper blue line) and decrease to 20 t (bottom red line) with 2 t steps.

**Figure 19.**Current of IMC trolleybuses according to the vehicle’s weight covering the outgoing (

**left**) and return (

**right**) journeys of line 15. The weights start at 30 t (upper blue line) and decrease to 20 t (bottom red line) with 2 t steps.

**Figure 20.**Voltage (

**left**) and current (

**right**) in TS T-T in an average window of 5 min. Measurements (black), simulation results with gross weight (yellow), and results of the weight-based simulation (blue). The plots cover a 24-h simulation scenario.

**Figure 21.**Voltage (

**left**) and current (

**right**) in TS T-T in an average window of 15 min. Measurements (black), simulation results with gross weight (yellow), and results of the weight-based simulation (blue). The plots cover a 24-h simulation scenario.

**Figure 22.**Weight-based simulation results of voltage (

**left**) and current (

**right**) in TS M in an average window of 5 min. The plots cover a 24-h simulation scenario.

**Figure 23.**Voltage along the catenary for the four considered scenarios. Voltage maximum (dot-dashed lines) and minimum (dashed lines), mean (upper solid lines), and 95% central inter-percentile range (filled areas above bottom solid lines). Results for the simulations of: 24 h (

**left**), 07:00 to 10:00 (

**right**), and 17:00 to 20:00 (bottom).

**Figure 24.**RMS currents (solid lines) along the catenary and its mean value (dashed lines) for the four considered scenarios. Results for the simulations of: 07:00 to 10:00 (

**left**), and 17:00 to 20:00 (

**right**).

**Figure 25.**Maximum and minimum currents along the catenary (

**left**), the 95% inter-percentile range (

**right**), and maximum RMS currents in each position during the day (bottom) for the four considered scenarios.

**Table 1.**Line 14—Outward journey. Names of the trolleybuses’ stops and traffic light on the final route.

Path Number | Stops Names | Length |
---|---|---|

1–2 | Ugo Bassi–Rizzoli | $550\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$ |

2–3 | Rizzoli–Strada Maggiore | $400\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$ |

3–4 | Strada Maggiore–Torleone | $450\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$ |

4–5 | Torleone–Porta Maggiore | $300\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$ |

5–6 | Porta Maggiore–Traffic light | $350\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$ |

**Table 2.**Line 14—Return journey. Names of the trolleybuses’ stops and traffic light on the initial route.

Path Number | Stops Names | Length |
---|---|---|

6–7 | Traffic light–Porta San Vitale | $150\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$ |

7–8 | Porta San Vitale–San Vitale | $350\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$ |

8–9 | San Vitale–Due Torri | $250\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$ |

9–10 | Due Torri–Rizzoli | $250\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$ |

10–1 | Rizzoli–Ugo Bassi | $500\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$ |

Path Number | Stops Names | Length |
---|---|---|

1–2 | Ugo Bassi–Rizzoli | $450\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$ |

2–3 | Rizzoli–Strada Maggiore | $500\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$ |

3–4 | Strada Maggiore–Torleone | $450\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$ |

4–5 | Torleone–Porta Maggiore | $300\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$ |

5–6 | Porta Maggiore–Albertoni | $350\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$ |

Path Number | Stops Names | Length |
---|---|---|

6–7 | Albertoni–Porta Maggiore | $450\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$ |

7–8 | Porta Maggiore–Porta San Vitale | $350\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$ |

8–9 | Porta San Vitale–Porta San Vitale | $300\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$ |

9–10 | Porta San Vitale–San Vitale | $350\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$ |

10–11 | San Vitale–Due Torri | $250\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$ |

11–12 | Due Torri–Rizzoli | $250\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$ |

12–1 | Rizzoli–Ugo Bassi | $500\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$ |

Description | Parameter |
---|---|

Curb weight | $20\phantom{\rule{3.33333pt}{0ex}}\mathrm{t}$ |

Gross weight | $30\phantom{\rule{3.33333pt}{0ex}}\mathrm{t}$ |

Frontal area | $8.925\phantom{\rule{3.33333pt}{0ex}}{\mathrm{m}}^{2}$ |

Drag coefficient | $0.65$ |

Rolling resistance coefficient | $6.5$ |

Maximum acceleration | $1.2\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}/{\mathrm{s}}^{2}$ |

Motor power | $160\phantom{\rule{3.33333pt}{0ex}}\mathrm{kW}$ |

Description | Parameter |
---|---|

Battery module weight | $75.5\phantom{\rule{3.33333pt}{0ex}}\mathrm{kg}$ |

Nominal capacity | $23\phantom{\rule{3.33333pt}{0ex}}\mathrm{Ah}$ |

Useful capacity (10–90% state of charge) | $18.4\phantom{\rule{3.33333pt}{0ex}}\mathrm{Ah}$ |

Energy content | $15\phantom{\rule{3.33333pt}{0ex}}\mathrm{kWh}$ |

Energy content (10–90% state of charge) | $12\phantom{\rule{3.33333pt}{0ex}}\mathrm{kWh}$ |

Nominal voltage | $652\phantom{\rule{3.33333pt}{0ex}}\mathrm{V}$ |

Measurements | BC | IMC|1 | IMC|2 | IMC|3 | |
---|---|---|---|---|---|

TS T-T | $815\phantom{\rule{3.33333pt}{0ex}}\mathrm{kWh}$ | $758\phantom{\rule{3.33333pt}{0ex}}\mathrm{kWh}$ | $845\phantom{\rule{3.33333pt}{0ex}}\mathrm{kWh}$ | $1075\phantom{\rule{3.33333pt}{0ex}}\mathrm{kWh}$ | $1205\phantom{\rule{3.33333pt}{0ex}}\mathrm{kWh}$ |

TS M | – | $982\phantom{\rule{3.33333pt}{0ex}}\mathrm{kWh}$ | $1080\phantom{\rule{3.33333pt}{0ex}}\mathrm{kWh}$ | $1500\phantom{\rule{3.33333pt}{0ex}}\mathrm{kWh}$ | $1645\phantom{\rule{3.33333pt}{0ex}}\mathrm{kWh}$ |

Total | – | $1740\phantom{\rule{3.33333pt}{0ex}}\mathrm{kWh}$ | $1925\phantom{\rule{3.33333pt}{0ex}}\mathrm{kWh}$ | $2575\phantom{\rule{3.33333pt}{0ex}}\mathrm{kWh}$ | $2850\phantom{\rule{3.33333pt}{0ex}}\mathrm{kWh}$ |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Paternost, R.F.; Mandrioli, R.; Barbone, R.; Ricco, M.; Cirimele, V.; Grandi, G.
Catenary-Powered Electric Traction Network Modeling: A Data-Driven Analysis for Trolleybus System Simulation. *World Electr. Veh. J.* **2022**, *13*, 169.
https://doi.org/10.3390/wevj13090169

**AMA Style**

Paternost RF, Mandrioli R, Barbone R, Ricco M, Cirimele V, Grandi G.
Catenary-Powered Electric Traction Network Modeling: A Data-Driven Analysis for Trolleybus System Simulation. *World Electric Vehicle Journal*. 2022; 13(9):169.
https://doi.org/10.3390/wevj13090169

**Chicago/Turabian Style**

Paternost, Rudolf Francesco, Riccardo Mandrioli, Riccardo Barbone, Mattia Ricco, Vincenzo Cirimele, and Gabriele Grandi.
2022. "Catenary-Powered Electric Traction Network Modeling: A Data-Driven Analysis for Trolleybus System Simulation" *World Electric Vehicle Journal* 13, no. 9: 169.
https://doi.org/10.3390/wevj13090169