# Design and Dynamic Simulation Analysis of a Wheel–Track Composite Chassis Based on RecurDyn

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. System Composition

#### 2.1. Overall Structure Design and Working Principle

#### 2.1.1. Design of Tracked Travel Mechanism

#### 2.1.2. Design of Wheeled Travel Mechanism

#### 2.2. Design of the Triangular Tracked Wheel

#### 2.3. Design of the Wheeled Travel Mechanism

## 3. Theoretical Analysis of Passability

#### 3.1. Theoretical Analysis of Climbing Performance

#### 3.2. Theoretical Analysis of Obstacle Crossing Performance

#### 3.2.1. Theoretical Analysis of the Chassis over the Vertical Obstacle

#### 3.2.2. Theoretical Analysis of the Chassis over a Trench

## 4. Dynamics Simulation Analysis Based on the RecurDyn

#### 4.1. Dynamics Theory of Multibody Systems

#### 4.1.1. Dynamics Analysis of Multibody Systems

#### 4.1.2. Principles of Automatic Modeling

#### 4.1.3. Establishment of the Control Equation

#### 4.2. Establishment of the 3-Dimensional Model

#### 4.3. Constraints of the Model

#### 4.4. Simulation Analysis of Wheel–Track Composite Chassis Dynamics

#### 4.4.1. Dynamics Simulations in Different Terrains

#### 4.4.2. Dynamics Simulation of Different Slope Angles

#### 4.4.3. Dynamics Simulation of Different Vertical Obstacle Heights

#### 4.4.4. Dynamics Simulation of Different Trench Widths

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Qu, J.; Zhong, W.B. Design and obstacle-surmounting performance analysis of wheel-track transformable wheel. J. South China Univ. Technol. (Nat. Sci. Ed.)
**2013**, 41, 119–124. [Google Scholar] - Lin, J.; Goldenberg, A.A. Development of a Terrain Adaptive Tracked Vehicle and Its Derivative-Dual Mode Vehicle. In Proceedings of the 1st WRC Symposium on Advanced Robotics and Automation, Beijing, China, 16 August 2018; pp. 302–307. [Google Scholar]
- Liu, Y.; Xie, X.; Zhou, X.; Wang, L. Summary of research on wheel-track composite chassis. Mod. Manuf. Technol. Equip.
**2019**, 4, 87–90. [Google Scholar] - Luo, Z.R.; Shang, J.Z.; Wei, G.W.; Ren, L. A reconfigurable hybrid wheel-track mobile robot based on Watt II six-bar linkage. Mech. Mach. Theory
**2018**, 128, 16–32. [Google Scholar] [CrossRef] [Green Version] - Wang, S.K.; Meng, X.D.; Shang, H.P. Design of wheel-tracked stair-climbing wheelchair. J. Mech. Transm.
**2013**, 37, 156–159. [Google Scholar] - Li, C.R.; Shi, C.H.; Huang, L.; Li, N. Dynamic simulation analysis of a novel wheel-tracked mobile chassis. J. Mach. Des.
**2016**, 33, 95–99. [Google Scholar] - Bian, H.R.; Zi, X.Y.; Wang, H.T.; Tang, Y.Q.; Zeng, F.Q. Design and experiment of a rescue-search robot based on deformable track. J. Ordnance Equip. Eng.
**2017**, 38, 143–146. [Google Scholar] - Janez, P.; Jure, R.; Sebastjan, S.; Marko, M.; Matjaz, M. All-Terrain Wheelchair: Increasing Personal Mobility with a Powered Wheel-Track Hybrid Wheelchair. IEEE Robot. Autom. Mag.
**2017**, 24, 26–36. [Google Scholar] - Editorial Department of China Journal of Highway and Transport. Review on China’s automotive engineering research progress: 2017. China J. Highw. Transp.
**2017**, 30, 1–197. [Google Scholar] - Kim, Y.G.; Kwak, J.H.; Kim, J.; An, J.; Lee, K.D. Adaptive Driving Mode Control of Mobile Platform with Wheel-Track Hybrid Type for Rough Terrain in the Civil Environment. In Proceedings of the International Conference on Control, Automation and Systems, Gyeonggi-do, Gyeonggi-do, Korea, 27–30 October 2010; pp. 86–90. [Google Scholar]
- Michaud, F.; Letourneau, D.; Arsenault, M.; Bergeron, Y.; Cadrin, R.; Gagnon, F.; Legault, M.A.; Millette, M.; Paré, J.F.; Tremblay, M.C.; et al. Multi-Modal Locomotion Robotic Platform Using Leg-Track-Wheel Articulations. Auton. Robot.
**2005**, 18, 137–156. [Google Scholar] [CrossRef] - Kim, J.H.; Lee, C.G. Variable Transformation Shapes of Single-Tracked Mechanism for A Rescue Robot. In Proceedings of the 2007 IEEE International Conference on Control, Automation and Systems, Seoul, Korea, 17–20 October 2007; pp. 1057–1061. [Google Scholar]
- Sun, Y.Q. Rubber-Tracked Chassis Structure Design and Experimental Simulation; Daqing Petroleum institute: Daqing, China, 2010. [Google Scholar]
- Zhou, H.L.; Huang, X.H.; Zou, S.Y.; Liu, W.M. Research on the traveling device of track combine harvester. Mod. Agric. Equip.
**2006**, 5, 47–49. [Google Scholar] - Lv, K.; Mu, X.H.; Du, F.P.; Guo, H.L.; Zhao, X.D. Review of key design problems of heavy-duty conversion rubber track system. J. Acad. Armored Force Eng.
**2016**, 30, 29–38. [Google Scholar] - Lv, K.; Mu, X.H.; Guo, H.L.; Xue, W.B.; Wang, Z.Y.; Xu, L. Modeling and testing on track perimeter of conversion rubber track assembly. Trans. Chin. Soc. Agric. Mach.
**2016**, 47, 329–340. [Google Scholar] - Ji, Y.C.; Wang, Q.K. Classification and application characteristics of bulldozers’ wheel. J. Chin. Agric. Mech.
**2018**, 39, 22–25. [Google Scholar] - Li, N.; Zhou, J.; Zhang, H.; Cui, Z.K.; Jiao, Z.Y.; Jiang, W. Development status and analysis of triangular rubber track wheel technology. J. Chin. Agric. Mech.
**2019**, 40, 209–219. [Google Scholar] - Yang, X. Virtual Design and Performance Analysis of Run-Flat Inserts; Jilin University: Jilin, China, 2007. [Google Scholar]
- Yang, D.M. Design and Simulation Analysis of a Replaceable Triangle Track Wheel of 50 Type for Military; Harbin Institute of Technology: Harbin, China, 2016. [Google Scholar]
- Chen, J.Q.; Huang, R.Z.; Mo, R.X.; Qiang, H.; Liu, X.; Xu, G.W. Analysis and simulation of obstacle crossing performance of tracked chassis of small hedge trimmer based on Recurdyn. J. Chin. Agric. Mech.
**2020**, 41, 89–98. [Google Scholar] - Zhang, G.H. Study on the Trafficability of Wheeled and Triangle Tracked Multifunctional Skidders. Master’s Thesis, Northeast Forestry University, Harbin, China, 2020. [Google Scholar]
- Wang, F.; Yang, L.; Xie, S.Y.; Ma, Y.; Zhang, J.; Duan, T.Y. Design and research of a triangular track orchard power chassis. J. Agric. Mech. Res.
**2019**, 41, 91–96. [Google Scholar] - Chen, H.Y.; Yuan, Y.N.; Zhang, T.; Yu, H.S. Starting process on hybrid electric vehicle with floating ISG motor. J. Jiangsu Univ. (Nat. Sci. Ed.)
**2010**, 31, 403–407. [Google Scholar] - Wu, P. Research of Modeling and Numerical Solution for Dynamics of Multibody Systems; Sichuan University: Chengdu, China, 2003. [Google Scholar]
- Hu, J.Z.; Huang, L.; Kang, S.H.; Shi, C.H.; Li, N. Structural design and dynamical simulation analysis on wheel-tracked variant wheel. Chin. J. Constr. Mach.
**2015**, 13, 130–134. [Google Scholar] - Jiao, X.J.; Zhang, J.W.; Peng, B.B. Recurdyn Multibody Systems Optimization Simulation Technology, 3rd ed.; Tsinghua University Press: Beijing, China, 2010; pp. 57–58. [Google Scholar]
- Hu, C.B.; Tu, Z.Q.; Yang, X.; Jiang, C.M.; Pan, M. Modeling and Simulation of Triangle Crawler Driving System Based on Recurdyn. J. Ordnance Equip. Eng.
**2020**, 41, 7. [Google Scholar] - Liu, S.; Xie, N.; Zhang, T. Design and simulation of small crawler chassis for mountain areas. J. Mach. Des.
**2020**, 37, 115–122. [Google Scholar]

**Figure 4.**Two stages of the triangular tracked wheel crossing the obstacle. (

**a**) The first stage; (

**b**) The second stage.

**Figure 7.**Three stages of the triangular tracked wheel crossing the trench. (

**a**) The first stage; (

**b**) The second stage; (

**c**) The third stage.

**Figure 11.**The simulation curves of a wheel–track composite chassis in different terrains: (

**a**) tension–time curve; (

**b**) torque–time curve.

**Figure 12.**The simulation curves of a wheel–track composite chassis with different climbing: (

**a**) tension–time curve; (

**b**) torque–time curve.

**Figure 13.**The simulation curves of a wheel–track composite chassis with different vertical obstacle heights: (

**a**) tension–time curve; (

**b**) torque–time curve.

**Figure 14.**The simulation curves of a wheel–track composite chassis with different trench widths: (

**a**) tension–time curve; (

**b**) torque–time curve.

Track Parameters/mm | Abbreviation | Value |
---|---|---|

Track pitch | p | 150 |

Track width | b | 400 |

The axial distance between the driving wheel and the guide wheel | l_{1} | 2300 |

Gauge | B | 1600 |

Track height | H | 970 |

Total width of the chassis | C | 2000 |

Track ground length | L_{0} | 1100 |

Spacing between rear supporting wheel and drive wheel | C_{2} | 350 |

Spacing between front supporting wheel and drive wheel | C_{1} | 300 |

Spacing between two supporting wheels at both ends | l_{0} | 450 |

Spacing between two adjacent supporting wheels | t_{1} | 225 |

The driving wheel radius | r_{1} | 331 |

Number of drive wheel teeth | z | 11 |

The guide wheel radius | r_{2} | 200 |

The supporting wheel radius | r_{3} | 180 |

The tensioning wheel radius | r_{4} | 200 |

Structural Parameters of Wheel Composite Chassis | Unit | Value |
---|---|---|

Whole-vehicle quality | kg | 7000 |

Chassis size | mm × mm × mm | 3700 × 2670 × 2450 |

Tire radius | mm | 495 |

Driving wheel diameter | mm | 662 |

Wheelbase | mm | 2900 |

Track ground length | mm | 1100 |

Track width | mm | 400 |

Constraint Form | Matrix | Movement Body |
---|---|---|

Fixed deputy | Frame | Track support frame |

Fixed deputy | Frame | Tire |

Rotary side | Frame | Driving wheel |

Rotary side | Track support frame | Supporting wheel |

Rotary side | Track support frame | Guide wheel |

Rotary side | Track support frame | Tensioning wheel |

Contact force | Ground | Tire |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Li, Y.; Zang, L.; Shi, T.; Lv, T.; Lin, F.
Design and Dynamic Simulation Analysis of a Wheel–Track Composite Chassis Based on RecurDyn. *World Electr. Veh. J.* **2022**, *13*, 12.
https://doi.org/10.3390/wevj13010012

**AMA Style**

Li Y, Zang L, Shi T, Lv T, Lin F.
Design and Dynamic Simulation Analysis of a Wheel–Track Composite Chassis Based on RecurDyn. *World Electric Vehicle Journal*. 2022; 13(1):12.
https://doi.org/10.3390/wevj13010012

**Chicago/Turabian Style**

Li, Yaowei, Liguo Zang, Tuo Shi, Tian Lv, and Fen Lin.
2022. "Design and Dynamic Simulation Analysis of a Wheel–Track Composite Chassis Based on RecurDyn" *World Electric Vehicle Journal* 13, no. 1: 12.
https://doi.org/10.3390/wevj13010012