# Research on Multiphysics Coupling Relationship for the IPT System in Seawater Environment

^{*}

## Abstract

**:**

## 1. Introduction

## 2. IPT System

## 3. Multiphysics Coupling Model of IPT System

#### 3.1. Electromagnetic Field

#### 3.2. Fluid Field

#### 3.3. Electromagnetic Heating

_{P}represent the material density and volumetric heat capacity that change with temperature, k represents the thermal conductivity, and the heat source Q may be a constant value, such as Joule heating, induction heat and multiphysics, etc.

#### 3.4. Fluid Heat Transfer

## 4. Simulation

## 5. Simulation Results

#### 5.1. Magnetic Field Distribution

#### 5.2. Electric Field Distribution

#### 5.3. Flow Field Distribution

#### 5.4. Electromagnetic Heating and Fluid Heat Transfer

#### 5.5. Finite Element Method

_{k}and E

_{k}, respectively, then the eddy current loss in the solution domain Eddy current loss can be expressed as:

## 6. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Curtin, T.; Bellingham, J.; Catopovic, J.; Webb, D. Autonomous Oceanographic Sampling Networks. Oceanography
**1993**, 6, 86–94. [Google Scholar] [CrossRef] [Green Version] - Duarte, C.; Gonçalves, F.; Silva, M.; Correia, V.; Pessoa, L.M. Experimental Evaluation of Coupling Coils for Underwater Wireless Power Transfer. In Proceedings of the 2019 IEEE Wireless Power Transfer Conference (WPTC), London, UK, 18–21 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 557–560. [Google Scholar]
- Bradley, A.M.; Feezor, M.D.; Singh, H.; Sorrell, F.Y. Power systems for autonomous underwater vehicles. IEEE J. Ocean. Eng.
**2001**, 26, 526–538. [Google Scholar] [CrossRef] - McEwen, R.S.; Hobson, B.W.; McBride, L.; Bellingham, J.G. Docking control system for a 54-cm-diameter (21-in) AUV. IEEE J. Ocean. Eng.
**2008**, 33, 550–562. [Google Scholar] [CrossRef] - Kojiya, T.; Sato, F.; Matsuki, H.; Sato, T. Automatic power supply system to underwater vehicles utilizing non-contacting technology. IEEE
**2004**, 4, 2341–2345. [Google Scholar] - Yoshida, S.; Tanomura, M.; Hama, Y.; Hirose, T.; Suzuki, A.; Matsui, Y.; Sogo, N.; Sato, R. Underwater wireless power transfer for non-fixed unmanned underwater vehicle in the ocean. Auton. Underw. Veh.
**2016**, 5, 177–180. [Google Scholar] - Thrimawithana, D.J.; Madawala, U.K. A Generalized Steady-State Model for Bidirectional IPT Systems. IEEE Trans. Power Electron.
**2013**, 28, 4681–4689. [Google Scholar] [CrossRef] - Hasaba, R.; Okamoto, K.; Kawata, S.; Eguchi, K.; Koyanagi, Y. Magnetic Resonance Wireless Power Transfer Over 10 m with Multiple Coils Immersed in Seawater. IEEE Trans. Microw. Theory Tech.
**2019**, 67, 4505–4513. [Google Scholar] [CrossRef] - Bana, V.; Kerber, M.; Anderson, G.; Rockway, J.D.; Phipps, A. Underwater wireless power transfer for maritime applications. In Proceedings of the 2015 IEEE Wireless Power Transfer Conference (WPTC), Boulder, CO, USA, 13–15 May 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–4. [Google Scholar]
- Zhang, K.; Ma, Y.; Yan, Z.; Di, Z.; Song, B.; Hu, A.P. Eddy Current Loss and Detuning Effect of Seawater on Wireless Power Transfer. IEEE J. Emerg. Sel. Top. Power Electron.
**2020**, 8, 909–917. [Google Scholar] [CrossRef] - Liu, X.; Zhu, J.; Yu, Z.; Luo, J.; Wu, D. Optimization Design of Wireless Charging Magnetic Coupling Coil Based on Finite Element. In Proceedings of the 2019 IEEE 3rd International Conference on Circuits, Systems and Devices (ICCSD), Chengdu, China, 23–25 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 59–64. [Google Scholar]
- Zhou, J.; Li, D.J.; Chen, Y. Frequency selection of an inductive contactless power transmission system for ocean observing. Ocean. Eng.
**2013**, 60, 175–185. [Google Scholar] [CrossRef] - Meesala, V.C.; Hajj, M.R.; Shahab, S. Modeling and identification of electro-elastic nonlinearities in ultrasonic power transfer systems. Nonlinear Dyn. An Int. J. Nonlinear Dyn. Chaos Eng. Syst.
**2020**, 1, 1–5. [Google Scholar] [CrossRef]

Category | Size Parameters |
---|---|

Coil | Round coil inner diameter r = 50 mm, outer diameter R = 200 mm, the number of turns N = 30, wire diameter r_{d} = 4 mm |

Magnetic core | 160 × 30 × 10 mm is evenly distributed along the radius of the coil |

Aluminum plate | 500 × 500 × 6 mm |

Packaging box | Bottom radius of cylinder R_{a} = 520 mm, The height of the cylinder h = 200 mm |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhang, K.; An, Y.
Research on Multiphysics Coupling Relationship for the IPT System in Seawater Environment. *World Electr. Veh. J.* **2021**, *12*, 230.
https://doi.org/10.3390/wevj12040230

**AMA Style**

Zhang K, An Y.
Research on Multiphysics Coupling Relationship for the IPT System in Seawater Environment. *World Electric Vehicle Journal*. 2021; 12(4):230.
https://doi.org/10.3390/wevj12040230

**Chicago/Turabian Style**

Zhang, Kehan, and Yue An.
2021. "Research on Multiphysics Coupling Relationship for the IPT System in Seawater Environment" *World Electric Vehicle Journal* 12, no. 4: 230.
https://doi.org/10.3390/wevj12040230