# Drivability Optimization by Reducing Oscillation of Electric Vehicle Drivetrains

^{*}

## Abstract

**:**

## 1. Introduction

## 2. State of Research

## 3. Test Environment

## 4. Drivability Function

#### 4.1. Reference Filter with Torque Gradient Limitation

#### 4.1.1. Functionality of the Reference Filter

#### 4.1.2. Measurement by Using the Reference Filter

#### 4.2. Anti-Jerk Control

## 5. Prefilter Using Inverse Dynamics

#### 5.1. Prefilter Design

#### 5.2. Measurement by Using the Designed Prefilter

## 6. Prefilter Using Inverse Dynamics and Anti-Jerk Control

#### 6.1. Anti-Jerk Control Design

#### 6.2. Measurement by Using the Designed Prefilter and the Anti-Jerk Control

## 7. Summary and Outlook

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Reif, K. Automobilelektronik; 4. Aufl.; Vieweg + Teubner Verlag: Wiesbaden, Germany, 2012; ISBN 978-3-8348-1498-2. [Google Scholar]
- Burkhardt, M. Fahrwerktechnik: Radschlupf-Regelsysteme; 1 Aufl.; Vogel Verlag: Würzburg, Germany, 1993; ISBN 3-8023-0477-2. [Google Scholar]
- Reif, K. Brakes, Brake Control and Driver Assistance Systems: Function, Regulation and Components; Springer Vieweg GmbH: Wiesbaden, Germany, 2014. [Google Scholar] [CrossRef]
- Ivanov, V.; Savitski, D.; Shyrokau, B. A Survey of Traction Control and Antilock Braking Systems of Full Electric Vehicles with Individually Controlled Electric Motors; IEEE Transactions on Vehicular Technology: Sendai, Japan, 2015; Volume 64. [Google Scholar] [CrossRef]
- Amann, N.; Bocker, J.; Prenner, F. Active damping of drive train oscillations for an electrically driven vehicle. IEEE/ASME Trans. Mechatron.
**2004**, 9. [Google Scholar] [CrossRef] - Götting, G.; De Doncker, R.W. Active drive control of electric vehicles using a modal state observer. In Proceedings of the 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), Aachen, Germany, 20–25 June 2004. [Google Scholar]
- Orus, J.; Theunissen, J.; Meneses, R.; Rodriguez-Fortun, J.-M. Active vibration control for torsional oscillations in powertrains for fully electric vehicles. In F2014-Special Session ‘Vehicle Dynamics Control for Fully Electric Vehicles—Outcomes of the European Project E-VECTOORC; Flanders’ Drive Belgium: Lommel, Belgium, 2014. [Google Scholar]
- Menne, M. Drehschwingungen im Antriebsstrang von Elektrostraßenfahrzeugen–Analyse und aktive Dämpfung; Wissenschaftsverlag Mainz: Mainz, Germany, 2001; ISBN 3-86073-684-1. [Google Scholar]
- Rodríguez, J.-M.; Meneses, R.; Orús, J. Active vibration control for electric vehicle compliant drivetrains. In Proceedings of the IECON 2013—39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013. [Google Scholar] [CrossRef]
- Zhao, S.; Lasson, A.; Wallmark, O.; Leksell, M. Off-Vehicle Evaluation of Active Oscillation Damping Schemes. IEEE J. Emerg. Sel. Top. Power Electron.
**2014**, 2. [Google Scholar] [CrossRef] - Karikomi, T.; Itou, K.; Okubo, T.; Fujimoto, S. Development of the shaking vibration control for electric vehicles. In Proceedings of the 2006 SICE-ICASE International Joint Conference, Busan, Korea, 18–21 October 2006. [Google Scholar] [CrossRef]
- Kawamura, H.; Ito, K.; Karikomi, T.; Kume, T. Highly-responsive acceleration control for the Nissan LEAF electric vehicle. SAE Tech. Pap.
**2011**. [Google Scholar] [CrossRef] - Scamarcio, A.; Gruber, P.; De Pinto, S.; Sorniotti, A. Anti-jerk controllers for automotive applications: A review. Annu. Rev. Control.
**2020**. [Google Scholar] [CrossRef] - Rosenberger, M. Audi Dissertationsreihe. Bd. 89: Regelung Radnaher Elektrischer Einzelradantriebe Während der ABS-Bremsung; Cuvillier Verlag: Göttingen, Germany, 2014; ISBN 978-3-95404-655-3. [Google Scholar]
- Koch, A. Entwicklung eines Hardware-In-The-Loop-Prüfstandes zur Untersuchung der Drehschwingungen und Bremssystemkoordination bei Einzelradantrieben von Elektrofahrzeugen; Verlag: Dr. Hut: München, Germany, 2018; ISBN 978-3-8439-3750-4. [Google Scholar]
- Koch, A.; Schulz, L.; Jakstas, G.; Falkenstein, J. Untersuchung und Optimierung des Einflusses von niedrig auflösenden Rotorlagegebern auf die Fahrbarkeitsfunktionen elektrifizierter Fahrzeugantriebssysteme mittels eines Hardware-in-the-Loop-Prüfstands. In Forschung im Ingenieurwesen; Springer Nature: Heidelberg, Germany, 2020. [Google Scholar] [CrossRef] [Green Version]
- Koch, A.; Jakstas, G.; Falkenstein, J. Elektrohydraulischer Bremsaktuator zur Nachbildung von Fahrzeug-Bremssystemen; antriebstechnik 11/2017; Vereinigte Fachverlage GmbH: Mainz, Germany, 2017; pp. 136–145. [Google Scholar]
- Beckhoff Automation GmbH. EtherCAT System-Dokumentation; Version: 5.1; Beckhoff Automation GmbH.: Verl, Germany, 2016. [Google Scholar]
- Nidec Control Techniques Ltd. User Guide: Unidrive M700/M701/M702; Version: 2.0; Nidec Control Techniques Ltd.: Newtown, UK, 2018. [Google Scholar]
- Jakstas, G.; Schulz, L.; Koch, A.; Falkenstein, J.; Gössner, S. 13. Kolloquium Getriebetechnik: Untersuchung und Optimierung des Anfahrverhaltens bei Elektrifizierten Fahrzeugantriebssystemen Mittels Hardware-In-The-Loop-Prüfstand; Logos Verlag Berlin: Berlin, Germany, 2019; ISBN 978-3-8325-4979-4. [Google Scholar]
- Götting, G. Dynamische Antriebsregelung von Elektrostraßenfahrzeugen unter Berücksichtigung eines Schwingungsfähigen Antriebsstrangs; Shaker Verlag GmbH: Herzogenrath, Germany, 2004; ISBN 978-3-8322-2804-0. [Google Scholar]
- Unbehauen, H. Regelungstechnik 1: Klassische Verfahren zur Analyse und Synthese Linearer kontinuierlicher Regelsysteme, Fuzzy-Regelsysteme; 15. Auflage; Vieweg + Teubner Verlag: Wiesbaden, Germany, 2008; ISBN 978-3-8348-0497-6. [Google Scholar]
- Unbehauen, H.; Ley, F. Das Ingenieurwissen: Regelungs- und Steuerungstechnik; Springer GmbH: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Janschek, K. Systementwurf Mechatronischer Systeme: Methoden–Modelle–Konzepte; Springer GmbH: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Reif, K. Bosch Autoelektrik und Autoelektronik: Bordnetze, Sensoren und Elektronische Systeme; 6. Aufl.; Vieweg + Teubner Verlag: Wiesbaden, Germany; Springer Fachmedien Wiesbaden GmbH: Wiesbaden, Germany, 2011; ISBN 978-3-8348-1274-2. [Google Scholar]
- Berriri, M.; Chevrel, P.; Lefebvre, D. Active damping of automotive powertrain oscillations by a partial torque compensator. Control Eng. Pract.
**2008**, 16. [Google Scholar] [CrossRef] - Grotjahn, M.; Quernheim, L.; Zemke, S. Modelling and identification of car driveline dynamics for anti-jerk controller design. IEEE Int. Conf. Mechatron.
**2006**. [Google Scholar] [CrossRef] - Lunze, J. Regelungstechnik 2: Mehrgrößensysteme, Digitale Regelung; 3. Auflage; Springer GmbH: Berlin/Heidelberg, Germany, 2005; ISBN 3-540-22177-8. [Google Scholar]
- Lunze, J. Regelungstechnik 1: Systemtheoretische Grundlagen, Analyse und Entwurf einschleifiger Regelungen; 11. Auflage; Springer GmbH: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]

**Figure 2.**Generic tire friction-slip curves. 1–glaze ice; 2–snow; 3–wet cobbled roadway; 4–wet worn-out asphalt; 5–dry cobbled roadway; 6–dry asphalt. [4].

**Figure 3.**HiL test bench to reproduce an electric single-wheel drive. (

**a**) Schema of an electric single-wheel drive with gearbox and HiL test bench without gearbox. (

**b**) Structure of the HiL test bench.

**Figure 7.**Torque curves as a result of the setpoint step in the driver′s desired torque without anti-jerk control with a gradient limitation of (

**a**) $1000\mathrm{Nm}/\mathrm{s}$, (

**b**) $2000\mathrm{Nm}/\mathrm{s}$, and (

**c**) $7000\mathrm{Nm}/\mathrm{s}$ while driving off.

**Figure 11.**Torque curves as a result of the setpoint step in the driver′s desired torque with prefilter and without anti-jerk control while driving off.

**Figure 12.**Torque curves as a result of the setpoint step in the driver′s desired torque with prefilter while tip-in.

**Figure 14.**Emulation of a CAN bus network for the signals of the angular velocity of the vehicle wheel hub.

**Figure 15.**Torque curves as a result of the setpoint step in the driver′s desired torque with prefilter and active anti-jerk control while driving off.

**Figure 16.**Torque curves as a result of the setpoint step in the driver′s desired torque with prefilter and active anti-jerk control while tip-in.

$\mathbf{Driver}\prime \mathbf{s}\mathbf{Desired}\mathbf{Torque}{\mathit{M}}_{\mathit{D}\mathit{r}\mathit{D}}$$\left[\mathit{N}\mathit{m}\right]$ | $\mathbf{Gradient}\mathbf{Limitations}\left[\mathit{N}\mathit{m}/\mathit{s}\right]$ | $\mathbf{Rise}\mathbf{Time}{\mathit{t}}_{\mathit{r}}\left[\mathit{m}\mathit{s}\right]$ | $\mathbf{Overshoot}\left[\mathit{\%}\right]$ |
---|---|---|---|

200 | 1000 | 218 | 10.8 |

200 | 2000 | 105 | 18.4 |

200 | 7000 | 64 | 62.5 |

Prefilter | Dynamics Drive Machine | Transfer Function Side Shaft Torque |
---|---|---|

$-42.2218\phantom{\rule{0ex}{0ex}}+35.5903i$ | $-66.6667$ | $-0.5864+55.2178i$ |

$-42.2218\phantom{\rule{0ex}{0ex}}-35.5903i$ | $-0.5864-55.2178i$ |

Prefilter | Transfer Function Side Shaft Torque |
---|---|

$-0.5864\phantom{\rule{0ex}{0ex}}+55.2178i$ | $-2600$ |

$-0.5864\phantom{\rule{0ex}{0ex}}-55.2178i$ | (not shown in Figure 10) |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Koch, A.; Schulz, L.; Jakstas, G.; Falkenstein, J.
Drivability Optimization by Reducing Oscillation of Electric Vehicle Drivetrains. *World Electr. Veh. J.* **2020**, *11*, 68.
https://doi.org/10.3390/wevj11040068

**AMA Style**

Koch A, Schulz L, Jakstas G, Falkenstein J.
Drivability Optimization by Reducing Oscillation of Electric Vehicle Drivetrains. *World Electric Vehicle Journal*. 2020; 11(4):68.
https://doi.org/10.3390/wevj11040068

**Chicago/Turabian Style**

Koch, Andreas, Ludwig Schulz, Gabrielius Jakstas, and Jens Falkenstein.
2020. "Drivability Optimization by Reducing Oscillation of Electric Vehicle Drivetrains" *World Electric Vehicle Journal* 11, no. 4: 68.
https://doi.org/10.3390/wevj11040068