Pulmonary Arterial Hypertension and Cancer: Unveiling Parallels in Epidemiology, Clinical Pathways, and Therapeutic Strategies
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Selection Criteria for Cancer Analogs
2.3. Disease-Level Characteristics for Comparison
2.4. Targeted Literature Review and Data Extraction
2.5. Evaluation of Cancer Analogs Most Similar to PAH
3. Results
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| PAH | Pulmonary arterial hypertension |
| HCRU | Healthcare resource utilization |
| ALK+ | Anaplastic lymphoma kinase-positive |
| PH | Pulmonary hypertension |
| FDA | Food and Drug Administration |
| US | United States |
| ICER | Institute for Clinical and Economic Review |
| NSCLC | Non-small-cell lung cancer |
| SCLC | Small cell lung cancer |
| GIST | Gastrointestinal stromal tumor |
| WDTC | Well-differentiated thyroid cancer |
| EGFR+ | Epidermal growth factor receptor-positive |
| DALYs | Disability-adjusted life years |
| QALYs | Quality-adjusted life years |
| SoC | Standard of care |
| H&N | Head and neck |
References
- Anderson, J.J.; Lau, E.M. Pulmonary hypertension definition, classification, and epidemiology in Asia. JACC Asia 2022, 2, 538–546. [Google Scholar] [CrossRef]
- Oldroyd, S.H.; Manek, G.; Sankari, A.; Bhardwaj, A. Pulmonary Hypertension; StatPearls: St. Petersburg, FL, USA, 2018. [Google Scholar]
- American Lung Association. Available online: https://www.lung.org/lung-health-diseases/lung-disease-lookup/pulmonary-arterial-hypertension/learn-about-pulmonary-arterial-hypertension#:~:text=PAH%20is%20most%20common%20in,each%20year%20in%20the%20U.S (accessed on 22 November 2024).
- Chang, K.Y.; Duval, S.; Badesch, D.B.; Bull, T.M.; Chakinala, M.M.; De Marco, T.; Frantz, R.P.; Hemnes, A.; Mathai, S.C.; Rosenzweig, E.B.; et al. Mortality in pulmonary arterial hypertension in the modern era: Early insights from the pulmonary hypertension association registry. J. Am. Heart Assoc. 2022, 11, e024969. [Google Scholar] [CrossRef]
- Hendriks, P.M.; Staal, D.P.; van de Groep, L.D.; van den Toorn, L.M.; Chandoesing, P.P.; Kauling, R.M.; Mager, H.J.; van den Bosch, A.E.; Post, M.C.; Boomars, K.A. The evolution of survival of pulmonary arterial hypertension over 15 years. Pulm. Circ. 2022, 12, e12137. [Google Scholar] [CrossRef]
- Pullamsetti, S.S.; Nayakanti, S.; Chelladurai, P.; Mamazhakypov, A.; Mansouri, S.; Savai, R.; Seeger, W. Cancer and pulmonary hypertension: Learning lessons and real-life interplay. Glob. Cardiol. Sci. Pract. 2020, 2020, e202010. [Google Scholar] [CrossRef]
- Boucherat, O.; Vitry, G.; Trinh, I.; Paulin, R.; Provencher, S.; Bonnet, S. The cancer theory of pulmonary arterial hypertension. Pulm. Circ. 2017, 7, 285–299. [Google Scholar] [CrossRef]
- Department of Health and Human Services. Funding Opportunity Announcement (FOA): Novel Approaches to Support Therapeutic Development in Ultra-Rare Cancers (U01) Clinical Trial Optional. Available online: https://grants.nih.gov/grants/guide/rfa-files/RFA-FD-23-008.html#_Part_1._Overview (accessed on 22 November 2024).
- Wijeratne, T.D.; Lajkosz, K.; Brogly, S.B.; Lougheed, M.D.; Jiang, L.; Housin, A.; Barber, D.; Johnson, A.; Doliszny, K.M.; Archer, S.L. Increasing incidence and prevalence of WHO groups 1–4 pulmonary hypertension: A Population-Based Cohort Study in Ontario, Canada. Circulation. Cardiovasc. Qual. Outcomes 2018, 11, e003973. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. Rare Diseases at FDA. Available online: https://www.fda.gov/patients/rare-diseases-fda (accessed on 22 November 2024).
- Ruopp, N.F.; Cockrill, B.A. Diagnosis and treatment of pulmonary arterial hypertension: A review. JAMA 2022, 327, 1379–1391. [Google Scholar] [CrossRef]
- Angalakuditi, M.; Edgell, E.; Beardsworth, A.; Buysman, E.; Bancroft, T. Treatment patterns and resource utilization and costs among patients with pulmonary arterial hypertension in the United States. J. Med. Econ. 2010, 13, 393–402. [Google Scholar] [CrossRef]
- Heulitt, M.J.; Ranallo, C. Breathing in America: Disease, Progress, and Hope edited by Dean E. Schraufnagel. Pediatr. Crit. Care Med. 2011, 12, e159. [Google Scholar] [CrossRef]
- Councils, E. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Heart J. 2016, 37, 67–119. [Google Scholar]
- Reis, A.; Santos, M.; Furtado, I.; Cruz, C.; Sa-Couto, P.; Queirós, A.; Almeida, L.; Rocha, N. Disability and its clinical correlates in pulmonary hypertension measured through the World Health Organization Disability Assessment Schedule 2.0: A prospective, observational study. J. Bras. Pneumol. 2019, 45, e20170355. [Google Scholar] [CrossRef]
- Shah, A.J.; Beckmann, T.; Vorla, M.; Kalra, D.K. New drugs and therapies in pulmonary arterial hypertension. Int. J. Mol. Sci. 2023, 24, 5850. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. FDA Label. Available online: https://nctr-crs.fda.gov/fdalabel/ui/search (accessed on 22 November 2024).
- Institute For Clinical and Economic Review. Assessments. Available online: https://icer.org/explore-our-research/assessments/ (accessed on 22 November 2024).
- Sandieson, R. Pathfinding in the research forest: The pearl harvesting method for effective information retrieval. Educ. Train. Dev. Disabil. 2006, 41, 401–409. [Google Scholar] [CrossRef]
- Lubitz, C.C.; Kong, C.Y.; McMahon, P.M.; Daniels, G.H.; Chen, Y.; Economopoulos, K.P.; Gazelle, G.S.; Weinstein, M.C. Annual financial impact of well-differentiated thyroid cancer care in the United States. Cancer 2014, 120, 1345–1352. [Google Scholar] [CrossRef]
- Hoeper, M.M.; Badesch, D.B.; Ghofrani, H.A.; Gibbs, J.S.R.; Gomberg-Maitland, M.; McLaughlin, V.V.; Preston, I.R.; Souza, R.; Waxman, A.B.; Grünig, E.; et al. Phase 3 trial of sotatercept for treatment of pulmonary arterial hypertension. N. Engl. J. Med. 2023, 388, 1478–1490. [Google Scholar] [CrossRef]
- National Cancer Institute, Surveillance Research Program. SEER*Explorer: An interactive Website for SEER Cancer Statistics. Available online: https://seer.cancer.gov/statistics-network/explorer/ (accessed on 22 November 2024).
- Surveillance Epidemiology and End Results Program. Cancer Stat Facts: Thyroid Cancer. Available online: https://seer.cancer.gov/statfacts/html/thyro.html (accessed on 22 November 2024).
- Farber, H.W.; Chakinala, M.M.; Cho, M.; Frantz, R.P.; Frick, A.; Lancaster, L.; Milligan, S.; Oudiz, R.; Panjabi, S.; Tsang, Y.; et al. Characteristics of patients with pulmonary arterial hypertension from an innovative, comprehensive real-world patient data repository. Pulm. Circ. 2023, 13, e12258. [Google Scholar] [CrossRef]
- Farber, H.W.; Miller, D.P.; Poms, A.D.; Badesch, D.B.; Frost, A.E.; Muros-Le Rouzic, E.; Romero, A.J.; Benton, W.W.; Elliott, C.G.; McGoon, M.D.; et al. Five-year outcomes of patients enrolled in the REVEAL Registry. Chest 2015, 148, 1043–1054. [Google Scholar] [CrossRef]
- Deng, Y.; Li, H.; Wang, M.; Li, N.; Tian, T.; Wu, Y.; Xu, P.; Yang, S.; Zhai, Z.; Zhou, L.; et al. Global Burden of Thyroid Cancer From 1990 to 2017. JAMA Netw. Open 2020, 3, e208759. [Google Scholar] [CrossRef]
- Vaduganathan, M.; Mensah, G.A.; Turco, J.V.; Fuster, V.; Roth, G.A. The Global Burden of Cardiovascular Diseases and Risk: A Compass for Future Health. J. Am. Coll. Cardiol. 2022, 80, 2361–2371. [Google Scholar] [CrossRef]
- Hoeper, M.M.; Gibbs, J.S.R. The changing landscape of pulmonary arterial hypertension and implications for patient care. Eur. Respir. Rev. 2014, 23, 450–457. [Google Scholar] [CrossRef]
- Dubroff, J.; Melendres, L.; Lin, Y.; Beene, D.R.; Ketai, L. High geographic prevalence of pulmonary artery hypertension: Associations with ethnicity, drug use, and altitude. Pulm. Circ. 2020, 10, 2045894019894534. [Google Scholar] [CrossRef]
- Tam, S.; Boonsripitayanon, M.; Amit, M.; Fellman, B.M.; Li, Y.; Busaidy, N.L.; Cabanillas, M.E.; Dadu, R.; Sherman, S.; Waguespack, S.G.; et al. Survival in differentiated thyroid cancer: Comparing the AJCC cancer staging seventh and eighth editions. Thyroid. 2018, 28, 1301–1310. [Google Scholar] [CrossRef]
- Humbert, M.; McLaughlin, V.; Gibbs, J.S.R.; Gomberg-Maitland, M.; Hoeper, M.M.; Preston, I.R.; Souza, R.; Waxman, A.; Escribano Subias, P.; Feldman, J.; et al. Sotatercept for the treatment of pulmonary arterial hypertension. N. Engl. J. Med. 2021, 384, 1204–1215. [Google Scholar] [CrossRef] [PubMed]
- McGoon, M.; Miller, D. REVEAL: A contemporary US pulmonary arterial hypertension registry. Eur. Respir. Rev. 2012, 21, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Roman, S.; Lin, R.; Sosa, J.A. Prognosis of medullary thyroid carcinoma: Demographic, clinical, and pathologic predictors of survival in 1252 cases. Cancer Interdiscip. Int. J. Am. Cancer Soc. 2006, 107, 2134–2142. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.; Deng, X.; Guo, B.; Ding, Z.; Fan, Y. Subgroup analysis of steadily increased trends in medullary thyroid carcinoma incidence and mortality in the USA, 2000–2020: A population-based retrospective cohort study. Endocr.-Relat. Cancer 2024, 31, e230319. [Google Scholar] [CrossRef]
- Sahli, Z.T.; Canner, J.K.; Zeiger, M.A.; Mathur, A. Association between age and disease specific mortality in medullary thyroid cancer. Am. J. Surg. 2021, 221, 478–484. [Google Scholar] [CrossRef]
- Lin, H.M.; Pan, X.; Hou, P.; Huang, H.; Wu, Y.; Ren, K.; Jahanzeb, M. Economic burden in patients with ALK+ non-small cell lung cancer, with or without brain metastases, receiving second-line anaplastic lymphoma kinase (ALK) inhibitors. J. Med. Econ. 2020, 23, 894–901. [Google Scholar] [CrossRef]
- Miyazaki, K.; Sato, S.; Kodama, T.; Numata, T.; Endo, T.; Yamamoto, Y.; Shimizu, K.; Yamada, H.; Hayashihara, K.; Okauchi, S.; et al. Clinicopathological features in elderly ALK-rearranged non-small cell lung cancer patients. In Vivo 2020, 34, 2001–2007. [Google Scholar] [CrossRef]
- Mathai, S.C.; Hemnes, A.R.; Manaker, S.; Anguiano, R.H.; Dean, B.B.; Saundankar, V.; Classi, P.; Nelsen, A.C.; Gordon, K.; Ventetuolo, C.E. Identifying patients with pulmonary arterial hypertension using administrative claims algorithms. Ann. Am. Thorac. Soc. 2019, 16, 797–806. [Google Scholar] [CrossRef]
- Ekhlasi, M.; Sheikhi, S.; Majd, Z.K.; Peiravian, F.; Yousefi, N. Cost-effectiveness analysis of macitentan in comparison with bosentan in the treatment of pulmonary arterial hypertension in Iran. Value Health Reg. Issues 2023, 34, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Coyle, K.; Coyle, D.; Blouin, J.; Lee, K.; Jabr, M.F.; Tran, K.; Mielniczuk, L.; Swiston, J.; Innes, M. Cost effectiveness of first-line oral therapies for pulmonary arterial hypertension: A modelling study. Pharmacoeconomics 2016, 34, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Nosrati, M.; Shahmirzadi, N.A.; Afzali, M.; Zaboli, P.; Rouhani, H.; Hamedifar, H.; Hajimiri, M. Cost-utility analysis of Macitentan vs. Bosentan in pulmonary atrial hypertension. J. Fam. Med. Prim. Care 2020, 9, 3634. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. Key Statistics for Gastrointestinal Stromal Tumors. Available online: https://www.cancer.org/cancer/types/gastrointestinal-stromal-tumor/about/key-statistics.html (accessed on 22 November 2024).
- Nilsson, B.; Bümming, P.; Meis-Kindblom, J.M.; Odén, A.; Dortok, A.; Gustavsson, B.; Sablinska, K.; Kindblom, L.G. Gastrointestinal stromal tumors: The incidence, prevalence, clinical course, and prognostication in the preimatinib mesylate era: A population-based study in western Sweden. Cancer 2005, 103, 821–829. [Google Scholar] [CrossRef]
- Ganti, A.K.; Klein, A.B.; Cotarla, I.; Seal, B.; Chou, E. Update of incidence, prevalence, survival, and initial treatment in patients with non–small cell lung cancer in the US. JAMA Oncol. 2021, 7, 1824–1832. [Google Scholar] [CrossRef]
- Facchinetti, F.; Tiseo, M.; Di Maio, M.; Graziano, P.; Bria, E.; Rossi, G.; Novello, S. Tackling ALK in non-small cell lung cancer: The role of novel inhibitors. Transl. Lung Cancer Res. 2016, 5, 301. [Google Scholar] [CrossRef]
- Khan, J.; Ullah, A.; Waheed, A.; Karki, N.R.; Adhikari, N.; Vemavarapu, L.; Belakhlef, S.; Bendjemil, S.M.; Mehdizadeh Seraj, S.; Sidhwa, F.; et al. Gastrointestinal stromal tumors (GIST): A population-based study using the SEER database, including management and recent advances in targeted therapy. Cancers 2022, 14, 3689. [Google Scholar] [CrossRef]
- Sempokuya, T.; Wong, L.L. Ten-year survival and recurrence of hepatocellular cancer. Hepatoma Res. 2019, 5, 38. [Google Scholar] [CrossRef]
- Atlas, S.; Touchette, D.; Beinfeld, M.; McKenna, A.; Joshi, M.; Chapman, R.; Pearson, S.; Rind, D. Nadofaragene Firadenovec and Oportuzumab Monatox for BCG-Unresponsive, Non-Muscle Invasive Bladder Cancer: Effectiveness and Value; Draft Evidence Report; Institute for Clinical and Economic Review: Boston, MA, USA, 2020. [Google Scholar]
- Shimamura, S.S.; Shukuya, T.; Asao, T.; Hayakawa, D.; Kurokawa, K.; Xu, S.; Miura, K.; Mitsuishi, Y.; Tajima, K.; Shibayama, R.; et al. Survival past five years with advanced, EGFR-mutated or ALK-rearranged non-small cell lung cancer—Is there a “tail plateau” in the survival curve of these patients? BMC Cancer 2022, 22, 323. [Google Scholar] [CrossRef]
- Gibson, A.J.; Box, A.; Dean, M.L.; Elegbede, A.A.; Hao, D.; Sangha, R.; Bebb, D.G. Retrospective real-world outcomes for patients with ALK-rearranged lung cancer receiving ALK receptor tyrosine kinase inhibitors. JTO Clin. Res. Rep. 2021, 2, 100157. [Google Scholar] [CrossRef]
- Zhang, C.; Tsang, Y.; He, J.; Panjabi, S. Predicting Risk of 1-Year Hospitalization Among Patients with Pulmonary Arterial Hypertension. Adv. Ther. 2023, 40, 2481–2492. [Google Scholar] [CrossRef] [PubMed]
- Datar, M.; Khanna, R. Inpatient burden of gastrointestinal stromal tumors in the United States. J. Gastrointest. Oncol. 2012, 3, 335. [Google Scholar] [PubMed]
- Vanderpoel, J.; Emond, B.; Ghelerter, I.; Milbers, K.; Lafeuille, M.-H.; Lefebvre, P.; Ellis, L.A. Healthcare Resource Utilization and Costs in Patients with EGFR-Mutated Advanced Non-Small Cell Lung Cancer Receiving First-Line Treatment in the United States: An Insurance Claims-Based Descriptive Analysis. PharmacoEconomics-Open 2023, 7, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Hoeper, M.M.; Pausch, C.; Grünig, E.; Staehler, G.; Huscher, D.; Pittrow, D.; Olsson, K.M.; Vizza, C.D.; Gall, H.; Distler, O.; et al. Temporal trends in pulmonary arterial hypertension: Results from the COMPERA registry. Eur. Respir. J. 2022, 59, 2102024. [Google Scholar] [CrossRef]
- American Cancer Society. Key Statistics for Bladder Cancer. Available online: https://www.cancer.org/cancer/types/bladder-cancer/about/key-statistics.html#:~:text=time%20of%20diagnosis-,How%20many%20people%20get%20bladder%20cancer%3F,men%20and%204%2C550%20in%20women) (accessed on 22 November 2024).
- Paulson, K.G.; Park, S.Y.; Vandeven, N.A.; Lachance, K.; Thomas, H.; Chapuis, A.G.; Harms, K.L.; Thompson, J.A.; Bhatia, S.; Stang, A.; et al. Merkel cell carcinoma: Current US incidence and projected increases based on changing demographics. J. Am. Acad. Dermatol. 2018, 78, 457–463. [Google Scholar] [CrossRef]
- Weatherspoon, D.J.; Chattopadhyay, A.; Boroumand, S.; Garcia, I. Oral cavity and oropharyngeal cancer incidence trends and disparities in the United States: 2000–2010. Cancer Epidemiol. 2015, 39, 497–504. [Google Scholar] [CrossRef]
- Talluri, S.; Besur, S.; Talluri, J. Gender Differences in Hepatocellular Carcinoma in the United States: 434. Off. J. Am. Coll. Gastroenterol. ACG 2012, 107, S182. [Google Scholar] [CrossRef]
- Balci, M.; Glaser, Z.A.; Chang, S.S.; Herrell, S.D.; Barocas, D.A.; Keegan, K.A.; Moses, K.A.; Resnick, M.J.; Smith, J.A.; Penson, D.F.; et al. Differential effect of body mass index by gender on oncological outcomes in patients with renal cell carcinoma. J. Cancer Res. Ther. 2021, 17, 420–425. [Google Scholar] [CrossRef]
- Tian, M.; Ma, W.; Chen, Y.; Yu, Y.; Zhu, D.; Shi, J.; Zhang, Y. Impact of gender on the survival of patients with glioblastoma. Biosci. Rep. 2018, 38, BSR20180752. [Google Scholar] [CrossRef]
- Li, C.; Chen, D.; Yang, H. Trends in Incidence, Survival and Mortality of Gastric Cancer in the United States: A Population-Based Study, 2001–2015. Asian Pac. J. Cancer Prev. 2023, 24, 2011. [Google Scholar] [CrossRef]
- Roh, M.R.; Eliades, P.; Gupta, S.; Grant-Kels, J.M.; Tsao, H. Cutaneous melanoma in women. Int. J. Women’s Dermatol. 2017, 3, S11–S15. [Google Scholar] [CrossRef] [PubMed]
- Navada, S.; Lai, P.; Schwartz, A.; Kalemkerian, G. Temporal trends in small cell lung cancer: Analysis of the national Surveillance, Epidemiology, and End-Results (SEER) database. J. Clin. Oncol. 2006, 24, 7082. [Google Scholar] [CrossRef]
- Veale, D.; Ashcroft, T.; Marsh, C.; Gibson, G.; Harris, A. Epidermal growth factor receptors in non-small cell lung cancer. Br. J. Cancer 1987, 55, 513–516. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.M.; Yin, Y.; Crossland, V.; Wu, Y.; Ou, S.-H.I. EGFR testing patterns and detection of EGFR exon 20 insertions in the United States. JTO Clin. Res. Rep. 2022, 3, 100285. [Google Scholar] [CrossRef]
- Zang, Y.; Li, X.; Cheng, Y.; Qi, F.; Yang, N. An overview of patients with urothelial bladder cancer over the past two decades: A Surveillance, Epidemiology, and End Results (SEER) study. Ann. Transl. Med. 2020, 8, 1587. [Google Scholar] [CrossRef]
- Sridharan, V.; Muralidhar, V.; Margalit, D.N.; Tishler, R.B.; DeCaprio, J.A.; Thakuria, M.; Rabinowits, G.; Schoenfeld, J.D. Merkel cell carcinoma: A population analysis on survival. J. Natl. Compr. Cancer Netw. 2016, 14, 1247–1257. [Google Scholar] [CrossRef]
- Witthayanuwat, S.; Pesee, M.; Supaadirek, C.; Supakalin, N.; Thamronganantasakul, K.; Krusun, S. Survival analysis of glioblastoma multiforme. Asian Pac. J. Cancer Prev. 2018, 19, 2613. [Google Scholar]
- Kwak, E.L.; Bang, Y.-J.; Camidge, D.R.; Shaw, A.T.; Solomon, B.; Maki, R.G.; Ou, S.-H.I.; Dezube, B.J.; Jänne, P.A.; Costa, D.B.; et al. Anaplastic lymphoma kinase inhibition in non–small-cell lung cancer. N. Engl. J. Med. 2010, 363, 1693–1703. [Google Scholar] [CrossRef]
- American Cancer Society. Cancer Facts & Figures 2024. Available online: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2024/2024-cancer-facts-and-figures-acs.pdf (accessed on 22 November 2024).
- Milano, A.F. 20-year comparative survival and mortality of cancer of the stomach by age, sex, race, stage, grade, cohort entry time-period, disease duration & selected ICD-O-3 oncologic phenotypes: A systematic review of 157,258 cases for diagnosis years 1973–2014:(SEER* Stat 8.3.4). J. Insur. Med. 2019, 48, 5–23. [Google Scholar]
- Shen, C.; Wang, C.; He, T.; Cai, Z.; Yin, X.; Yin, Y.; Lu, D.; Zhang, B.; Zhou, Z. Long-term survival among patients with gastrointestinal stromal tumors diagnosed after another malignancy: A SEER population-based study. World J. Surg. Oncol. 2020, 18, 88. [Google Scholar] [CrossRef]
- Yang, J.D.; Altekruse, S.F.; Nguyen, M.H.; Gores, G.J.; Roberts, L.R. Impact of country of birth on age at the time of diagnosis of hepatocellular carcinoma in the United States. Cancer 2017, 123, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.L.; Sima, C.S.; Chaft, J.; Paik, P.K.; Pao, W.; Kris, M.G.; Ladanyi, M.; Riely, G.J. Association of KRAS and EGFR mutations with survival in patients with advanced lung adenocarcinomas. Cancer 2013, 119, 356–362. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute. Merkel Cell Carcinoma Treatment (PDQ®)–Health Professional Version. Available online: https://www.cancer.gov/types/skin/hp/merkel-cell-treatment-pdq (accessed on 22 November 2024).
- Doshi, B.; Athans, S.R.; Woloszynska, A. Biological differences underlying sex and gender disparities in bladder cancer: Current synopsis and future directions. Oncogenesis 2023, 12, 44. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Wen, Z. Survival improvement and prognosis for hepatocellular carcinoma: Analysis of the SEER database. BMC Cancer 2021, 21, 1157. [Google Scholar] [CrossRef]
- Kim, M.; Ladomersky, E.; Mozny, A.; Kocherginsky, M.; O’Shea, K.; Reinstein, Z.Z.; Zhai, L.; Bell, A.; Lauing, K.L.; Bollu, L.; et al. Glioblastoma as an age-related neurological disorder in adults. Neuro-Oncol. Adv. 2021, 3, vdab125. [Google Scholar] [CrossRef]
- Hermansen, C.K.; Donskov, F. Outcomes based on age in patients with metastatic renal cell carcinoma treated with first line targeted therapy or checkpoint immunotherapy: Older patients more prone to toxicity. J. Geriatr. Oncol. 2021, 12, 827–833. [Google Scholar] [CrossRef]
- Wang, S.; Tang, J.; Sun, T.; Zheng, X.; Li, J.; Sun, H.; Zhou, X.; Zhou, C.; Zhang, H.; Cheng, Z.; et al. Survival changes in patients with small cell lung cancer and disparities between different sexes, socioeconomic statuses and ages. Sci. Rep. 2017, 7, 1339. [Google Scholar] [CrossRef]
- Saginala, K.; Barsouk, A.; Aluru, J.S.; Rawla, P.; Padala, S.A.; Barsouk, A. Epidemiology of bladder cancer. Med. Sci. 2020, 8, 15. [Google Scholar] [CrossRef]
- Paulson, K.G.; Gupta, D.; Kim, T.S.; Veatch, J.R.; Byrd, D.R.; Bhatia, S.; Wojcik, K.; Chapuis, A.G.; Thompson, J.A.; Madeleine, M.M.; et al. Age-specific incidence of melanoma in the United States. JAMA Dermatol. 2020, 156, 57–64. [Google Scholar] [CrossRef]
- O’Connor, S.; Ward, J.; Watson, M.; Momin, B.; Richardson, L. Hepatocellular Carcinoma--United States, 2001–2006. MMWR Morb. Mortal. Wkly. Rep. 2010, 59, 517–520. [Google Scholar]
- Howlader, N.; Noone, A.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D. SEER Cancer Statistics Review, 1975–2016; National Cancer Institute: Bethesda, MD, USA, 2019.
- Andrzejewska, M.; Czarny, J.; Derwich, K. Latest advances in the management of pediatric gastrointestinal stromal tumors. Cancers 2022, 14, 4989. [Google Scholar] [CrossRef] [PubMed]
- Chia, P.L.; Mitchell, P.; Dobrovic, A.; John, T. Prevalence and natural history of ALK positive non-small-cell lung cancer and the clinical impact of targeted therapy with ALK inhibitors. Clin. Epidemiol. 2014, 6, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Brazel, D.; Kroening, G.; Nagasaka, M. Non-small cell lung cancer with EGFR or HER2 Exon 20 insertion mutations: Diagnosis and treatment options. BioDrugs 2022, 36, 717–729. [Google Scholar] [CrossRef] [PubMed]
- SEER. Cancer Stat Facts: Stomach Cancer. Available online: https://seer.cancer.gov/statfacts/html/stomach.html (accessed on 22 November 2024).
- Stamatakos, M.; Paraskeva, P.; Stefanaki, C.; Katsaronis, P.; Lazaris, A.; Safioleas, K.; Kontzoglou, K. Medullary thyroid carcinoma: The third most common thyroid cancer reviewed. Oncol. Lett. 2011, 2, 49–53. [Google Scholar] [CrossRef]
- Fitzgerald, T.L.; Dennis, S.; Kachare, S.D.; Vohra, N.A.; Wong, J.H.; Zervos, E.E. Dramatic increase in the incidence and mortality from Merkel cell carcinoma in the United States. Am. Surg. 2015, 81, 802–806. [Google Scholar] [CrossRef]
- Massarweh, N.N.; El-Serag, H.B. Epidemiology of hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Cancer Control 2017, 24, 1073274817729245. [Google Scholar] [CrossRef]
- American Cancer Society. Thyroid Cancer Survival Rates, by Type and Stage. Available online: https://www.cancer.org/cancer/types/thyroid-cancer/detection-diagnosis-staging/survival-rates.html (accessed on 22 November 2024).
- Jim, M.A.; Pinheiro, P.S.; Carreira, H.; Espey, D.K.; Wiggins, C.L.; Weir, H.K. Stomach cancer survival in the United States by race and stage (2001–2009): Findings from the CONCORD-2 study. Cancer 2017, 123, 4994–5013. [Google Scholar] [CrossRef]
- Rao, A.; Wiggins, C.; Lauer, R.C. Survival outcomes for advanced kidney cancer patients in the era of targeted therapies. Ann. Transl. Med. 2018, 6, 165. [Google Scholar] [CrossRef]
- Greten, T.; Papendorf, F.; Bleck, J.; Kirchhoff, T.; Wohlberedt, T.; Kubicka, S.; Klempnauer, J.; Galanski, M.; Manns, M. Survival rate in patients with hepatocellular carcinoma: A retrospective analysis of 389 patients. Br. J. Cancer 2005, 92, 1862–1868. [Google Scholar] [CrossRef]
- Marshall, A.; Bayes, H.; Bardgett, J.; Wedderburn, S.; Kerr, K.; Currie, G. Survival from malignant mesothelioma: Where are we now? J. R. Coll. Physicians Edinb. 2015, 45, 123–126. [Google Scholar] [CrossRef]
- Enninga, E.A.L.; Moser, J.C.; Weaver, A.L.; Markovic, S.N.; Brewer, J.D.; Leontovich, A.A.; Hieken, T.J.; Shuster, L.; Kottschade, L.A.; Olariu, A.; et al. Survival of cutaneous melanoma based on sex, age, and stage in the United States, 1992–2011. Cancer Med. 2017, 6, 2203–2212. [Google Scholar] [CrossRef] [PubMed]
- Yaprak, G.; Tataroglu, D.; Dogan, B.; Pekyurek, M. Prognostic factors for survival in patients with gastric cancer: Single-centre experience. N. Clin. Istanb. 2020, 7, 146–152. [Google Scholar]
- Amiri, M.; Heshmatollah, S.; Esmaeilnasab, N.; Khoubi, J.; Ghaderi, E.; Roshani, D. Survival rate of patients with bladder cancer and its related factors in Kurdistan Province (2013–2018): A population-based study. BMC Urol. 2020, 20, 195. [Google Scholar] [CrossRef] [PubMed]
- EORTC. EORTC—Quality of Life|Questionnaires. Available online: https://qol.eortc.org/questionnaires/ (accessed on 22 November 2024).
- Zhang, F.-F.; Ye, L.; Yin, N.; Xiong, F.; Zhao, C.-H.; Zhu, Y.-B. Evaluating health-related quality of life in gastric cancer patients in Suzhou, China. Ann. Palliat. Med. 2021, 10, 8024–8033. [Google Scholar] [CrossRef]
- Freemantle, N.; Mollon, P.; Meyer, T.; Cheng, A.-L.; El-Khoueiry, A.B.; Kelley, R.K.; Baron, A.D.; Benzaghou, F.; Mangeshkar, M.; Abou-Alfa, G.K. Quality of life assessment of cabozantinib in patients with advanced hepatocellular carcinoma in the CELESTIAL trial. Eur. J. Cancer 2022, 168, 91–98. [Google Scholar] [CrossRef]
- Fukuda, N.; Tanizawa, Y.; Nakamura, K.; Okada, Y.; Segall, G.; Kiiskinen, U.; Fasnacht, N.; Sanderson, I.; Rider, A.; Lewis, K. Real-world clinical profile, treatment patterns and patient-reported outcomes for thyroid cancer in Japan. Future Oncol. 2023, 19, 1125–1137. [Google Scholar] [CrossRef]
- Molife, C.; Winfree, K.B.; Bailey, H.; D’yachkova, Y.; Forshaw, C.; Kim, S.; Taipale, K.-L.; Puri, T. Patient Characteristics, Testing and Treatment Patterns, and Outcomes in EGFR-Mutated Advanced Non-Small Cell Lung Cancer: A Multinational, Real-World Study. Adv. Ther. 2023, 40, 3135–3168. [Google Scholar] [CrossRef]
- Lisy, K.; Lai-Kwon, J.; Ward, A.; Sandhu, S.; Kasparian, N.A.; Winstanley, J.; Boyle, F.; Gyorki, D.; Lacey, K.; Bishop, J.; et al. Patient-reported outcomes in melanoma survivors at 1, 3 and 5 years post-diagnosis: A population-based cross-sectional study. Qual. Life Res. 2020, 29, 2021–2027. [Google Scholar] [CrossRef]
- Sprave, T.; Gkika, E.; Verma, V.; Grosu, A.-L.; Stoian, R. Patient reported outcomes based on EQ-5D-5L questionnaires in head and neck cancer patients: A real-world study. BMC Cancer 2022, 22, 1236. [Google Scholar] [CrossRef]
- Mason, S.J.; Downing, A.; Wright, P.; Hounsome, L.; Bottomley, S.E.; Corner, J.; Richards, M.; Catto, J.W.; Glaser, A.W. Health-related quality of life after treatment for bladder cancer in England. Br. J. Cancer 2018, 118, 1518–1528. [Google Scholar] [CrossRef]
- Schöffski, P.; George, S.; Heinrich, M.C.; Zalcberg, J.R.; Bauer, S.; Gelderblom, H.; Serrano, C.; Jones, R.L.; Attia, S.; D’Amato, G.; et al. Patient-reported outcomes in individuals with advanced gastrointestinal stromal tumor treated with ripretinib in the fourth-line setting: Analysis from the phase 3 INVICTUS trial. BMC Cancer 2022, 22, 1302. [Google Scholar] [CrossRef]
- Palmer, J.D.; Chavez, G.; Furnback, W.; Chuang, P.-Y.; Wang, B.; Proescholdt, C.; Tang, C.-H. Health-related quality of life for patients receiving tumor treating fields for glioblastoma. Front. Oncol. 2021, 11, 772261. [Google Scholar] [CrossRef]
- De Groot, S.; Redekop, W.; Versteegh, M.; Sleijfer, S.; Oosterwijk, E.; Kiemeney, L.; Uyl-de Groot, C. Health-related quality of life and its determinants in patients with metastatic renal cell carcinoma. Qual. Life Res. 2018, 27, 115–124. [Google Scholar] [CrossRef]
- Presley, C.J.; Arrato, N.A.; Janse, S.; Shields, P.G.; Carbone, D.P.; Wong, M.L.; Han, L.; Gill, T.M.; Allore, H.G.; Andersen, B.L. Functional disability among older versus younger adults with advanced non–small-cell lung cancer. JCO Oncol. Pract. 2021, 17, e848–e858. [Google Scholar] [CrossRef] [PubMed]
- Pei, R.; Shi, Y.; Lv, S.; Dai, T.; Zhang, F.; Liu, S.; Wu, B. Nivolumab vs pembrolizumab for treatment of US patients with platinum-refractory recurrent or metastatic head and neck squamous cell carcinoma: A network meta-analysis and cost-effectiveness analysis. JAMA Netw. Open 2021, 4, e218065. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Tan, C.; Yi, L.; Wan, X.; Peng, L.; Li, J.; Luo, X.; Zeng, X. Cost-effectiveness analysis of pembrolizumab plus chemotherapy as first-line therapy for extensive-stage small-cell lung cancer. PLoS ONE 2021, 16, e0258605. [Google Scholar] [CrossRef]
- Su, D.; Wu, B.; Shi, L. Cost-effectiveness of atezolizumab plus bevacizumab vs sorafenib as first-line treatment of unresectable hepatocellular carcinoma. JAMA Netw. Open 2021, 4, e210037. [Google Scholar] [CrossRef] [PubMed]
- Carlson, J.; Canestaro, W.; Ravelo, A.; Wong, W. The cost-effectiveness of alectinib in anaplastic lymphoma kinase-positive (ALK+) advanced NSCLC previously treated with crizotinib. J. Med. Econ. 2017, 20, 671–677. [Google Scholar] [CrossRef]
- Yang, L.; Cao, X.; Li, N.; Zheng, B.; Liu, M.; Cai, H. Cost-effectiveness analysis of nivolumab plus ipilimumab versus chemotherapy as the first-line treatment for unresectable malignant pleural mesothelioma. Ther. Adv. Med. Oncol. 2022, 14, 17588359221116604. [Google Scholar] [CrossRef]
- Institute for Clinical and Economic Review. Treatment Options for Advanced Non-Small Cell Lung Cancer: Effectiveness, Value and Value Based Price Benchmarks; Institute for Clinical and Economic Review: Boston, MA, USA, 2016. [Google Scholar]
- Guzauskas, G.F.; Pollom, E.L.; Stieber, V.W.; Wang, B.C.; Garrison, L.P., Jr. Tumor treating fields and maintenance temozolomide for newly-diagnosed glioblastoma: A cost-effectiveness study. J. Med. Econ. 2019, 22, 1006–1013. [Google Scholar] [CrossRef]
- Wang, S.J.; Fuller, C.D.; Choi, M.; Thomas, C.R., Jr. A cost-effectiveness analysis of adjuvant chemoradiotherapy for resected gastric cancer. Gastrointest. Cancer Res. 2008, 2, 57. [Google Scholar] [PubMed]
- Tappenden, P.; Carroll, C.; Hamilton, J.; Kaltenthaler, E.; Wong, R.; Wadsley, J.; Moss, L.; Balasubramanian, S. Cabozantinib and vandetanib for unresectable locally advanced or metastatic medullary thyroid cancer: A systematic review and economic model. Health Technol. Assess. 2019, 23, 1. [Google Scholar] [CrossRef] [PubMed]
- Ten Ham, R.M.; Rohaan, M.W.; Jedema, I.; Kessels, R.; Stegeman, W.; Scheepmaker, W.; Nuijen, B.; Nijenhuis, C.; Lindenberg, M.; Borch, T.H.; et al. Cost-effectiveness of treating advanced melanoma with tumor-infiltrating lymphocytes based on an international randomized phase 3 clinical trial. J. Immunother. Cancer 2024, 12, e008372. [Google Scholar] [CrossRef] [PubMed]
- Yoo, M.; Nelson, R.E.; Cutshall, Z.; Dougherty, M.; Kohli, M. Cost-Effectiveness Analysis of Six Immunotherapy-Based Regimens and Sunitinib in Metastatic Renal Cell Carcinoma: A Public Payer Perspective. JCO Oncol. Pract. 2023, 19, e449–e456. [Google Scholar] [CrossRef]
- Sanon, M.; Taylor, D.C.; Parthan, A.; Coombs, J.; Paolantonio, M.; Sasane, M. Cost-effectiveness of 3-years of adjuvant imatinib in gastrointestinal stromal tumors (GIST) in the United States. J. Med. Econ. 2013, 16, 150–159. [Google Scholar] [CrossRef]
- Zhu, W.; Liu, J.; Li, Y.; Shi, Z.; Wei, S. Global, regional, and national trends in mesothelioma burden from 1990 to 2019 and the predictions for the next two decades. SSM-Popul. Health 2023, 23, 101441. [Google Scholar] [CrossRef]
- Siotos, C.; Grunvald, M.W.; Damoulakis, G.; Becerra, A.Z.; O’Donoghue, C.M.; Dorafshar, A.H.; Shenaq, D.S. Trends in skin melanoma burden: Findings from the Global Burden of Disease Study. Eplasty 2022, 22, e9. [Google Scholar]
- Safiri, S.; Kolahi, A.-A.; Naghavi, M. Global, regional and national burden of bladder cancer and its attributable risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease study 2019. BMJ Glob. Health 2021, 6, e004128. [Google Scholar] [CrossRef]
- Song, Y.; Liu, X.; Cheng, W.; Li, H.; Zhang, D. The global, regional and national burden of stomach cancer and its attributable risk factors from 1990 to 2019. Sci. Rep. 2022, 12, 11542. [Google Scholar] [CrossRef]
- Akinyemiju, T.; Abera, S.; Ahmed, M.; Alam, N.; Alemayohu, M.A.; Allen, C.; Al-Raddadi, R.; Alvis-Guzman, N.; Amoako, Y.; Artaman, A.; et al. The Burden of Primary Liver Cancer and Underlying Etiologies From 1990 to 2015 at the Global, Regional, and National Level: Results from the Global Burden of Disease Study 2015. JAMA Oncol. 2017, 3, 1683–1691. [Google Scholar] [CrossRef]
- Norden, A.D.; Korytowsky, B.; You, M.; Kim Le, T.; Dastani, H.; Bobiak, S.; Singh, P. A real-world claims analysis of costs and patterns of care in treated patients with glioblastoma multiforme in the United States. J. Manag. Care Spec. Pharm. 2019, 25, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.; Zanotti, G.; Kim, R.; Krulewicz, S.; Leith, A.; Bailey, A.; Liu, F.X.; Kearney, M. Real-world symptoms, disease burden, resource use and quality of life in US patients with advanced renal cell cancer. Future Oncol. 2021, 17, 2169–2182. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Gautam, S.; Hu, N.; Adeboyeje, G.; Kachroo, S. Clinical effectiveness outcomes and healthcare resource utilization of patients diagnosed with small-cell lung cancer. Future Oncol. 2021, 17, 443–453. [Google Scholar] [CrossRef] [PubMed]
- van Boemmel-Wegmann, S.; Brown, J.D.; Diaby, V.; Huo, J.; Silver, N.; Park, H. Health care utilization and costs associated with systemic first-line metastatic melanoma therapies in the United States. JCO Oncol. Pract. 2022, 18, e163–e174. [Google Scholar] [CrossRef]
- Steuten, L.; Garmo, V.; Phatak, H.; Sullivan, S.D.; Nghiem, P.; Ramsey, S.D. Treatment patterns, overall survival, and total healthcare costs of advanced Merkel cell carcinoma in the USA. Appl. Health Econ. Health Policy 2019, 17, 733–740. [Google Scholar] [CrossRef]
- Abraham, P.; Kish, J.K.; Korytowsky, B.; Radtchenko, J.; Singh, P.; Shaw, J.; Feinberg, B. Real-world treatment patterns, cost of care and effectiveness of therapies for patients with squamous cell carcinoma of head and neck pre and post approval of immuno-oncology agents. J. Med. Econ. 2020, 23, 125–131. [Google Scholar] [CrossRef]
- Gianoukakis, A.G.; Flores, N.M.; Pelletier, C.L.; Forsythe, A.; Wolfe, G.R.; Taylor, M.H. Treatment patterns, health state, and health care resource utilization of patients with radioactive iodine refractory differentiated thyroid cancer. Cancer Manag. Res. 2016, 8, 67–76. [Google Scholar] [CrossRef]
- Nguyen, M.H.; Ozbay, A.B.; Liou, I.; Meyer, N.; Gordon, S.C.; Dusheiko, G.; Lim, J.K. Healthcare resource utilization and costs by disease severity in an insured national sample of US patients with chronic hepatitis B. J. Hepatol. 2019, 70, 24–32. [Google Scholar] [CrossRef]
- Danese, M.D.; Daumont, M.; Nwokeji, E.; Gleeson, M.; Penrod, J.R.; Lubeck, D. Treatment patterns and outcomes in older patients with advanced malignant pleural mesothelioma: Analyses of Surveillance, Epidemiology, and End Results-Medicare data. Cancer Rep. 2022, 5, e1568. [Google Scholar] [CrossRef]
- Niegisch, G.; Grimm, M.-O.; Hardtstock, F.; Krieger, J.; Starry, A.; Osowski, U.; Deiters, B.; Maywald, U.; Wilke, T.; Kearney, M. Healthcare resource utilization and associated costs in patients with metastatic urothelial carcinoma: A real-world analysis using German claims data. J. Med. Econ. 2024, 27, 531–542. [Google Scholar] [CrossRef]
- Pullamsetti, S.S.; Savai, R.; Seeger, W.; Goncharova, E.A. Translational advances in the field of pulmonary hypertension. From cancer biology to new pulmonary arterial hypertension therapeutics. Targeting cell growth and proliferation signaling hubs. Am. J. Respir. Crit. Care Med. 2017, 195, 425–437. [Google Scholar] [CrossRef]
- Guignabert, C.; Tu, L.; Le Hiress, M.; Ricard, N.; Sattler, C.; Seferian, A.; Huertas, A.; Humbert, M.; Montani, D. Pathogenesis of pulmonary arterial hypertension: Lessons from cancer. Eur. Respir. Rev. 2013, 22, 543–551. [Google Scholar] [CrossRef]
- Rai, P.R.; Cool, C.D.; King, J.A.; Stevens, T.; Burns, N.; Winn, R.A.; Kasper, M.; Voelkel, N.F. The cancer paradigm of severe pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2008, 178, 558–564. [Google Scholar] [CrossRef]
- Nikolic, I.; Yu, P.B. The role of bone marrow–derived cells in pulmonary arterial hypertension. What lies beneath? Am. J. Respir. Crit. Care Med. 2016, 193, 822–824. [Google Scholar] [CrossRef]
- National Breast Cancer Foundation. Breast Cancer Awareness. Available online: https://www.nationalbreastcancer.org/breast-cancer-awareness-month/ (accessed on 22 November 2024).
- IMDB. Movies About Cancer. Available online: https://www.imdb.com/list/ls004695995/ (accessed on 22 November 2024).
- Stand Up to Cancer. SU2C Show. Available online: https://standuptocancer.org/what-we-do/su2c-show/ (accessed on 22 November 2024).
- American Cancer Society. NFL’s Crucial Catch. Available online: https://crucialcatch.cancer.org/ (accessed on 22 November 2024).
- American Cancer Society. Patient Navigation in Cancer Care. Available online: https://www.cancer.org/cancer/patient-navigation.html (accessed on 22 November 2024).
- American Cancer Society. Our History. Available online: https://www.cancer.org/about-us/who-we-are/our-history.html (accessed on 22 November 2024).
- Humbert, M.; Coghlan, J.G.; Khanna, D. Early detection and management of pulmonary arterial hypertension. Eur. Respir. Rev. 2012, 21, 306–312. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services. Viral Hepatitis 2021–2022 Progress Report. Available online: https://www.hhs.gov/sites/default/files/2021-2022-progress-report-viral-hepatitis-national-strategic-plan.pdf (accessed on 22 November 2024).


| Dimension | Disease-Level Characteristic | Disease-Level Metric | Definition of Data Values |
|---|---|---|---|
| Epidemiological | Sex | Prevalence of females | Percentage (%) of female patients. |
| Age | Mean age | Mean age of prevalent population. | |
| Median age | Median age of prevalent population. | ||
| Age at diagnosis | Mean age at diagnosis | Mean age of incident population. | |
| Median age at diagnosis | Median age of incident population. | ||
| Aged < 18 years at diagnosis | Percentage (%) of incident population aged < 18 years. | ||
| Aged 65+ years at diagnosis | Percentage (%) of incident population aged > 65 years. | ||
| Clinical | Prevalence/Incidence | Prevalence rate | US prevalence measures as number of cases per 100,000 population, reported as a percentage (%). |
| Annual incidence rate | US annual incidence measures as the number of newly diagnosed patients with the analog disease per 100,000 people and reported as a percentage (%). | ||
| Survival/Mortality | 10-year median survival rate | 10-year median survival rate, reported as a percentage (%). If 10-year median survival was unavailable, 5-year or 1-year median survival was considered. | |
| Annual mortality rate | Annual mortality rate, reported as a percentage (%). | ||
| Median time from diagnosis to death | Median time from diagnosis to death, reported in months. | ||
| Functional status | Functional status scale | Binary indicator: value = 1, if there is a functional status scale or holistic staging framework for the disease; value = 0, if otherwise. | |
| Mobility problem | Binary indicator: value = 1 if mobility problems are a prominent sequela of the disease; value = 0 otherwise. | ||
| Quality of life | Quality-adjusted life years (QALYs) | Average total lifetime QALYs, which quantifies the health effect under standard of care (SoC) treatment. | |
| Disability-adjusted life years (DALYs) | Average number of DALYs, defined as the number of years of “healthy” life lost to the disease. | ||
| Therapeutic Landscape | Unique products | Unique products available | Number of unique products (based on active moiety, irrespective of mode of delivery) indicated for the disease on the US market. |
| Generics/Biosimilars | Number of generic/biosimilar products available | Number of unique products (based on active moiety, irrespective of mode of delivery) with at least one generic/biosimilar product on the US market. | |
| Healthcare Resource Utilization | Hospitalization | Annual hospitalization rate | Percentage (%) of patients with the disease who have at least one all-cause hospitalization in a given year. |
| Comparison Dimension | Disease-Level Characteristic | Disease-Level Metric | PAH Similarity Rank Under Disease-Level Metric | ||
|---|---|---|---|---|---|
| 1 (Most Similar to PAH) | 2 | 3 | |||
| Epidemiological | Sex | Prevalence of females | Well-differentiated thyroid cancer | Non-small-cell lung cancer (NSCLC), EGFR+ | Medullary thyroid cancer |
| Age | Mean age | Well-differentiated thyroid cancer | Glioblastoma | Non-small-cell lung cancer (NSCLC), ALK+ | |
| Median age | Gastrointestinal stromal tumor (GIST) | Non-small-cell lung cancer (NSCLC), ALK+ | Glioblastoma | ||
| Age at Diagnosis | Mean age at diagnosis | Medullary thyroid cancer | Non-small-cell lung cancer (NSCLC), ALK+ | Well-differentiated thyroid cancer | |
| Median age at diagnosis | Medullary thyroid cancer | Well-differentiated thyroid cancer | Gastrointestinal stromal tumor (GIST) | ||
| Aged 65+ years at diagnosis | Well-differentiated thyroid cancer | Medullary thyroid cancer | Hepatocellular carcinoma | ||
| Aged <18 years at diagnosis | Medullary thyroid cancer | Gastrointestinal stromal tumor (GIST) | Well-differentiated thyroid cancer | ||
| Clinical | Prevalence/ Incidence | Prevalence rate | Non-small-cell lung cancer (NSCLC), ALK+ | Small cell lung cancer | Glioblastoma |
| Annual incidence rate | Gastrointestinal stromal tumor (GIST) | Pleural mesothelioma | Merkel cell carcinoma | ||
| Survival/ Mortality | 10-year median survival rate | Hepatocellular carcinoma | Gastric carcinoma | Merkel cell carcinoma | |
| Annual mortality rate | Gastrointestinal stromal tumor (GIST) | Urothelial carcinoma | Melanoma (Skin) | ||
| Median time from diagnosis to death | Urothelial carcinoma | Non-small-cell lung cancer (NSCLC), ALK+ | Gastric carcinoma | ||
| Quality of Life | QALYs under SoC | Renal cell carcinoma | Urothelial carcinoma | Melanoma (Skin) | |
| DALYs under SoC | Well-differentiated thyroid cancer | Pleural mesothelioma | Melanoma (Skin) | ||
| Therapeutic Landscape | Unique Products | Number of unique products available | Non-small-cell lung cancer (NSCLC), ALK+ | Hepatocellular carcinoma | Urothelial carcinoma |
| Generics/ Biosimilars | Number of generic/biosimilar products available | Renal cell carcinoma | Non-small-cell lung cancer (NSCLC), EGFR+ | Gastric carcinoma | |
| Healthcare Resource Utilization | Hospitalization | Annual hospitalization rate | Gastrointestinal stromal tumor (GIST) | Merkel cell carcinoma | Squamous cell carcinoma of head and neck (H&N) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Published by MDPI on behalf of the Market Access Society. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
EI-Kersh, K.; Zawadzki, N.; Coyle, C.; Zhang, S.; Dalal, D.; Watzker, A.; Lautsch, D.; Shafrin, J. Pulmonary Arterial Hypertension and Cancer: Unveiling Parallels in Epidemiology, Clinical Pathways, and Therapeutic Strategies. J. Mark. Access Health Policy 2026, 14, 9. https://doi.org/10.3390/jmahp14010009
EI-Kersh K, Zawadzki N, Coyle C, Zhang S, Dalal D, Watzker A, Lautsch D, Shafrin J. Pulmonary Arterial Hypertension and Cancer: Unveiling Parallels in Epidemiology, Clinical Pathways, and Therapeutic Strategies. Journal of Market Access & Health Policy. 2026; 14(1):9. https://doi.org/10.3390/jmahp14010009
Chicago/Turabian StyleEI-Kersh, Karim, Nadine Zawadzki, Catelyn Coyle, Shurui Zhang, Dhruv Dalal, Anna Watzker, Dominik Lautsch, and Jason Shafrin. 2026. "Pulmonary Arterial Hypertension and Cancer: Unveiling Parallels in Epidemiology, Clinical Pathways, and Therapeutic Strategies" Journal of Market Access & Health Policy 14, no. 1: 9. https://doi.org/10.3390/jmahp14010009
APA StyleEI-Kersh, K., Zawadzki, N., Coyle, C., Zhang, S., Dalal, D., Watzker, A., Lautsch, D., & Shafrin, J. (2026). Pulmonary Arterial Hypertension and Cancer: Unveiling Parallels in Epidemiology, Clinical Pathways, and Therapeutic Strategies. Journal of Market Access & Health Policy, 14(1), 9. https://doi.org/10.3390/jmahp14010009

