Balancing Costs and Clinical Outcomes: A Cost-Effectiveness Study of PICC Types Across Chinese Healthcare Settings
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Sample Population
2.2. Evaluation Points
2.3. Cost Evaluation Measures
2.4. Currency Rate and Conversion
2.5. Cost-Effectiveness Analysis
2.6. Sample Size Calculation
2.7. Statistical Analysis
3. Results
3.1. Cost Analysis
3.2. Decision Tree Model
3.3. Cost-Effectiveness Analysis
3.3.1. Cost-Effectiveness Analysis in Class 3A Hospital Setting
3.3.2. Cost-Effectiveness Analysis in Community Hospital Setting
4. Discussion
4.1. Implications for Practice and Policy
4.2. Future Research Directions
5. Limitation of the Study
- Use of QALYs: The quality-adjusted life years (QALYs) applied in this study were derived from previous hematology-related research measuring general treatment impacts on patient quality of life. However, this approach did not specifically isolate catheter-associated quality-of-life variations, nor did it incorporate patient-reported outcomes (PROs) related to catheter function, discomfort, or complication burden. As a result, potential differences in patient experience between catheter types may not be fully captured. Future research should include direct collection of catheter-specific quality-of-life data, catheter-specific PROs and utility weights to evaluate catheter impacts more accurately.
- Economic evaluation methods: Traditional economic evaluation methodologies may not fully capture the value of interventions primarily to enhance patient quality of life without significantly altering disease progression. Innovative economic evaluation theories and analytical tools are necessary to assess the true economic value of supportive medical technologies adequately.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CLABSI | Central line-associated bloodstream infection |
QALYs | Quality-adjusted life years |
ICER | Three letter acronym |
CEA | Cost-Effectiveness Analysis |
PICC | Peripherally inserted central catheter |
References
- Caris, M.G.; de Jonge, N.A.; Punt, H.J.; Salet, D.M.; de Jong, V.M.T.; Lissenberg-Witte, B.I.; Zweegman, S.; Vandenbroucke-Grauls, C.M.J.E.; van Agtmael, M.A.; Janssen, J.J.W.M. Indwelling time of peripherally inserted central catheters and incidence of bloodstream infections in haematology patients: A cohort study. Antimicrob. Resist. Infect. Control 2020, 11, 37. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Zhu, N.; Li, Y.; Fu, J.; Liu, J. Comparison of peripherally inserted central catheters (PICCs) versus totally implantable venous-access ports in pediatric oncology patients, a single center study. Sci. Rep. 2022, 12, 3510. [Google Scholar] [CrossRef]
- Novikov, A.; Lam, M.Y.; Mermel, L.A.; Casey, A.L.; Elliott, T.S.; Nightingale, P. Impact of catheter antimicrobial coating on species-specific risk of catheter colonization: A meta-analysis. Antimicrob. Resist. Infect. Control 2012, 1, 40. [Google Scholar] [CrossRef]
- Chong, H.Y.; Lai, N.M.; Apisarnthanarak, A.; Chaiyakunapruk, N. Comparative Efficacy of Antimicrobial Central Venous Catheters in Reducing Catheter-Related Bloodstream Infections in Adults: Abridged Cochrane Systematic Review and Network Meta-Analysis. Clin. Infect. Dis. 2017, 64 (Suppl. S2), S131–S140. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, K.; Zenz, S.; Jüttner, B.; Ruschulte, H.; Kuse, E.; Heine, J.; Piepenbrock, S.; Ganser, A.; Karthaus, M. Reduction of catheter-related infections in neutropenic patients: A prospective controlled randomized trial using a chlorhexidine and silver sulfadiazine-impregnated central venous catheter. Ann. Hematol. 2005, 84, 258–262. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, R.; Brown, M.; Rainford, N.; Donohue, C.; Fraser, C.; Dorling, J.; Gray, J.; McGuire, W.; Gamble, C.; Sinha, A.K.; et al. Antimicrobial-impregnated central venous catheters for prevention of neonatal bloodstream infection (PREVAIL): An open-label, parallel-group, pragmatic, randomised controlled trial. Lancet Child. Adolesc. Health 2019, 3, 381–390. [Google Scholar] [CrossRef]
- Storey, S.; Brown, J.; Foley, A.; Newkirk, E.; Powers, J.; Barger, J.; Paige, K. A comparative evaluation of antimicrobial coated versus nonantimicrobial coated peripherally inserted central catheters on associated outcomes: A randomized controlled trial. Am. J. Infect. Control 2016, 44, 636–641. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xu, J.; Yuan, B.; Ma, X.; Fang, H.; Meng, Q. Containing medical expenditure: Lessons from reform of Beijing public hospitals. BMJ 2019, 365, l2369. [Google Scholar] [CrossRef]
- Yang, S.; Lu, J.; Zeng, J.; Wang, L.; Li, Y. Prevalence and Risk Factors of Work-Related Musculoskeletal Disorders Among Intensive Care Unit Nurses in China. Workplace Health Saf. 2019, 67, 275–287. [Google Scholar] [CrossRef]
- Chen, J.; Lin, Z.; Li, L.-A.; Li, J.; Wang, Y.; Pan, Y.; Yang, J.; Xu, C.; Zeng, X.; Xie, X.; et al. Ten years of China’s new healthcare reform: A longitudinal study on changes in health resources. BMC Public Health 2021, 21, 2272. [Google Scholar] [CrossRef]
- The Lancet Public Health. China’s health reform: 10 years on. Lancet Public Health 2019, 4, e431. [Google Scholar] [CrossRef]
- Ardura, M.I.D.; Bibart, M.J.M.; Mayer, L.C.B.; Guinipero, T.; Stanek, J.; Olshefski, R.S.; Auletta, J.J. Impact of a Best Practice Prevention Bundle on Central Line-associated Bloodstream Infection (CLABSI) Rates and Outcomes in Pediatric Hematology, Oncology, and Hematopoietic Cell Transplantation Patients in Inpatient and Ambulatory Settings. J. Pediatr. Hematol. Oncol. 2021, 43, E64–E72. [Google Scholar] [CrossRef]
- Marschall, J.; Mermel, L.A.; Fakih, M.; Hadaway, L.; Kallen, A.; O’gRady, N.P.; Pettis, A.M.; Rupp, M.E.; Sandora, T.; Maragakis, L.L.; et al. Strategies to Prevent Central Line-Associated Bloodstream Infections in Acute Care Hospitals: 2014 Update. Infect. Control Hosp. Epidemiol. 2014, 35, 753–771. [Google Scholar] [CrossRef]
- Böll, B.; Schalk, E.; Buchheidt, D.; Hasenkamp, J.; Kiehl, M.; Kiderlen, T.R.; Kochanek, M.; Koldehoff, M.; Kostrewa, P.; Claßen, A.Y.; et al. Central venous catheter–related infections in hematology and oncology: 2020 updated guidelines on diagnosis, management, and prevention by the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO). Ann. Hematol. 2021, 100, 239–259. [Google Scholar] [CrossRef]
- Lee, K.H.; Cho, N.H.; Jeong, S.J.; Na Kim, M.; Han, S.H.; Song, Y.G. Effect of Central Line Bundle Compliance on Central Line-Associated Bloodstream Infections. Yonsei Med. J. 2018, 59, 376–382. [Google Scholar] [CrossRef] [PubMed]
- O’grady, N.P.; Alexander, M.; Burns, L.A.; Dellinger, E.P.; Garland, J.; Heard, S.O.; Lipsett, P.A.; Masur, H.; Mermel, L.A.; Pearson, M.L.; et al. Guidelines for the Prevention of Intravascular Catheter-Related Infections. Clin. Infect. Dis. 2011, 52, e162–e193. Available online: https://www.cdc.gov/infectioncontrol/guidelines/bsi/c-i-dressings/index.html (accessed on 24 December 2022). [CrossRef] [PubMed]
- Kato, Y.; Hagihara, M.; Kurumiya, A.; Takahashi, T.; Sakata, M.; Shibata, Y.; Kato, H.; Shiota, A.; Watanabe, H.; Asai, N.; et al. Impact of mucosal barrier injury laboratory-confirmed bloodstream infection (MBI-LCBI) on central line-associated bloodstream infections (CLABSIs) in department of hematology at single university hospital in Japan. J. Infect. Chemother. 2018, 24, 31–35. [Google Scholar] [CrossRef] [PubMed]
- CDC; Ncezid; DHQP. Bloodstream Infection Event (Central Line-Associated Bloodstream Infection and Non-central Line Associated Bloodstream Infection); CDC: Atlanta, GA, USA, 2024. [Google Scholar]
- Xie, F.; Zhou, T.; Humphries, B.; Neumann, P.J. Do Quality-Adjusted Life-Years Discriminate Against the Elderly? An Empirical Analysis of Published Cost-Effectiveness Analyses. Value Health 2024, 27, 706–712. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.D.; Do, L.A.; Synnott, P.G.; Lavelle, T.A.; Prosser, L.A.; Wong, J.B.; Neumann, P.J. Developing Criteria for Health Economic Quality Evaluation Tool. Value Health 2023, 26, 1225–1234. [Google Scholar] [CrossRef]
- Guliyeva, A. Measuring quality of life: A system of indicators. Econ. Political Stud. 2022, 10, 476–491. [Google Scholar] [CrossRef]
- Burckhardt, C.S.; Anderson, K.L. The Quality of Life Scale (QOLS): Reliability, Validity, and Utilization. Health Qual. Life Outcomes 2003, 1, 60. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhou, Y.; Huang, N.; Lu, Z.; Zhang, X. Peripherally inserted central catheter versus totally implanted venous port for delivering medium- to long-term chemotherapy: A cost-effectiveness analysis based on propensity score matching. J. Vasc. Access 2022, 23, 365–374. [Google Scholar] [CrossRef]
- Gupta, N.; Verma, R.; Dhiman, R.K.; Rajsekhar, K.; Prinja, S. Cost-Effectiveness Analysis and Decision Modelling: A Tutorial for Clinicians. J. Clin. Exp. Hepatol. 2020, 10, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Kuntz, K.; Sainfort, F.; Butler, M.; Taylor, B.; Kulasingam, S.; Gregory, S.; Mann, E.; Anderson, J.M.; Kane, R.L. Overview of Decision Models Used in Research. Available online: https://www.ncbi.nlm.nih.gov/books/NBK127474/ (accessed on 18 June 2023).
- Briggs, A.H. Statistical Issues in Economic Evaluations. Encycl. Health Econ. 2014, 352–361. [Google Scholar] [CrossRef]
- Neumann, P.J.; Kim, D.D.; Trikalinos, T.A.; Sculpher, M.J.; Salomon, J.A.; Prosser, L.A.; Owens, D.K.; Meltzer, D.O.; Kuntz, K.M.; Krahn, M.; et al. Future Directions for Cost-effectiveness Analyses in Health and Medicine. Med. Decis. Mak. 2018, 38, 767–777. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, H.; Niu, M.; Zhu, X.; Cai, J.; Wang, X. Health-related quality of life before and after hematopoietic stem cell transplant: Evidence from a survey in Suzhou, China. Hematology 2018, 23, 626–632. [Google Scholar] [CrossRef]
- Choong, S.H.C.; Poon, M.M.; Soh, T.G.; Lieow, J.; Tan, L.K.; Koh, L.P.; Chng, W.-J.; Lee, Y.M.; Lee, J.S.X.; Ramos, D.G.; et al. Use of Peripherally Inserted Central Catheter (PICC) for the Infusion of Peripheral Blood Stem Cell Products Is Safe and Effective. Blood 2020, 136 (Suppl. S1), 41–42. [Google Scholar] [CrossRef]
- Comas, M.; Domingo, L.; Jansana, A.M.; Lafuente, E.M.; Civit, A.M.; García-Pérez, L.; de la Vega, C.M.L.; Cots, F.; Sala, M.; Castells, X. Cost-effectiveness Analysis of Peripherally Inserted Central Catheters Versus Central Venous Catheters for in-Hospital Parenteral Nutrition. J. Patient Saf. 2022, 18, E1109–E1115. [Google Scholar] [CrossRef]
- Godino, C.; Scotti, A.; Marengo, A.; Battini, I.; Brambilla, P.; Stucchi, S.; Slavich, M.; Salerno, A.; Fragasso, G.; Margonato, A. Effectiveness and cost-efficacy of diuretics home administration via peripherally inserted central venous catheter in patients with end-stage heart failure. Int. J. Cardiol. 2022, 365, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Health Economic Evaluation: Important Principles and Methodology. Available online: https://onlinelibrary.wiley.com/doi/epdf/10.1002/lary.23943?saml_referrer (accessed on 8 January 2023).
- Buetti, N.; Marschall, J.; Drees, M.; Fakih, M.G.; Hadaway, L.; Maragakis, L.L.; Monsees, E.; Novosad, S.; O’gRady, N.P.; Rupp, M.E.; et al. Strategies to prevent central line-associated bloodstream infections in acute-care hospitals: 2022 Update. Infect. Control Hosp. Epidemiol. 2022, 43, 553–569. [Google Scholar] [CrossRef]
- Wang, H.; Tong, H.; Liu, H.; Wang, Y.; Wang, R.; Gao, H.; Yu, P.; Lv, Y.; Chen, S.; Wang, G.; et al. Effectiveness of antimicrobial-coated central venous catheters for preventing catheter-related blood-stream infections with the implementation of bundles: A systematic review and network meta-analysis. Ann. Intensive Care 2018, 8, 71. [Google Scholar] [CrossRef] [PubMed]
Observation Item | Antimicrobial-Coated PICC (n = 113) n (%) | Standard PICC (n = 111) n (%) | Total (n = 224) n (%) | p-Value a | |
---|---|---|---|---|---|
Gender | 0.513 | ||||
Male | 71 (62.83%) | 65 (58.56%) | 136 (60.71%) | ||
Female | 42 (37.17%) | 46 (41.44%) | 88 (39.29%) | ||
Age b | 41.36 (12.98) | 43.34 (14.38) | 42.34 (13.70) | 0.280 | |
BMI b | 22.97 (3.21) | 24.03 (3.40) | 23.50 (3.34) | 0.020 | |
APTT b | 31.13 (3.77) | 30.58 (3.41) | 30.86 (3.60) | 0.251 | |
INR b | 1.05 (0.10) | 1.06 (0.13) | 1.06 (0.11) | 0.852 | |
Catheter information | |||||
The 1st puncture success | 0.304 | ||||
1st puncture success | 112 (99.12%) | 108 (97.30%) | 220 (98.05%) | ||
No 1st puncture success | 1 (0.88%) | 3 (2.70%) | 4 (1.95%) | ||
Puncture arm | 0.605 | ||||
Left arm | 42 (37.17%) | 45 (40.54%) | 87 (38.84%) | ||
Right arm | 71 (62.83%) | 66 (59.46%) | 137 (61.16%) | ||
Catheter size | 0.834 | ||||
4.0–4.5 French | 55 (48.67%) | 52 (47.27%) | 107 (47.98%) | ||
5.0–5.5 French | 58 (51.33%) | 58 (52.73%) | 116 (52.02%) | ||
Catheter lumen | 0.894 | ||||
Single lumen | 56 (49.56%) | 56 (50.45%) | 112 (50.00%) | ||
Double lumen | 57 (50.44%) | 55 (49.55%) | 112 (50.00%) | ||
Indwell Period (Days) b | 62.81 (±27.98) | 69.04 (±26.65) | 65.89 (±27.44) | 0.089 | |
Catheter-related complications | |||||
CLABSI | 0.076 | ||||
Non-CLABSI | 112 (100.00%) | 105 (97.22%) | 217 (98.65%) | ||
CLABSI | 0 (0.00%) | 3 (2.65%) | 3 (1.32%) | ||
Unknown Fever | 0.449 | ||||
No | 95 (84.82%) | 85 (80.95%) | 180 (82.95%) | ||
Yes | 17 (15.18%) | 20 (19.05%) | 32 (17.05%) | ||
Other local complications | 0.449 | ||||
Non complications | 95 (84.82%) | 85 (80.95%) | 180 (82.95%) | ||
Catheter-related complications | 17 (15.18%) | 20 (19.05%) | 37 (17.05%) |
Model Input | Base-Case Value | Source | |
---|---|---|---|
Cost | |||
Price of Standard PICC (CNY/piece) | 2100.00 | Hospital data | |
Estimated Price of Antimicrobial PICC (CNY/piece) | 2300.00 | Estimated data | |
Catheter maintenance (CNY/per patient) in 90 days | |||
In Class 3A hospital | 2100.11 | Hospital data | |
In community hospital | 1200 | Calculated | |
Catheter insertion/replacement (CNY/per patient) | 364.25 | Hospital data | |
CLABSI Diagnosis (CNY/per time) | 1332.77 | Hospital data | |
CLABSI Treatment (CNY/per time) | 87,147.08 | Hospital data | |
Hospitalization per day in Beijing Class 3A hospital (CNY/per bed per day) | 200.00 | Hospital data | |
QALY of pre-treatment | 0.65 | Liang Y, Wang H et al., 2018 [28] | |
QALY of treatment | 0.90 | Liang Y, Wang H et al., 2018 [28] | |
Length of stay, day | |||
Patient with CLABSI | 20.6 | Hospital data | |
Patient without CLABSI | 11.2 | Hospital data |
Expenses Based on Different Situations (In 90 Days) | Antimicrobial-Coated PICCs (n = 112) | Standard PICCs (n = 108) | ICER | p-Value | ||
---|---|---|---|---|---|---|
Costs | Probability | Costs | Probability | (Antimicrobial vs. Standard) | ||
Total expense in Class 3A Hospital | 62,817.79 | 100.00% | 102,861.57 | 100.00% | (4,004,378.00) | 0.001 |
Puncture unsuccess | 17,328.50 | 0.98% | 18,928.50 | 2.91% | ||
CLABSI | 314,204.50 | 0.00% | 444,404.50 | 2.91% | ||
Unknown fever | 314,742.50 | 16.67% | 444,819.29 | 18.45% | ||
Other local catheter-related complications | 30,964.25 | 13.72% | 14,374.87 | 2.91% | ||
Complications-free | 8664.25 | 68.63% | 9464.25 | 72.81% | ||
Total expense in Community Hospital | 61,235.43 | 100.00% | 100,561.69 | 100.00% | (3,932,626.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Market Access Society. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Zare, H.; Yan, X.; Chiu, H.-C.; Castillo, R. Balancing Costs and Clinical Outcomes: A Cost-Effectiveness Study of PICC Types Across Chinese Healthcare Settings. J. Mark. Access Health Policy 2025, 13, 49. https://doi.org/10.3390/jmahp13040049
Xu J, Zare H, Yan X, Chiu H-C, Castillo R. Balancing Costs and Clinical Outcomes: A Cost-Effectiveness Study of PICC Types Across Chinese Healthcare Settings. Journal of Market Access & Health Policy. 2025; 13(4):49. https://doi.org/10.3390/jmahp13040049
Chicago/Turabian StyleXu, Jia, Hossein Zare, Xia Yan, Herng-Chia Chiu, and Renan Castillo. 2025. "Balancing Costs and Clinical Outcomes: A Cost-Effectiveness Study of PICC Types Across Chinese Healthcare Settings" Journal of Market Access & Health Policy 13, no. 4: 49. https://doi.org/10.3390/jmahp13040049
APA StyleXu, J., Zare, H., Yan, X., Chiu, H.-C., & Castillo, R. (2025). Balancing Costs and Clinical Outcomes: A Cost-Effectiveness Study of PICC Types Across Chinese Healthcare Settings. Journal of Market Access & Health Policy, 13(4), 49. https://doi.org/10.3390/jmahp13040049