Effects of Primary Healthcare Quality and Effectiveness on Hospitalization Indicators in Brazil
Abstract
:1. Introduction
- Trends in the occurrence and frequency of hospitalizations, and length of stay presented declines in recent decades following the consolidation of advances in supply of healthcare through the SUS;
- Higher primary healthcare quality and effectiveness is linked to reductions in the occurrence and frequency of hospitalizations, and length of stay, whilst increasing the perception of quality of hospital care;
- Higher perception of primary healthcare quality and effectiveness is associated with lower inequalities in hospitalizations, inpatient days, and perception of quality of hospital care.
2. Materials and Methods
2.1. Study Design
2.2. Datasets
2.3. Variables
- Dependent variables:
- ○
- Occurrence of hospitalization last year (binary: no or yes);
- ○
- High frequency of hospitalization (binary: ≤3 times or >3 times during last year), considering mean readmissions among Brazilian adults in previous study at population level [31];
- ○
- High length of stay (binary: ≤7 inpatient days or >7 inpatient days during last year), considering mean length of stay among Brazilian adults in previous study at the population level [31];
- ○
- Perception of a good quality of hospital care (binary: no or yes).
- Independent variables:
- ○
- Self-assessed health status (binary: less than good or good);
- ○
- Mobility limitations (binary: no or yes);
- ○
- Multimorbidity (binary: no or yes);
- ○
- Type of hospital (binary: public or private);
- ○
- Source of financing for hospitalization (three categorical variables referring to health insurance, out-of-pocket, and SUS: no or yes);
- ○
- Dentist visit last year (binary: no or yes);
- ○
- Use of primary healthcare in the last two weeks (binary: no or yes);
- ○
- Perception of primary healthcare quality (binary: less than good, and good);
- ○
- Primary healthcare effectiveness (continuous: proportion of days dedicated to solve health issues during the last two weeks).
- Control variables:
- ○
- Area (binary: rural or urban);
- ○
- State (27 categorical variables referring to 26 states and the federal capital: no or yes);
- ○
- Year of the survey (five categorical variables referring to year of the PNAD and PNS surveys).
- Moderating variables:
- ○
- Sex (binary: male or female);
- ○
- Age (continuous: years);
- ○
- Skin color/ethnicity (five categorical variables referring to black, brown, indigenous, white or yellow: no or yes);
- ○
- Educational attainment (continuous: years of education);
- ○
- Occupational status (binary: employed or unemployed);
- ○
- Household size (discrete: individuals in the household);
- ○
- Household income per capita in adult equivalents (continuous: international currency $ in 2022 purchase power parity, PPP);
- ○
- Health insurance ownership (binary: no or yes).
2.4. Statistical Analyses
2.5. Ethical Considerations
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Popkin, B.M.; Adair, L.S.; Ng, S.W. Global nutrition transition and the pandemic of obesity in developing countries. Nutr. Rev. 2012, 70, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Cavagnero, E.; Almeida, G.; Seely, E.S.; Marinho, F. Setting the context for universal health coverage reforms in Latin America and the Caribbean. In Toward Universal Health Coverage and Equity in Latin America and the Caribbean: Evidence from Selected Countries; Dmytraczenko, T., Almeida, G., Eds.; World Bank: Washington, DC, USA, 2015; pp. 19–51. [Google Scholar]
- Trindade, L.A.I.; Pereira, J.L.; Leite, J.M.R.S.; Rogero, M.M.; Fisberg, R.M.; Sarti, F.M. Lifestyle and cardiometabolic risk factors associated with impoverishment due to out-of-pocket health expenditure in São Paulo City, Brazil. Int. J. Environ. Res. Public Health 2024, 21, 1250. [Google Scholar] [CrossRef]
- Baldwin, W. What’s changing the world? A demographer’s perspective. In Developments in Demography in the 21st Century; Singelmann, J., Poston, D., Jr., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Prados-Torres, A.; Calderón-Larrañaga, A.; Hancco-Saavedra, J.; Poblador-Plou, B.; van den Akker, M. Multimorbidity patterns: A systematic review. J. Clin. Epidemiol. 2014, 67, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Gálvez, J.; Ortega-Martín, E.; Carretero-Bravo, J.; Pérez-Muñoz, C.; Suárez-Lledó, V.; Ramos-Fiol, B. Social determinants of multimorbidity patterns: A systematic review. Front. Public Health 2023, 11, 1081518. [Google Scholar] [CrossRef] [PubMed]
- Tazzeo, C.; Zucchelli, A.; Vetrano, D.L.; Demurtas, J.; Smith, L.; Schoene, D.; Sanchez-Rodriguez, D.; Onder, G.; Balci, C.; Bonetti, S.; et al. Risk factors for multimorbidity in adulthood: A systematic review. Ageing Res. Rev. 2023, 91, 102039. [Google Scholar] [CrossRef]
- Yee, B.; Mohan, N.; McKenzie, F.; Jeffreys, M. What interventions work to reduce cost barriers to primary healthcare in high-income countries? A systematic review. Int. J. Environ. Res. Public Health 2024, 21, 1029. [Google Scholar] [CrossRef]
- Zurynski, Y.; Ansell, J.; Ellis, L.A.; Pomare, C.; Smith, C.L.; Holt, J.; Root, J.; Gillespie, J.; Wells, L.; Braithwaite, J. Accessible and affordable healthcare? Views of Australians with and without chronic conditions. Intern. Med. J. 2021, 51, 1060–1067. [Google Scholar] [CrossRef]
- Sawicki, O.A.; Mueller, A.; Klaaßen-Mielke, R.; Glushan, A.; Gerlach, F.M.; Beyer, M.; Wensing, M.; Karimova, K. Strong and sustainable primary healthcare is associated with a lower risk of hospitalization in high risk patients. Sci. Rep. 2021, 11, 4349. [Google Scholar] [CrossRef]
- Zhou, M.; Liao, J.; Hu, N.; Kuang, L. Association between primary healthcare and medical expenditures in a context of hospital-oriented healthcare system in China: A national panel dataset, 2012–2016. Int. J. Environ. Res. Public Health 2020, 17, 6917. [Google Scholar] [CrossRef]
- Huber, C.A.; Scherer, M.; Rapold, R.; Blozik, E. Evidence-based quality indicators for primary healthcare in association with the risk of hospitalisation: A population-based cohort study in Switzerland. BMJ Open 2020, 10, e032700. [Google Scholar] [CrossRef]
- Macinko, J.; Starfield, B.; Shi, L. The contribution of primary care systems to health outcomes within Organization for Economic Cooperation and Development (OECD) countries, 1970–1998. Health Serv. Res. 2003, 38, 831–865. [Google Scholar] [CrossRef] [PubMed]
- Jeffreys, M.; Smiler, K.; Loschmann, L.E.; Pledger, M.; Kennedy, J.; Cumming, J. Consequences of barriers to primary health care for children in Aotearoa New Zealand. SSM Popul. Health 2022, 17, 101044. [Google Scholar] [CrossRef] [PubMed]
- Chernew, M.E.; Newhouse, J.P. What does the RAND Health Insurance Experiment tell us about the impact of patient cost sharing on health outcomes? Am. J. Manag. Care 2008, 14, 412–414. [Google Scholar]
- Rodrigues, L.P.; Rezende, A.T.O.; Delpino, F.M.; Mendonça, C.R.; Noll, M.; Nunes, B.P.; Oliviera, C.; Silveira, E.A. Association between multimorbidity and hospitalization in older adults: Systematic review and meta-analysis. Age Ageing 2022, 51, afac155. [Google Scholar] [CrossRef]
- Doumat, G.; Daher, D.; Itani, M.; Abdouni, L.; El Asmar, K.; Assaf, G. The effect of polypharmacy on healthcare services utilization in older adults with comorbidities: A retrospective cohort study. BMC Prim. Care 2023, 24, 120. [Google Scholar] [CrossRef]
- World Health Organization. Medication Safety in Polypharmacy; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Mucherino, S.; Gimeno-Miguel, A.; Carmona-Pirez, J.; Gonzalez-Rubio, F.; Ioakeim-Skoufa, I.; Moreno-Juste, A.; Orlando, V.; Aza-Pascual-Salcedo, M.; Poblador-Plou, B.; Menditto, E.; et al. Changes in multimorbidity and polypharmacy patterns in young and adult population over a 4-year period: A 2011–2015 comparison using real-world data. Int. J. Environ. Res. Public Health 2021, 18, 4422. [Google Scholar] [CrossRef]
- Mair, A.; Fernandez-Llimos, F.; SIMPATHY Consortium. Polypharmacy management programmes: The SIMPATHY Project. Eur. J. Hosp. Pharm. 2017, 24, 5–6. [Google Scholar] [CrossRef]
- GBD 2019 Healthcare Access and Quality Collaborators. Assessing performance of the Healthcare Access and Quality Index, overall and by select age groups, for 204 countries and territories, 1990–2019: A systematic analysis from the Global Burden of Disease Study 2019. Lancet Glob. Health 2022, 10, e1715–e1743. [Google Scholar] [CrossRef]
- Santana, M.-J.; Ahmed, S.; Lorenzetti, D.; Jolley, R.J.; Manalili, K.; Zelinsky, S.; Quan, H.; Lu, M. Measuring patient-centred system performance: A scoping review of patient-centred care quality indicators. BMJ Open 2019, 9, e023596. [Google Scholar] [CrossRef]
- Munar, W.; Snilstveit, B.; Aranda, L.E.; Biswas, N.; Baffour, T.; Stevenson, J. Evidence gap map of performance measurement and management in primary healthcare systems in low-income and middle-income countries. BMJ Glob. Health 2019, 4 (Suppl. 8), e001451. [Google Scholar] [CrossRef]
- Ferreira, D.C.; Vieira, I.; Pedro, M.I.; Caldas, P.; Varela, M. Patient satisfaction with healthcare services and the techniques used for its assessment: A systematic literature review and a bibliometric analysis. Healthcare 2023, 11, 639. [Google Scholar] [CrossRef] [PubMed]
- Macinko, J.; Lima-Costa, M.F. Horizontal equity in health care utilization in Brazil, 1998–2008. Int. J. Equity Health 2012, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Almeida, G.; Sarti, F.M.; Ferreira, F.F.; Diaz, M.D.M.; Campino, A.C.C. Analysis of the evolution and determinants of income-related inequalities in the Brazilian health system, 1998–2008. Pan Am. J. Public Health 2013, 33, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Wagstaff, A.; Dmytraczenko, T.; Almeida, G.; Buisman, L.R.; Eozenou, P.H.; Bredenkamp, C.; Cercone, J.; Diaz, Y.; Maceira, D.; Molina, S.; et al. Assessing Latin America’s progress toward achieving universal health coverage. Health Aff. 2015, 34, 1704–1712. [Google Scholar] [CrossRef]
- Andrade, M.V.; Noronha, K.V.M.S.; Menezes, R.M.; Souza, M.N.; Reis, C.B.; Martins, D.R.; Gomes, L. Desigualdade socioeconômica no acesso aos serviços de saúde no Brasil: Um estudo comparativo entre as regiões brasileiras em 1998 e 2008. Econ. Apl. 2013, 17, 623–645. [Google Scholar] [CrossRef]
- Dmytraczenko, T.; Almeida, G.; Werneck, H.; Cercone, J.; Díaz, Y.; Maceira, D.; Molina, S.; Paraje, G.; Ruiz, F.; Sarti, F.M.; et al. Progress toward universal health coverage in Latin America and the Caribbean: Outcomes, utilization, and financial protection. In Toward Universal Health Coverage and Equity in Latin America and the Caribbean: Evidence from Selected Countries; Dmytraczenko, T., Almeida, G., Eds.; World Bank: Washington, DC, USA, 2015; pp. 81–146. [Google Scholar]
- Lindelow, M.; Nahrgang, S.; Dmytraczenko, T.; Marinho, F.; Alencar, A. Assessing progress toward universal health coverage: Beyond utilization and financial protection. In Toward Universal Health Coverage and Equity in Latin America and the Caribbean: Evidence from Selected Countries; Dmytraczenko, T., Almeida, G., Eds.; World Bank: Washington, DC, USA, 2015; pp. 147–183. [Google Scholar]
- Rodrigues, L.P.; França, D.G.; Vissoci, J.R.N.; Caruzzo, N.M.; Batista, S.R.; Oliveira, C.; Nunes, B.P.; Silveira, E.A. Associations of hospitalisation—Admission, readmission and length to stay—With multimorbidity patterns by age and sex in adults and older adults: The ELSI-Brazil study. BMC Geriatr. 2023, 23, 504. [Google Scholar] [CrossRef]
- Deaton, A. The Analysis of Household Surveys; John Hopkins University Press: Baltimore, MD, USA, 1997. [Google Scholar]
- World Bank. World Development Indicators—PPP Conversion Factor; World Bank: Washington, DC, USA, 2024; Available online: https://databank.worldbank.org/source/world-development-indicators# (accessed on 14 October 2024).
- Kakwani, N.C. Income Inequality and Poverty: Methods of Estimation and Policy Applications; Oxford University Press: New York, NY, USA, 1980. [Google Scholar]
- O’Donnell, O.; van Doorslaer, E.; Wagstaff, A.; Lindelow, M. Analyzing Health Equity Using Household Survey Data: A Guide to Techniques and Their Implementation; World Bank: Washington, DC, USA, 2008. [Google Scholar]
- Wagstaff, A.; van Doorslaer, E.; Watanabe, N. On decomposing the causes of health sector inequalities, with an application to malnutrition inequalities in Vietnam. J. Econom. 2003, 112, 219–227. [Google Scholar] [CrossRef]
- Rocha, J.V.M.; Santana, R.; Tello, J.E. Hospitalization for ambulatory care sensitive conditions: What conditions make inter-country comparisons possible? Health Policy Open 2021, 2, 100030. [Google Scholar] [CrossRef]
- Antiga, M.L.O.C.; Freitas, B.L.; Brizan-St. Martin, R.; La Foucade, A.; Sarti, F.M. Determinants of patients’ perception on primary healthcare quality: Empirical analysis in the Brazilian health system. Healthcare 2025, 13, 857. [Google Scholar] [CrossRef]
- Owusu Kwateng, K.; Lumor, R.; Ofosuaa Acheampong, F. Service quality in public and private hospitals: A comparative study on patient satisfaction. Int. J. Healthc. Manag. 2017, 12, 251–258. [Google Scholar] [CrossRef]
- Anabila, P.; Kumi, D.K.; Anome, J. Patients’ perceptions of healthcare quality in Ghana: A review of public and private hospitals. Int. J. Health Care Qual. Assur. 2019, 32, 176–190. [Google Scholar] [CrossRef] [PubMed]
- Soley-Bori, M.; Ashworth, M.; Bisquera, A.; Dodhia, H.; Lynch, R.; Wang, Y.; Fox-Rushby, J. Impact of multimorbidity on healthcare costs and utilisation: A systematic review of the UK literature. Br. J. Gen. Pract. 2021, 71, e39–e46. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhao, S.; Zhang, L.; Haregu, T.H.; Wang, H. Impacts of multimorbidity on medication treatment, primary healthcare and hospitalization among middle-aged and older adults in China: Evidence from a nationwide longitudinal study. BMC Public Health 2021, 21, 1380. [Google Scholar] [CrossRef] [PubMed]
- Houghton, N.; Bascolo, E.; del Riego, A. Monitoring access barriers to health services in the Americas: A mapping of household surveys. Rev. Panam. Salud Publica 2020, 44, e96. [Google Scholar] [CrossRef]
- Bilger, J.; Pletscher, M.; Müller, T. Separating the wheat from the chaff: How to measure hospital quality in routine data? Health Serv. Res. 2024, 59, e14282. [Google Scholar] [CrossRef]
- Rodriguez-Blazquez, C.; João Forjaz, M.; Gimeno-Miguel, A.; Bliek-Bueno, K.; Poblador-Plou, B.; Pilar Luengo-Broto, S.; Guerrero-Fernández de Alba, I.; Maria Carriazo, A.; Lama, C.; Rodríguez-Acuña, R.; et al. Assessing the pilot implementation of the Integrated Multimorbidity Care Model in five European settings: Results from the Joint Action CHRODIS-PLUS. Int. J. Environ. Res. Public Health 2020, 17, 5268. [Google Scholar] [CrossRef]
- Araujo, W.R.M.; Queiroz, R.C.S.; Rocha, T.A.H.; Silva, N.C.; Thumé, E.; Tomasi, E.; Facchini, L.A.; Thomaz, E.B.A.F. Structure and work process in primary care and hospitalizations for sensitive conditions. Rev. Saude Publica 2017, 51, 75. [Google Scholar] [CrossRef]
- Pinto, L.F.; Giovanella, L. The Family Health Strategy: Expanding access and reducing hospitalizations due to ambulatory care sensitive conditions (ACSC). Cienc. Saude Colet. 2018, 23, 1903–1913. [Google Scholar] [CrossRef]
- Rocha, J.V.M.; Nunes, C.; Santana, R. Avoidable hospitalizations in Brazil and Portugal: Identifying and comparing critical areas through spatial analysis. PLoS ONE 2019, 14, e0219262. [Google Scholar] [CrossRef]
Variable | N | μ | SD | Min | Max |
---|---|---|---|---|---|
Sex | 1,097,786 | 0.53 | 0.50 | 0 | 1 |
Age | 1,097,681 | 41.14 | 16.68 | 18 | 113 |
Skin color/ethnicity | |||||
Black | 1,097,566 | 0.08 | 0.27 | 0 | 1 |
Brown | 1,097,566 | 0.45 | 0.50 | 0 | 1 |
Indigenous | 1,097,566 | 0.00 | 0.06 | 0 | 1 |
White | 1,097,566 | 0.46 | 0.50 | 0 | 1 |
Yellow | 1,097,566 | 0.01 | 0.07 | 0 | 1 |
Educational attainment | 1,045,367 | 8.47 | 4.91 | 0 | 18 |
Employed | 1,079,732 | 0.62 | 0.49 | 0 | 1 |
Household size | 1,128,969 | 3.84 | 1.95 | 1 | 27 |
Household income per capita | 1,107,597 | 783.50 | 1326.23 | 0.00 | 131,645.00 |
Health insurance ownership | 1,097,740 | 0.26 | 0.44 | 0 | 1 |
Good health status | 1,128,969 | 0.76 | 0.43 | 0 | 1 |
Mobility limitations | 1,128,969 | 0.02 | 0.13 | 0 | 1 |
Multimorbidity | 1,128,969 | 0.15 | 0.36 | 0 | 1 |
Dentist visit last year | 1,097,749 | 0.39 | 0.49 | 0 | 1 |
PHC last two weeks | 1,097,749 | 0.16 | 0.36 | 0 | 1 |
Perception of good PHC quality | 1,128,969 | 0.99 | 0.08 | 0 | 1 |
PHC effectiveness | 167,969 | 96.81 | 8.05 | 7.14 | 100.00 |
Hospitalization last year | 1,097,730 | 0.08 | 0.27 | 0 | 1 |
High frequency of hospitalization | 83,974 | 0.04 | 0.20 | 0 | 1 |
High length of stay | 1,128,403 | 0.01 | 0.11 | 0 | 1 |
Type of hospital | |||||
Public hospital | 84,000 | 0.65 | 0.48 | 0 | 1 |
Private hospital | 84,000 | 0.34 | 0.48 | 0 | 1 |
Hospitalization financing | |||||
Health insurance | 84,000 | 0.26 | 0.44 | 0 | 1 |
Out-of-pocket | 84,000 | 0.12 | 0.33 | 0 | 1 |
SUS | 84,000 | 0.66 | 0.48 | 0 | 1 |
Perception of good quality of care | 906,780 | 1.00 | 0.05 | 0 | 1 |
Area | 1,128,969 | 0.17 | 0.37 | 0 | 1 |
State | 1,128,969 | 31.42 | 10.93 | 11 | 53 |
Year | 1,128,969 | 2008 | 7 | 1998 | 2019 |
Characteristics | 1998 | 2003 | 2008 | 2013 | 2019 | Total |
---|---|---|---|---|---|---|
Sex | ||||||
Male | 47.92 | 47.73 | 47.68 | 47.10 | 46.84 | 47.39 |
Female | 52.08 | 52.27 | 52.32 | 52.90 | 53.16 | 52.61 |
Age * | 39.76 | 40.19 | 41.45 | 42.85 | 44.83 | 42.09 |
0.17 | 0.06 | 0.06 | 0.10 | 0.09 | 0.04 | |
Skin color/ethnicity | ||||||
Black | 6.16 | 6.42 | 7.55 | 9.14 | 11.10 | 8.35 |
Brown | 36.63 | 39.01 | 41.50 | 42.13 | 43.24 | 40.87 |
Indigenous | 0.21 | 0.20 | 0.30 | 0.42 | 0.49 | 0.34 |
White | 56.36 | 53.87 | 49.99 | 47.44 | 44.30 | 49.72 |
Yellow | 0.65 | 0.52 | 0.67 | 0.87 | 0.87 | 0.73 |
Educational attainment * | 6.97 | 7.79 | 8.60 | 9.44 | 9.99 | 8.72 |
0.20 | 0.05 | 0.04 | 0.05 | 0.04 | 0.02 | |
Occupational status | ||||||
Employed | 62.80 | 62.18 | 64.77 | 61.35 | 58.98 | 61.87 |
Unemployed | 37.20 | 37.82 | 35.23 | 38.65 | 41.02 | 38.13 |
Household size * | 4.33 | 4.08 | 3.79 | 3.56 | 3.30 | 3.76 |
0.04 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | |
Household income per capita * | 714.53 | 658.50 | 801.24 | 1047.22 | 1081.68 | 887.01 |
52.86 | 8.51 | 9.12 | 22.64 | 16.62 | 9.11 | |
Area | ||||||
Urban | 81.42 | 85.45 | 84.65 | 86.33 | 86.21 | 85.05 |
Rural | 18.58 | 14.55 | 15.35 | 13.67 | 13.79 | 14.95 |
Characteristics | 1998 | 2003 | 2008 | 2013 | 2019 | Total |
---|---|---|---|---|---|---|
Health insurance ownership | 26.63 | 26.88 | 28.11 | 29.72 | 26.98 | 27.74 |
Good health status | 71.62 | 72.37 | 71.32 | 85.39 | 84.58 | 77.88 |
Mobility limitations | 1.37 | 1.34 | 1.72 | 2.45 | 3.30 | 2.14 |
Multimorbidity | 21.52 | 18.12 | 18.47 | 8.80 | 11.28 | 14.99 |
Dentist visit | 32.09 | 37.60 | 39.00 | 44.13 | 48.84 | 41.21 |
PHC utilization | 14.34 | 15.81 | 15.67 | 16.61 | 19.84 | 16.71 |
PHC effectiveness * | 95.86 | 95.88 | 96.16 | 99.54 | 98.15 | 97.35 |
0.09 | 0.06 | 0.06 | 0.04 | 0.06 | 0.04 | |
Perception of good PHC quality | 99.65 | 99.60 | 99.51 | 99.71 | 98.61 | 99.37 |
Occurrence of hospitalization | 8.43 | 8.05 | 8.03 | 6.61 | 7.20 | 7.58 |
High frequency of hospitalization | 3.59 | 3.77 | 4.06 | 4.69 | 3.72 | 3.97 |
High length of stay | 1.44 | 1.32 | 1.35 | 1.14 | 1.30 | 1.30 |
Type of hospital | ||||||
Public | 59.56 | 61.12 | 67.32 | 65.12 | 63.70 | 63.56 |
Private | 39.82 | 38.41 | 32.51 | 34.51 | 36.01 | 36.07 |
Hospitalization financing | ||||||
Health insurance | 25.91 | 25.89 | 26.59 | 29.07 | 30.18 | 27.65 |
Out-of-pocket | 14.82 | 10.85 | 11.12 | 11.74 | 11.62 | 11.93 |
SUS | 59.27 | 63.26 | 62.29 | 59.19 | 58.20 | 60.42 |
Perception of good quality of care § | 99.76 | 99.78 | 99.71 | 99.67 | 99.73 |
Perception of Good Quality of Care | 1998 | 2003 | 2008 | 2013 | |
---|---|---|---|---|---|
Public hospital | Margin | 0.964 | 0.966 | 0.955 | 0.938 |
SE | 0.002 | 0.002 | 0.002 | 0.004 | |
Private hospital | Margin | 0.983 | 0.985 | 0.983 | 0.974 |
SE | 0.002 | 0.001 | 0.002 | 0.004 | |
Pairwise comparison | Contrast | −0.020 * | −0.020 * | −0.028 * | −0.036 * |
SE | 0.003 | 0.002 | 0.002 | 0.006 | |
SUS funding | Margin | 0.964 | 0.966 | 0.955 | 0.939 |
SE | 0.002 | 0.002 | 0.002 | 0.004 | |
Private funding | Margin | 0.984 | 0.987 | 0.982 | 0.972 |
SE | 0.002 | 0.002 | 0.002 | 0.004 | |
Pairwise comparison | Contrast | −0.020 * | −0.020 * | −0.026 * | −0.033 * |
SE | 0.003 | 0.002 | 0.003 | 0.006 |
Variables | Hospitalization | ||||
---|---|---|---|---|---|
OR | SE | Sig. | 95% CI | ||
PHC effectiveness | (%) | 0.980 | 0.001 | *** | 0.98; 0.98 |
Sex | (fem = 1) | 0.948 | 0.021 | * | 0.91; 0.99 |
Age | (years) | 1.003 | 0.001 | *** | 1.00; 1.00 |
Educational attainment | (years) | 0.991 | 0.003 | ** | 0.99; 1.00 |
Good health status | (yes = 1) | 0.712 | 0.018 | *** | 0.68; 0.75 |
Mobility limitations | (yes = 1) | 1.628 | 0.083 | *** | 1.47; 1.80 |
Multimorbidity | (yes = 1) | 1.311 | 0.035 | *** | 1.24; 1.38 |
Health insurance ownership | (yes = 1) | 1.273 | 0.036 | *** | 1.20; 1.35 |
Dentist visit | (yes = 1) | 0.812 | 0.020 | *** | 0.77; 0.85 |
Household income per capita | (ln) | 0.967 | 0.005 | *** | 0.96; 0.98 |
Area | (rural = 1) | 1.021 | 0.030 | 0.96; 1.08 |
Variables | High Frequency of Hospitalization | High Length of Stay | |||||||
---|---|---|---|---|---|---|---|---|---|
OR | SE | Sig. | 95% CI | OR | SE | Sig. | 95% CI | ||
PHC effectiveness | (%) | 0.980 | 0.002 | *** | 0.98; 0.98 | 0.992 | 0.002 | *** | 0.99; 1.00 |
Sex | (fem = 1) | 0.960 | 0.073 | 0.83; 1.11 | 0.620 | 0.031 | *** | 0.56; 0.68 | |
Age | (years) | 1.006 | 0.002 | ** | 1.00; 1.01 | 1.014 | 0.002 | *** | 1.01; 1.02 |
Educational attainment | (years) | 0.957 | 0.011 | *** | 0.94; 0.98 | 1.001 | 0.006 | 0.99; 1.01 | |
Good health status | (yes = 1) | 0.688 | 0.069 | *** | 0.57; 0.84 | 0.598 | 0.036 | *** | 0.53; 0.67 |
Mobility limitations | (yes = 1) | 1.550 | 0.197 | ** | 1.21; 1.99 | 1.411 | 0.127 | *** | 1.18; 1.68 |
Multimorbidity | (yes = 1) | 1.212 | 0.107 | * | 1.02; 1.44 | 0.970 | 0.054 | 0.87; 1.08 | |
Health insurance ownership | (yes = 1) | 0.829 | 0.084 | 0.68; 1.01 | 0.738 | 0.047 | *** | 0.65; 0.84 | |
Dentist visit | (yes = 1) | 0.851 | 0.078 | 0.71; 1.02 | 0.798 | 0.044 | *** | 0.72; 0.89 | |
Household income per capita | (ln) | 0.954 | 0.019 | * | 0.92; 0.99 | 0.970 | 0.013 | * | 0.95; 0.99 |
Area | (rural = 1) | 0.880 | 0.093 | 0.71; 1.08 | 0.743 | 0.047 | *** | 0.66; 0.84 |
Variables | Good Quality of Care | ||||
---|---|---|---|---|---|
OR | SE | Sig. | 95% CI | ||
Perception of good PHC quality | (yes = 1) | 10.311 | 1.174 | *** | 8.25; 12.89 |
Sex | (fem = 1) | 1.110 | 0.069 | 0.98; 1.25 | |
Age | (years) | 1.016 | 0.002 | *** | 1.01; 1.02 |
Educational attainment | (years) | 0.985 | 0.008 | 0.97; 1.00 | |
Good health status | (yes = 1) | 1.421 | 0.100 | *** | 1.24; 1.63 |
Mobility limitations | (yes = 1) | 1.293 | 0.182 | 0.98; 1.70 | |
Multimorbidity | (yes = 1) | 0.748 | 0.056 | *** | 0.65; 0.87 |
Public hospital | (yes = 1) | 0.655 | 0.074 | *** | 0.53; 0.82 |
Financing through health insurance | (yes = 1) | 1.851 | 0.239 | *** | 1.44; 2.38 |
Financing out-of-pocket | (yes = 1) | 1.211 | 0.149 | 0.95; 1.54 | |
Household income per capita | (ln) | 1.006 | 0.015 | 0.98; 1.04 | |
Area | (rural = 1) | 1.424 | 0.117 | *** | 1.21; 1.67 |
Hospitalizations | 1998 | 2003 | 2008 | 2013 | 2019 |
Concentration Index | −0.024 | −0.014 | −0.015 | −0.009 | −0.030 |
Horizontal Inequality | −0.008 | −0.004 | −0.007 | −0.009 | −0.028 |
Inpatient days | 1998 | 2003 | 2008 | 2013 | 2019 |
Concentration Index | −0.082 | −0.041 | −0.044 | −0.036 | −0.046 |
Horizontal Inequality | 0.155 | 0.135 | 0.108 | −0.068 | 0.073 |
Quality of care § | 1998 | 2003 | 2008 | 2013 | 2019 |
Concentration Index | 0.0004 | 0.0003 | 0.0005 | 0.0003 | - |
Horizontal Inequality | 0.0013 | 0.0009 | 0.0002 | −0.0001 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Market Access Society. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freitas, B.L.; Antiga, M.L.d.O.C.; Sarti, F.M. Effects of Primary Healthcare Quality and Effectiveness on Hospitalization Indicators in Brazil. J. Mark. Access Health Policy 2025, 13, 21. https://doi.org/10.3390/jmahp13020021
Freitas BL, Antiga MLdOC, Sarti FM. Effects of Primary Healthcare Quality and Effectiveness on Hospitalization Indicators in Brazil. Journal of Market Access & Health Policy. 2025; 13(2):21. https://doi.org/10.3390/jmahp13020021
Chicago/Turabian StyleFreitas, Bruna Leão, Maria Luisa de Oliveira Collino Antiga, and Flavia Mori Sarti. 2025. "Effects of Primary Healthcare Quality and Effectiveness on Hospitalization Indicators in Brazil" Journal of Market Access & Health Policy 13, no. 2: 21. https://doi.org/10.3390/jmahp13020021
APA StyleFreitas, B. L., Antiga, M. L. d. O. C., & Sarti, F. M. (2025). Effects of Primary Healthcare Quality and Effectiveness on Hospitalization Indicators in Brazil. Journal of Market Access & Health Policy, 13(2), 21. https://doi.org/10.3390/jmahp13020021