Future Internet 2013, 5(4), 515-534; doi:10.3390/fi5040515
Article

Managing Emergencies Optimally Using a Random Neural Network-Based Algorithm

Intelligent Systems & Networks Group, EEE, Imperial College, London SW7 2BT, UK
Received: 28 August 2013; in revised form: 20 September 2013 / Accepted: 29 September 2013 / Published: 16 October 2013
PDF Full-text Download PDF Full-Text [514 KB, uploaded 16 October 2013 15:49 CEST]
Abstract: Emergency rescues require that first responders provide support to evacuate injured and other civilians who are obstructed by the hazards. In this case, the emergency personnel can take actions strategically in order to rescue people maximally, efficiently and quickly. The paper studies the effectiveness of a random neural network (RNN)-based task assignment algorithm involving optimally matching emergency personnel and injured civilians, so that the emergency personnel can aid trapped people to move towards evacuation exits in real-time. The evaluations are run on a decision support evacuation system using the Distributed Building Evacuation Simulator (DBES) multi-agent platform in various emergency scenarios. The simulation results indicate that the RNN-based task assignment algorithm provides a near-optimal solution to resource allocation problems, which avoids resource wastage and improves the efficiency of the emergency rescue process.
Keywords: rescuers; random neural network (RNN); task assignment

Article Statistics

Load and display the download statistics.

Citations to this Article

Cite This Article

MDPI and ACS Style

Han, Q. Managing Emergencies Optimally Using a Random Neural Network-Based Algorithm. Future Internet 2013, 5, 515-534.

AMA Style

Han Q. Managing Emergencies Optimally Using a Random Neural Network-Based Algorithm. Future Internet. 2013; 5(4):515-534.

Chicago/Turabian Style

Han, Qing. 2013. "Managing Emergencies Optimally Using a Random Neural Network-Based Algorithm." Future Internet 5, no. 4: 515-534.

Future Internet EISSN 1999-5903 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert