Design and Implementation of a Scalable LoRaWAN-Based Air Quality Monitoring Infrastructure for the Kurdistan Region of Iraq
Abstract
1. Introduction
2. Background and Related Works
2.1. Air Pollution and Pollutants
2.2. Air Quality Standards
2.3. IoT Technologies for Air Quality Monitoring
2.3.1. Low Power Wide Area Network Technologies
2.3.2. LoRa and LoRaWAN Technologies
2.4. Review of Existing LoRa-Enabled Air Quality Monitoring Systems
3. System Design and Implementation
3.1. Proposed System Architecture
3.2. AirQNode
3.2.1. MCU
3.2.2. Sensors
Sensirion SPS30
BME280
3.2.3. Power Supply Unit
3.2.4. Gateway
3.2.5. AirQNode Firmware
3.2.6. Network Server
3.2.7. IoT Platform
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- WHO. WHO Air Quality Guidelines; Elsevier: Amsterdam, The Netherlands, 2021; ISBN 9789812837134. [Google Scholar] [CrossRef]
- Chang, J.H.; Lee, Y.L.; Chang, L.T.; Chang, T.Y.; Hsiao, T.C.; Chung, K.F.; Ho, K.F.; Kuo, H.P.; Lee, K.Y.; Chuang, K.J.; et al. Climate Change, Air Quality, and Respiratory Health: A Focus on Particle Deposition in the Lungs. Ann. Med. 2023, 55, 2264811. [Google Scholar] [CrossRef]
- Rudaw لێکۆڵینەوەیەک: بەرکەوتنبەهەوایپیسئەگەریتووشبوونبەجەڵتەزیاددەکات. Available online: https://www.rudaw.net/sorani/health/191220244 (accessed on 21 June 2025).
- State of Global Air Health Impacts of PM2.5. Available online: https://www.stateofglobalair.org/health/pm#:~:text=majorimpacts,-Long-termexposure&text=In2019%2Clong-termexposure,globally over the past decade (accessed on 21 June 2025).
- Li, C.; Qi, J.; Yin, P.; Yu, X.; Sun, H.; Zhou, M.; Liang, W. The burden of type 2 diabetes attributable to air pollution across China and its provinces, 1990–2021: An analysis for the Global Burden of Disease Study 2021. Lancet Reg. Health–West. Pac. 2024, 53, 101246. [Google Scholar] [CrossRef]
- WHO. Types of Pollutants. World Health Organization. Available online: https://www.who.int/teams/environment-climate-change-and-health/air-quality-and-health/health-impacts/types-of-pollutants (accessed on 13 January 2025).
- The Ministry of Environment. Available online: https://moen.gov.iq/en/air-quality (accessed on 21 June 2025).
- KRI Government Kurdistan Regional Government|Board of Environmental Protection and Improvement. Available online: https://gov.krd/boe-en/ (accessed on 21 June 2025).
- Kurdistan Regional Government. KRG Publications and Guidline. 2021; p. 7. Available online: https://gov.krd/boe/publications/%D8%B1%DB%8E%D9%86%D9%85%D8%A7%DB%8C%DB%8C%DB%95%DA%A9%D8%A7%D9%86/ (accessed on 13 June 2025).
- Zhao, L.; Yang, Y.; Wu, Z. Review of Communication Technology in Indoor Air Quality Monitoring System and Challenges. Electronics 2022, 11, 2926. [Google Scholar] [CrossRef]
- Chaudhari, B.S.; Zennaro, M.; Borkar, S. LPWAN technologies: Emerging application characteristics, requirements, and design considerations. Future Internet 2020, 12, 46. [Google Scholar] [CrossRef]
- Levchenko, P.; Bankov, D.; Khorov, E.; Lyakhov, A. Performance Comparison of NB-Fi, Sigfox, and LoRaWAN. Sensors 2022, 22, 9633. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.; Kothari, A.; Pandhare, R. Scalability Analysis of LoRa and Sigfox in Congested Environment and Calculation of Optimum Number of Nodes. Sensors 2024, 24, 6673. [Google Scholar] [CrossRef] [PubMed]
- TEKTELIC LoRaWAN vs. NB-IoT, Sigfox, and LTE: Which IoT Technology Is Right for You? TEKTELIC. Available online: https://tektelic.com/expertise/lorawan-vs-nb-iot-sigfox-and-lte-comparison/ (accessed on 15 August 2025).
- Kumar, T.; Doss, A. AIRO: Development of an Intelligent IoT-based Air Quality Monitoring Solution for Urban Areas. Procedia Comput. Sci. 2022, 218, 262–273. [Google Scholar] [CrossRef]
- Guerrero-Ulloa, G.; Andrango-Catota, A.; Abad-Alay, M.; Hornos, M.J.; Rodríguez-Domínguez, C. Development and Assessment of an Indoor Air Quality Control IoT-Based System. Electronics 2023, 12, 608. [Google Scholar] [CrossRef]
- Wang, Y.; Dan, M.; Dou, Y.; Guo, L.; Xu, Z.; Ding, D.; Shu, M. Evaluation of the health risk using multi-pollutant air quality health index: Case study in Tianjin, China. Front. Public Health 2023, 11, 77290. [Google Scholar] [CrossRef]
- EPA, U. What Are Volatile Organic Compounds (VOCs)? Available online: https://www.epa.gov/indoor-air-quality-iaq/what-are-volatile-organic-compounds-vocs (accessed on 13 January 2025).
- California Air Resources Board. Inhalable Particulate Matter and Health (PM2.5 and PM10) | California Air Resources Board. Available online: https://ww2.arb.ca.gov/resources/inhalable-particulate-matter-and-health#:~:text=ForPM2.5%2Cshort-symptoms%2Candrestrictedactivitydays (accessed on 13 January 2025).
- Yang, H.; Yan, C.; Li, M.; Zhao, L.; Long, Z.; Fan, Y.; Zhang, Z.; Chen, R.; Huang, Y.; Lu, C.; et al. Short term effects of air pollutants on hospital admissions for respiratory diseases among children: A multi-city time-series study in China. Int. J. Hyg. Environ. Health 2021, 231, 113638. [Google Scholar] [CrossRef]
- European Environment Agency. Premature Deaths Caused by Environmental Pollution. European Environment Agency’s Home Page. Available online: https://www.eea.europa.eu/en/european-zero-pollution-dashboards/indicators/premature-deaths-as-a-result-of-environmental-pollution (accessed on 15 January 2025).
- McCarron, A.; Semple, S.; Braban, C.F.; Swanson, V.; Gillespie, C.; Price, H.D. Public engagement with air quality data: Using health behaviour change theory to support exposure-minimising behaviours. J. Expo. Sci. Environ. Epidemiol. 2023, 33, 321–331. [Google Scholar] [CrossRef]
- NRDC. What Is the Air Quality Index? Available online: https://www.nrdc.org/stories/what-air-quality-index (accessed on 10 June 2025).
- Environment Canada. Edmonton, Alberta–Air Quality Health Index (AQHI)–Environment Canada. Available online: https://weather.gc.ca/airquality/pages/abaq-001_e.html (accessed on 1 July 2025).
- European Air Quality Index. Available online: https://airindex.eea.europa.eu/AQI/index.html (accessed on 1 July 2025).
- DEFRA. Daily Air Quality Index–Defra, UK. Available online: https://uk-air.defra.gov.uk/air-pollution/daqi (accessed on 1 July 2025).
- AirKorea. AirKorea: Introduction to the CAI. Available online: https://www.airkorea.or.kr/eng/khaiInfo?pMENU_NO=166 (accessed on 1 July 2025).
- Agency, N.E. Air Quality. Available online: https://www.nea.gov.sg/our-services/pollution-control/air-pollution/air-quality (accessed on 1 July 2025).
- aqicn.org. Overview of Hong Kong’s Air Quality Health Index. Available online: https://aqicn.org/faq/2015-06-03/overview-of-hong-kongs-air-quality-health-index/ (accessed on 1 July 2025).
- AQI India. India Air Quality Index (AQI): Real-Time Air Pollution Level. Available online: https://www.aqi.in/dashboard/india (accessed on 1 July 2025).
- ATMO. Standards for Air Quality Indices in Different Countries (AQI). Available online: https://atmotube.com/blog/standards-for-air-quality-indices-in-different-countries-aqi (accessed on 21 June 2025).
- Government of Ontario. Air Quality Health Index (AQHI). Available online: https://www.airqualityontario.com/aqhi/ (accessed on 21 May 2025).
- IQAir. New EPA Annual PM2.5 Air Quality Standards Expected to Save Lives. Available online: https://www.iqair.com/newsroom/new-epa-annual-pm25-air-quality-standards-expected-save-lives?srsltid=AfmBOori2k-FrIEtAEtuCKTBvEAv0bX8NGXV4A8Rdel2RVs5_n9LdtF2 (accessed on 21 May 2025).
- Ledesma, O.; Lamo, P.; Fraire, J.A. Trends in LPWAN Technologies for LEO Satellite Constellations in the NewSpace Context. Electronics 2024, 13, 579. [Google Scholar] [CrossRef]
- Ogbodo, E.U.; Abu-Mahfouz, A.M.; Kurien, A.M. A Survey on 5G and LPWAN-IoT for Improved Smart Cities and Remote Area Applications: From the Aspect of Architecture and Security. Sensors 2022, 22, 6313. [Google Scholar] [CrossRef]
- Almuhaya, M.A.M.; Jabbar, W.A.; Sulaiman, N.; Abdulmalek, S. A Survey on LoRaWAN Technology: Recent Trends, Opportunities, Simulation Tools and Future Directions. Electronics 2022, 11, 164. [Google Scholar] [CrossRef]
- Hossain, I.; Rahman, S.; Sattar, S.; Haque, M.; Mullick, A.R. Environmental Overview of Air Quality Index (AQI) in Bangladesh: Characteristics and Challenges in Present Era. Int. J. Res. Eng. Sci. Manag. 2021, 4, 110–115. [Google Scholar]
- Semtech. LoRa® and LoRaWAN®. Data Sheet. No. AN1200.86, March 2024. Available online: https://www.semtech.com/uploads/technology/LoRa/lora-and-lorawan.pdf (accessed on 19 August 2025).
- Lora About LoRa Alliance®–LoRa Alliance®. Available online: https://lora-alliance.org/about-lora-alliance/ (accessed on 21 June 2025).
- Koenen, K. Understanding the LoRaWAN® Architecture. Available online: https://blog.semtech.com/understanding-the-lorawan-architecture (accessed on 21 May 2025).
- Blp, I. What Is Sensors in IoT? IEEE Blended Learning Program. Available online: https://blp.ieee.org/what-is-sensors-in-iot/ (accessed on 31 January 2025).
- Purnomo, A.; Badriah, S.; Andang, A.; Gunawan, M.R.; Maulana, D.I.; Sambas, A.; Madi, E.N. Affordable Green IoT-Based System for Remote Sensing of PM1, PM2.5 and PM10 Particulate Matter. J. Adv. Res. Appl. Sci. Eng. Technol. 2025, 49, 134–148. [Google Scholar] [CrossRef]
- Irbah, N.; Nurika, G.; Ramani, A. Implementation of Indoor Air Quality Monitoring Systems of Particulate Matter 2.5 Based on the Internet of Things. J. Kesehat. Lingkung. 2024, 16, 266–276. [Google Scholar] [CrossRef]
- Khonrang, J.; Somphruek, M.; Saengsuwan, T.; Duangnakhorn, P.; Siri, A. Development of a Long-Range IoT Air Quality Monitoring System Using LoRa Mesh Repeaters for Real-Time Pollution Tracking. J. Renew. Energy Smart Grid Technol. 2024, 19, 28–37. [Google Scholar] [CrossRef]
- Zafra-Pérez, A.; Medina-García, J.; Boente, C.; Gómez-Galán, J.A.; Sánchez de la Campa, A.; de la Rosa, J.D. Designing a low-cost wireless sensor network for particulate matter monitoring: Implementation, calibration, and field-test. Atmos. Pollut. Res. 2024, 15, 102208. [Google Scholar] [CrossRef]
- Wijeratne, L.O.H.; Kiv, D.; Waczak, J.; Dewage, P.; Balagopal, G.; Iqbal, M.; Aker, A.; Fernando, B.; Lary, M.; Sooriyaarachchi, V.; et al. The Design and Deployment of a Self-Powered, LoRaWAN-Based IoT Environment Sensor Ensemble for Integrated Air Quality Sensing and Simulation. Air 2025, 3, 9. [Google Scholar] [CrossRef]
- Parra-Medina, F.D.; Vélez-Guerrero, M.A.; Callejas-Cuervo, M. Low-Cost Solution for Air Quality Monitoring: Unmanned Aerial System and Data Transmission via LoRa Protocol. Sustainability 2024, 16, 10108. [Google Scholar] [CrossRef]
- Lishev, S.; Spasov, G.; Petrova, G. LoRaWAN IoT System for Measuring Air Parameters in a Traffic Monitoring Station. Eng. Proc. 2025, 100, 17. [Google Scholar] [CrossRef]
- Pang, L.; Luo, C.; Pan, W. Research on the Impact of Indoor Control Quality Monitoring Based on Internet of Things. IEEE Access 2023, 11, 139614–139627. [Google Scholar] [CrossRef]
- ThingSpeak. How to Buy–Standard License–ThingSpeak IoT. Available online: https://thingspeak.mathworks.com/prices/thingspeak_standard (accessed on 18 August 2025).
- Blynk. Blynk: A Low-Code IoT Software Platform for Businesses and Developers. Available online: https://blynk.io/ (accessed on 8 August 2025).
- DataCake. DataCake|Low Code IoT Platform|White Label|LORAWAN. DataCake. Available online: https://datacake.co/ (accessed on 18 August 2025).
- IQAir. AirVisual Outdoor|Reliable Outdoor AQI Monitor. Available online: https://www.iqair.com/us/products/air-quality-monitors/airvisual-outdoor-2-pm?Title=Default+Title (accessed on 15 August 2025).
- IoT Supermarket. MiLEsight AM308 LORAWAN 9-In-1 Indoor Air Quality Sensor. Available online: https://iotsupermarket.co.uk/products/milesight-am308l (accessed on 15 August 2025).
- Docs.arduino.cc. MKR WAN 1310. Available online: https://docs.arduino.cc/hardware/mkr-wan-1310/#tech-specs%0A (accessed on 22 May 2025).
- Sensirion. Sensor Specification Statement. How to Understand Specifications of Sensirion Particulate Matter Sensors; Sensirion Co.: Stäfa, Switzerland, 2020; Volume 1, p. 9. [Google Scholar]
- Interface, C. Datasheet SPS30. Particulate Matter Sensor for Air Quality Monitoring and Control. Unique Long-Term Stability. Advanced Particle Size Binning. Superior Accuracy in Mass-Concentration Sensing. No. Version 0.9–D1, November 2018. Available online: https://cdn.sparkfun.com/assets/2/d/2/a/6/Sensirion_SPS30_Particulate_Matter_Sensor_v0.9_D1__1_.pdf (accessed on 19 August 2025).
- Sensor, P.M. Low-Power Operation of the SPS30 Particulate Matter Sensor. No. Version 1–7, August 2020. Available online: https://sensirion.com/media/documents/188A2C3C/6166F165/Sensirion_Particulate_Matter_AppNotes_SPS30_Low_Power_Operation_D1.pdf (accessed on 19 August 2025).
- Sensirion. SPS30–PM2.5 Sensor for HVAC and Air Quality Applications SPS30. Available online: https://sensirion.com/products/catalog/SPS30%0A (accessed on 22 May 2025).
- Bosch Sensortec. Humidity Sensor BME280. Available online: https://www.bosch-sensortec.com/products/environmental-sensors/humidity-sensors-bme280/ (accessed on 14 June 2025).
- Milesight. UG65 LoRaWan Gateway, Fujian, China, 2024. Available online: https://www.milesight.com/iot/product/lorawan-gateway/ug65 (accessed on 15 July 2025).
- Kerlink. Product–Kerlink–Wirnet iFemtoCell-Evolution–IoT–LORA. Available online: https://www.kerlink.com/product/wirnet-ifemtocell-evolution/ (accessed on 21 June 2025).
- LORIOT. LORIOT–Hybrid Network Management System for massive IoT. LORIOT. Available online: https://www.loriot.io/ (accessed on 16 August 2025).
- The Things Stack Sandbox. The Things Stack Sandbox. Available online: https://www.thethingsindustries.com/docs/concepts/ttn/ (accessed on 16 August 2025).
- The ChirpStack. The ChirpStack Project–ChirpStack Open-Source LoRaWAN® Network Server. Available online: https://www.chirpstack.io/project/ (accessed on 22 May 2025).
- Bulot, F.M.J.; Russell, H.S.; Rezaei, M.; Johnson, M.S.; Ossont, S.J.; Morris, A.K.R.; Basford, P.J.; Easton, N.H.C.; Mitchell, H.L.; Foster, G.L.; et al. Laboratory Comparison of Low-Cost Particulate Matter Sensors to Measure Transient Events of Pollution—Part B—Particle Number Concentrations. Sensors 2023, 23, 7657. [Google Scholar] [CrossRef] [PubMed]
- IQAir. IQAir|First in Air Quality. Available online: https://www.iqair.com/products/air-quality-monitors/airvisual-outdoor-2-pm?srsltid=AfmBOorE73SXOK56dfnWhcaQ0kTAbv9lxMlMYecYexS6UWfLCe2xAItx%0A (accessed on 23 July 2025).
- IQAir. First in Air Quality. Available online: https://www.iqair.com/ (accessed on 23 July 2025).
- IQAir. Technical College of Informatics–Sulaimani Polytechnic University–CHWAR CHRA Campus Air Quality Index (AQI) and AS Sulaymaniyah Air Pollution|IQAIR. Available online: https://www.iqair.com/iraq/as-sulaymaniyah/as-sulaymaniyah/technical-college-of-informatics-sulaimani-polytechnic-university-chwar-chra-campus (accessed on 10 July 2025).
- IQAir. WAN Co. for Networking Technology, Salim Street, Ali Namali Building Air Quality Index (AQI) and As Sulaymaniyah Air Pollution|IQAIR. Available online: https://www.iqair.com/iraq/as-sulaymaniyah/as-sulaymaniyah/wan-co-for-networking-technology-salim-street-ali-namali-building (accessed on 10 July 2025).
AQI Category | AQI Range | Color | Description |
---|---|---|---|
Good | 0–50 | Green | The air quality is classified as excellent, and air pollution is little or no risk |
Moderate | 51–100 | Yellow | The air quality is acceptable, but some pollutants may provide moderate risks for health to just a small portion of the population |
Unhealthy for Sensitive Groups | 101–150 | Orange | The general public is unlikely to be affected; however, people with lung illnesses, elderly people, and kids are at heightened risk. |
Unhealthy | 151–200 | Red | All people may start to encounter health problems; vulnerable populations can encounter more severe outcomes |
Very Unhealthy | 201–300 | Purple | A health warning has been issued; all individuals may encounter increasingly severe health consequences. |
Hazardous | 301–500 | Maroon | Health alerts about emergency situations; the whole population is at an increased risk of impact. |
Parameter | U.S. EPA NAAQS (Revised 2024) | WHO Guidelines (2021) | Kurdistan Region of Iraq (Observed) |
---|---|---|---|
Annual PM2.5 Limit | 9 μg/m3 | 5 μg/m3 | 10 μg/m3 |
24 h PM2.5 Limit | 35 μg/m3 | 15 μg/m3 | 20 μg/m3 |
Study | MCU | Sensors | Battery | Platform | Technology | Limitations |
---|---|---|---|---|---|---|
Purnomo et al. [42] | Arduino Mega (Arduino S.r.l., Monza, Italy) | SEN0117 PM Sensor | 20 Ah, 50 W PV Panel | Serial Monitor | LoRa | Limited coverage; focus on PM2.5 only |
Irbah et al. [43] | ESP32 Devkit 1 (Espressif Systems, Taipei City, Taiwan) | G5 PMS5003 | Two 2200 mAh Lithium | Blynk Dashboard | Wi-Fi | The battery lasts only 4 h |
Khonrang et al. [44] | Arduino Nano, Mega (Arduino S.r.l., Monza, Italy) | MQ-9, PMS3003 | Solar-Charged Battery | SPI Communication | LoRa IoT Repeater | Packet drops; interference issues |
Zafra-Pérez et al. [45] | ATmega2560 (Microchip Technology Inc., Chandler, AZ, USA) | Honeywell HPMA115c0-004 | 3.7 V/3 Ah Lithium | Python Dash | LoRa WSN | GPS consumes high energy |
Wijeratne et al. [46] | ATSAMD21G18 (Microchip Technology Inc., Chandler, AZ, USA) | IPS7100 for PM, BME280 for climate | 3.7 V, 6600 mAh Lithium-Ion. | Grafana Toolbox | LoRa | Limited communication range in urban environments |
Parra-Medina et al. [47] | Arduino Uno, ATmega 328P (Arduino S.r.l., Monza, Italy) | MQ7, MQ131, MICS6814 A1035 GPS | Battery Pack (no detail) | Pollution Tracking and Evaluation for Climate Analysis (PTECA) custom | LoRa | The limitation is the battery life, and the accuracy of low-cost sensors |
Lishev et al. [48] | ARM® Cortex® M0+ Core (Arm Limited, Cambridge, UK) | PMS7003, ENS160, SCD40, AHT21, J305 tube: | 6600 mAh lithium-polymer. 2 6 V, 1 W Photovoltaic cells | ThingSpeak | LoRa | Inexpensive sensors that have not been calibrated |
Pang et al. [49] | STM32F103C8T6 (STMicroelectronics, Plan-les-Ouates, Switzerland) | PMS5003 | Not specified | OneNET IoT | LoRa | Shell reduces PM measurement accuracy |
Component | Number | Cost (USD) | Source |
---|---|---|---|
Arduino MKR WAN 1310 Board (Arduino S.r.l., Monza, Italy) | 1 | 35.33 | Arduino ABX00029 Arduino MKR WAN 1310 Board |
Sensirion SPS30 sensor (Sensirion AG, Stäfa, Switzerland) | 1 | 36.63 | SPS30 Sensirion AG|Sensors, Transducers|DigiKey |
BME280—Pressure, Humidity, and Temperature Sensor (Bosch Sensortec GmbH, Reutlingen, Germany) | 1 | 4.99 | BME280—Pressure, Humidity, and Temperature Sensor|ElectroMake |
Arduino MKR Proto Large Shield (Arduino S.r.l., Monza, Italy) | 1 | 5.69 | Arduino TSX00002 Arduino MKR Proto Large Shield |
18650 Battery Holder (ongguan Bangteng Hardware Electronics Co., Ltd., Dongguan, China) | 1 | 1.49 | 18650 Battery Holder |
Lithium-Ion Rechargeable Battery 18650, 3.7 V, 2600 mAh (EEMB Co., Ltd., Shenzhen, China) | 2 | 7 | Lithium-Ion Rechargeable Battery, 3.7 V, 2600 mAh |
Mode | Duration (seconds) | Current Consumption (mA) | Instantaneous Current Consumption per Hour (mAh) | Cycles per Hour | Power Consumption (mWh) |
---|---|---|---|---|---|
Initialization and measurements | 40 | 75 | (40 × 75)/3600 = 0.833 | 3600/320 = 11.25 | 0.833 × 11.25 × 5 V 1 = 46.85 |
LoRa transmission | 10 | 50 | (10 × 50)/3600 = 0.138 | 0.138 × 11.25 × 5 V = 7.76 | |
Deep sleep | 270 | 1 | (270 × 1)/3600 = 0.075 | 0.075 × 11.25 × 5 V = 4.22 | |
Total | 320 | 126 | 1.046 | 58.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhammed, N.A.; Saeed, B.I. Design and Implementation of a Scalable LoRaWAN-Based Air Quality Monitoring Infrastructure for the Kurdistan Region of Iraq. Future Internet 2025, 17, 388. https://doi.org/10.3390/fi17090388
Muhammed NA, Saeed BI. Design and Implementation of a Scalable LoRaWAN-Based Air Quality Monitoring Infrastructure for the Kurdistan Region of Iraq. Future Internet. 2025; 17(9):388. https://doi.org/10.3390/fi17090388
Chicago/Turabian StyleMuhammed, Nasih Abdulkarim, and Bakhtiar Ibrahim Saeed. 2025. "Design and Implementation of a Scalable LoRaWAN-Based Air Quality Monitoring Infrastructure for the Kurdistan Region of Iraq" Future Internet 17, no. 9: 388. https://doi.org/10.3390/fi17090388
APA StyleMuhammed, N. A., & Saeed, B. I. (2025). Design and Implementation of a Scalable LoRaWAN-Based Air Quality Monitoring Infrastructure for the Kurdistan Region of Iraq. Future Internet, 17(9), 388. https://doi.org/10.3390/fi17090388