High-Degree Connectivity Sensor Networks: Applications in Pastured Cow Herd Monitoring
Abstract
1. Introduction
2. Problem Statement
3. Monitoring Algorithm Based on Configuration
3.1. Selection
3.1.1. Acquisition of Information
3.1.2. Calculation
3.2. Selection
3.2.1. Calculation
3.2.2. Calculation
3.3. Generation
3.4. Maintenance
3.4.1. Information Acquisition
3.4.2. Calculation
3.4.3. Calculation
3.4.4. Calculation
3.4.5. Reconfiguration
3.5. Determination of Herd Behavior Pattern
4. Development and Operational Experiments of Wireless Sensor Tag Device
4.1. Design Concept of Wireless Sensor Tag Device
4.2. Development of Wireless Sensor Tag Device
4.2.1. Electronic Modules
4.2.2. Frame Unit
4.2.3. Monitoring Unit: Server System
4.3. Preliminary Experiments for RSS Measurement and Network Generation
5. Evaluation Results and Discussion
5.1. Experimental Results in Free-Barn with Paddocks
5.2. Experimental Results in Grazing Field
5.3. Simulation Results for Larger Number of Cow
5.4. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| communication range of each cow | |
| specific range determined by radio wave strength where | |
| mutual friends within | |
| split into multiple local networks | |
| unified single network | |
| isolated state |
References
- Dawkins, M.S. Smart farming and artificial intelligence (AI): How can we ensure that animal welfare is a priority? Appl. Anim. Behav. Sci. 2025, 283, 106519. [Google Scholar] [CrossRef]
- Yin, M.; Ma, R.; Luo, H.; Li, J.; Zhao, Q.; Zhang, M. Non-contact sensing technology enables precision livestock farming in smart farms. Comput. Electron. Agric. 2023, 212, 108171. [Google Scholar] [CrossRef]
- Lee, G.; Ogata, K.; Kawasue, K.; Sakamoto, S.; Ieiri, S. Identifying-and-counting based monitoring scheme for pigs by integrating BLE tags and WBLCX antennas. Comput. Electron. Agric. 2022, 198, 107070. [Google Scholar] [CrossRef]
- Wang, R.; Li, Y.; Tian, F.; Liu, Y.; Wang, Z.; Yuan, C.; Lu, X. Estrus detection in dairy cows using advanced object tracking and behavioral analysis technologies. Comput. Electron. Agric. 2025, 235, 110331. [Google Scholar] [CrossRef]
- Merkelytė, I.; Siukscius, A.; Nainiene, R. The role of sensor technologies in estrus detection in beef cattle: A review of current applications. Animals 2025, 15, 2313. [Google Scholar] [CrossRef]
- Bretzinger, L.F.; Hölper, M.; Tippenhauer, C.M.; Plenio, J.-L.; Madureira, A.; Heuwieser, W.; Borchardt, S. Evaluation of four different automated activity monitoring systems to identify anovulatory cows in early lactation. Animals 2024, 14, 3145. [Google Scholar] [CrossRef]
- Johansen, F.P.; Buijs, S.; Arnott, G. Providing concentrate feed outside of the milking robot increases feed intake in dairy cows without reducing motivation to visit the robot. Animal 2025, 19, 101459. [Google Scholar] [CrossRef]
- Romano, E.; Brambilla, M.; Cutini, M.; Giovinazzo, S.; Lazzari, A.; Calcante, A.; Tangorra, F.M.; Rossi, P.; Motta, A.; Bisaglia, C.; et al. Increased cattle feeding precision from automatic feeding systems: Considerations on technology spread and farm level perceived advantages in Italy. Animals 2023, 13, 3382. [Google Scholar] [CrossRef]
- Han, Y.; Wu, J.; Zhang, H.; Cai, M.; Sun, Y.; Li, B.; Feng, X.; Hao, J.; Wang, H. Beef cattle abnormal behaviour recognition based on dual-branch frequency channel temporal excitation and aggregation. Biosyst. Eng. 2024, 241, 28–42. [Google Scholar] [CrossRef]
- Jurkovich, V.; Hejel, P.; Kovács, L. A review of the effects of stress on dairy cattle behaviour. Animals 2024, 14, 2038. [Google Scholar] [CrossRef]
- Arablouei, R.; Bishop-Hurley, G.J.; Bagnall, N.; Ingham, A. Cattle behavior recognition from accelerometer data: Leveraging in-situ cross-device model learning. Comput. Electron. Agric. 2024, 227, 109546. [Google Scholar] [CrossRef]
- Ding, L.; Lv, Y.; Jiang, R.; Zhao, W.; Li, Q.; Yang, B.; Yu, L.; Ma, W.; Gao, R.; Yu, Q. Predicting the feed intake of cattle based on jaw movement using a triaxial accelerometer. Agriculture 2022, 12, 899. [Google Scholar] [CrossRef]
- Nogoy, K.M.C.; Chon, S.-i.; Park, J.-h.; Sivamani, S.; Lee, D.-H.; Choi, S.H. High precision classification of resting and eating behaviors of cattle by using a collar-fitted triaxial accelerometer sensor. Sensors 2022, 22, 5961. [Google Scholar] [CrossRef] [PubMed]
- Benaissa, S.; Tuyttens, F.A.M.; Plets, D.; Martens, L.; Vandaele, L.; Joseph, W.; Sonck, B. Improved cattle behaviour monitoring by combining Ultra-Wideband location and accelerometer data. Animal 2023, 17, 100730. [Google Scholar] [CrossRef]
- Ojo, M.O.; Viola, I.; Baratta, M.; Giordano, S. Practical experiences of a smart livestock location monitoring system leveraging GNSS, LoRaWAN and cloud services. Sensors 2022, 22, 273. [Google Scholar] [CrossRef]
- Bloch, V.; Pastell, M. Monitoring of cow location in a barn by an open-source, low-cost, low-energy bluetooth tag system. Sensors 2020, 20, 3841. [Google Scholar] [CrossRef]
- Wang, Y.; Perea, A.; Cao, H.; Bakir, M.; Utsumi, S. A two-stage machine learning approach for calving detection in rangeland cattle. Agriculture 2025, 15, 1434. [Google Scholar] [CrossRef]
- Liao, M.; Morota, G.; Bi, Y.; Cockrum, R.R. Predicting dairy calf body weight from depth images using deep learning (YOLOv8) and threshold segmentation with cross-validation and longitudinal analysis. Animals 2025, 15, 868. [Google Scholar] [CrossRef]
- Ferreira, C.; Todorovic, M.; Sugrue, P.; Teixeira, S.; Galvin, P. Review: Emerging sensors and instrumentation systems for bovine health monitoring. Animal 2025, 19, 101527. [Google Scholar] [CrossRef]
- Galik, R.; Bod’o, Š.; Lüttmerding, A.; Knížková, I.; Kunc, P. Tracking differences in cow temperature related to environmental factors. Appl. Sci. 2024, 14, 7205. [Google Scholar] [CrossRef]
- Li, J.; Ling, M.; Fu, B.; Dong, Y.; Mo, W.; Lin, K.; Yuan, F. UAV based smart grazing: A prototype of space-air-ground integrated grazing IoT networks in Qinghai-Tibet plateau. Discov. Internet Things 2025, 5, 17. [Google Scholar] [CrossRef]
- Casas, R.; Hermosa, A.; Marco, Á.; Blanco, T.; Zarazaga-Soria, F.J. Real-time extensive livestock monitoring using LPWAN smart wearable and infrastructure. Appl. Sci. 2021, 11, 1240. [Google Scholar] [CrossRef]
- Cabezas, J.; Yubero, R.; Visitación, B.; Navarro-García, J.; Algar, M.J.; Cano, E.L.; Ortega, F. Analysis of accelerometer and GPS data for cattle behaviour identification and anomalous events detection. Entropy 2022, 24, 336. [Google Scholar] [CrossRef]
- Rivero, M.J.; Grau-Campanario, P.; Mullan, S.; Held, S.D.E.; Stokes, J.E.; Lee, M.R.F.; Cardenas, L.M. Factors affecting site use preference of grazing cattle studied from 2000 to 2020 through GPS tracking: A review. Sensors 2021, 21, 2696. [Google Scholar] [CrossRef]
- Kikusui, T.; Winslow, J.T.; Mori, Y. Social buffering: Relief from stress and anxiety. Philos. Trans. R. Soc. B 2006, 361, 2215–2228. [Google Scholar] [CrossRef]
- van Reenen, C.G.; Mars, M.H.; Leushuis, I.E.; Rijsewijk, F.A.; van Oirschot, J.T.; Blokhuis, H.J. Social isolation may influence responsiveness to infection with bovine herpesvirus 1 in veal calves. Vet. Microbiol. 2000, 75, 135–143. [Google Scholar] [CrossRef]































| Approach | Cites | Purpose | Limitations |
|---|---|---|---|
| accelerometers | [11,12,13] | individual movement | focus on individuals; |
| & magnetometers | detection | limited social analysis | |
| communication sensors | [14,15,16] | behavior inference | signal instability |
| (RSSI) | via signal strength | ||
| depth cameras | [17,18] | calving/ | indoor use only; |
| posture monitoring | infrastructural facility | ||
| microcontrollers including | [19,20] | physiological health | no social-context |
| heart rate or temperature | monitoring | information | |
| communication networks | [21,22] | estrus and activity | limited social- |
| (estrus detection) | monitoring | behavior data | |
| GPS movement | [23,24] | pasture movement | low resolution for |
| analysis | analysis | social interactions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, G.; Yamane, T.; Okabe, K.; Sugino, F.; Kyung, Y. High-Degree Connectivity Sensor Networks: Applications in Pastured Cow Herd Monitoring. Future Internet 2025, 17, 569. https://doi.org/10.3390/fi17120569
Lee G, Yamane T, Okabe K, Sugino F, Kyung Y. High-Degree Connectivity Sensor Networks: Applications in Pastured Cow Herd Monitoring. Future Internet. 2025; 17(12):569. https://doi.org/10.3390/fi17120569
Chicago/Turabian StyleLee, Geunho, Teruyuki Yamane, Kota Okabe, Fumiaki Sugino, and Yeunwoong Kyung. 2025. "High-Degree Connectivity Sensor Networks: Applications in Pastured Cow Herd Monitoring" Future Internet 17, no. 12: 569. https://doi.org/10.3390/fi17120569
APA StyleLee, G., Yamane, T., Okabe, K., Sugino, F., & Kyung, Y. (2025). High-Degree Connectivity Sensor Networks: Applications in Pastured Cow Herd Monitoring. Future Internet, 17(12), 569. https://doi.org/10.3390/fi17120569

