Decentralized Federated Learning for IoT Malware Detection at the Multi-Access Edge: A Two-Tier, Privacy-Preserving Design
Abstract
Share and Cite
Asiri, M.; Khemakhem, M.A.; Alhebshi, R.M.; Alsulami, B.S.; Eassa, F.E. Decentralized Federated Learning for IoT Malware Detection at the Multi-Access Edge: A Two-Tier, Privacy-Preserving Design. Future Internet 2025, 17, 475. https://doi.org/10.3390/fi17100475
Asiri M, Khemakhem MA, Alhebshi RM, Alsulami BS, Eassa FE. Decentralized Federated Learning for IoT Malware Detection at the Multi-Access Edge: A Two-Tier, Privacy-Preserving Design. Future Internet. 2025; 17(10):475. https://doi.org/10.3390/fi17100475
Chicago/Turabian StyleAsiri, Mohammed, Maher A. Khemakhem, Reemah M. Alhebshi, Bassma S. Alsulami, and Fathy E. Eassa. 2025. "Decentralized Federated Learning for IoT Malware Detection at the Multi-Access Edge: A Two-Tier, Privacy-Preserving Design" Future Internet 17, no. 10: 475. https://doi.org/10.3390/fi17100475
APA StyleAsiri, M., Khemakhem, M. A., Alhebshi, R. M., Alsulami, B. S., & Eassa, F. E. (2025). Decentralized Federated Learning for IoT Malware Detection at the Multi-Access Edge: A Two-Tier, Privacy-Preserving Design. Future Internet, 17(10), 475. https://doi.org/10.3390/fi17100475