Explainable Artificial Intelligence Methods to Enhance Transparency and Trust in Digital Deliberation Settings
Abstract
:1. Introduction
2. Related Work
2.1. Clustering
2.2. Summarization
2.3. Explainability
2.4. Digital Democracy and Machine Learning
3. The Proposed Approach
- Masked Language Modeling (MLM): Similar to BERT, MPNet masks some of the words in a sentence and tries to predict them (e.g., the sentence “The pesticides should be banned in EU”. is truncated to generate the masked version “The pesticides should be banned in [MASK]”.)
- Permuted Language Modeling (PLM): The second functionality shuffles the words of a sentence, in order to predict the original order. Such permutations allow MPNet to extract statistical dependencies between words.
- Generation of Sentence Embeddings: Each sentence is represented as a real-value vector that incorporates the insights and the information extracted by the above-mentioned functionalities. By default, MPNet produces a 768-dimensional embedding for each sentence. To obtain the overall document embeddings, a mean pooling operator is utilized that takes into account the embeddings of each sentence of the document.
Algorithm 1 K-Medoids Clustering |
Input: Dataset , number of clusters k |
Output: Clusters and medoids |
|
Explaining the Model
4. Case Study
5. Ethical Considerations
5.1. Data Privacy
5.2. Bias and Fairness
5.3. Transparency and Explainability
5.4. Automated Decision Making
6. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wisniewski, C. Digital deliberation? Crit. Rev. 2013, 25, 245–259. [Google Scholar] [CrossRef]
- Chambers, S.; Gastil, J. Deliberation, democracy, and the digital landscape. Political Stud. 2021, 69, 3–6. [Google Scholar] [CrossRef]
- Arana-Catania, M.; Lier, F.A.V.; Procter, R.; Tkachenko, N.; He, Y.; Zubiaga, A.; Liakata, M. Citizen participation and machine learning for a better democracy. Digit. Gov. Res. Pract. 2021, 2, 1–22. [Google Scholar] [CrossRef]
- Cambria, E.; White, B. Jumping NLP curves: A review of natural language processing research. IEEE Comput. Intell. Mag. 2014, 9, 48–57. [Google Scholar] [CrossRef]
- Arrieta, A.B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; García, S.; Gil-López, S.; Molina, D.; Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 2020, 58, 82–115. [Google Scholar] [CrossRef]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why should i trust you?” Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1135–1144. [Google Scholar]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4768–4777. [Google Scholar]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, 21 June–18 July 1967; Volume 1, pp. 281–297. [Google Scholar]
- Park, H.S.; Jun, C.H. A simple and fast algorithm for K-medoids clustering. Expert Syst. Appl. 2009, 36, 3336–3341. [Google Scholar] [CrossRef]
- Guha, S.; Rastogi, R.; Shim, K. ROCK: A robust clustering algorithm for categorical attributes. Inf. Syst. 2000, 25, 345–366. [Google Scholar] [CrossRef]
- Zhang, T.; Ramakrishnan, R.; Livny, M. BIRCH: An efficient data clustering method for very large databases. ACM Sigmod Rec. 1996, 25, 103–114. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In kdd; ACM: New York, NY, USA, 1996; Volume 96, pp. 226–231. [Google Scholar]
- Mehta, V.; Bawa, S.; Singh, J. WEClustering: Word embeddings based text clustering technique for large datasets. Complex Intell. Syst. 2021, 7, 3211–3224. [Google Scholar] [CrossRef]
- Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013, arXiv:1301.3781. [Google Scholar]
- Luhn, H.P. The automatic creation of literature abstracts. IBM J. Res. Dev. 1958, 2, 159–165. [Google Scholar] [CrossRef]
- Ko, Y.; Seo, J. An effective sentence-extraction technique using contextual information and statistical approaches for text summarization. Pattern Recognit. Lett. 2008, 29, 1366–1371. [Google Scholar] [CrossRef]
- Steinberger, J.; Jezek, K. Using latent semantic analysis in text summarization and summary evaluation. Proc. ISIM 2004, 4, 8. [Google Scholar]
- Mihalcea, R.; Tarau, P. Textrank: Bringing order into text. In Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, Barcelona, Spain, 25–26 July 2004; pp. 404–411. [Google Scholar]
- Erkan, G.; Radev, D.R. Lexrank: Graph-based lexical centrality as salience in text summarization. J. Artif. Intell. Res. 2004, 22, 457–479. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mohamed, A.; Levy, O.; Stoyanov, V.; Zettlemoyer, L. Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv 2019, arXiv:1910.13461. [Google Scholar]
- Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 2020, 21, 1–67. [Google Scholar]
- Royo, S.; Pina, V.; Garcia-Rayado, J. Decide Madrid: A critical analysis of an award-winning e-participation initiative. Sustainability 2020, 12, 1674. [Google Scholar] [CrossRef]
- Karacapilidis, N.; Tsakalidis, D.; Domalis, G. An AI-Enhanced Solution for Large-Scale Deliberation Mapping and Explainable Reasoning. In Proceedings of the European, Mediterranean, and Middle Eastern Conference on Information Systems; Springer: Berlin/Heidelberg, Germany, 2022; pp. 305–316. [Google Scholar]
- Fournier-Tombs, E.; Di Marzo Serugendo, G. DelibAnalysis: Understanding the quality of online political discourse with machine learning. J. Inf. Sci. 2020, 46, 810–822. [Google Scholar] [CrossRef]
- Small, C.; Bjorkegren, M.; Erkkilä, T.; Shaw, L.; Megill, C. Polis: Scaling deliberation by mapping high dimensional opinion spaces. Recer. Rev. De Pensam. I Anàlisi 2021, 26. [Google Scholar] [CrossRef]
- Song, K.; Tan, X.; Qin, T.; Lu, J.; Liu, T.Y. Mpnet: Masked and permuted pre-training for language understanding. Adv. Neural Inf. Process. Syst. 2020, 33, 16857–16867. [Google Scholar]
Word Statistics | ||||||||
---|---|---|---|---|---|---|---|---|
# Documents | Min | Max | Average | STD | Median | 25% | 75% | |
Original Dataset | 2310 | 2 | 592 | 100.93 | 95.16 | 69 | 40 | 121 |
Pre-Processed Dataset | 2177 | 10 | 592 | 99.43 | 92.47 | 70 | 41 | 118 |
Word Statistics | ||||||||
---|---|---|---|---|---|---|---|---|
cluster_id | # Documents | Min | Max | Average | STD | Median | 25% | 75% |
0 | 943 | 10 | 592 | 72.96 | 68.57 | 54 | 34 | 87 |
1 | 1234 | 10 | 581 | 119.66 | 102.73 | 83.5 | 49 | 151 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siachos, I.; Karacapilidis, N. Explainable Artificial Intelligence Methods to Enhance Transparency and Trust in Digital Deliberation Settings. Future Internet 2024, 16, 241. https://doi.org/10.3390/fi16070241
Siachos I, Karacapilidis N. Explainable Artificial Intelligence Methods to Enhance Transparency and Trust in Digital Deliberation Settings. Future Internet. 2024; 16(7):241. https://doi.org/10.3390/fi16070241
Chicago/Turabian StyleSiachos, Ilias, and Nikos Karacapilidis. 2024. "Explainable Artificial Intelligence Methods to Enhance Transparency and Trust in Digital Deliberation Settings" Future Internet 16, no. 7: 241. https://doi.org/10.3390/fi16070241
APA StyleSiachos, I., & Karacapilidis, N. (2024). Explainable Artificial Intelligence Methods to Enhance Transparency and Trust in Digital Deliberation Settings. Future Internet, 16(7), 241. https://doi.org/10.3390/fi16070241