A Versatile MANET Experimentation Platform and Its Evaluation through Experiments on the Performance of Routing Protocols under Diverse Conditions
Abstract
:1. Introduction
1.1. Background and Motivation
1.2. Related Work and Limitations
1.3. Contributions
- It proposes a MANET experimentation platform with a modular architecture that includes clearly defined modules for the functions associated with localization, nodal interactions, and ad hoc networking. The architecture can accommodate a variety of different routing protocols and supports mechanisms for controlling, through software, a number of operational and environmental conditions.
- It discusses a lightweight implementation of the design on inexpensive Raspberry Pi-based commodity hardware, using one board computer per network node. The implementation is compatible with a wide range of wireless communications technologies and any type of robotic device undertaking nodal mobility.
- It presents and analyses results from a comprehensive set of experiments, demonstrating the platform’s potential and highlighting the impact of real-world imperfections.
2. Scope of Applicability and Use-Case Scenario
3. Architecture of the Platform and Related Software and Hardware Aspects
3.1. Core Facilities for Nodal Interactions and Ad Hoc Networking
3.1.1. The Localization Process
3.1.2. The Beacon-Based Signaling
3.1.3. The Routing Protocol and Associated Message Handling Mechanisms
3.1.4. Traffic Endpoints and Support for Calculating Performance Metrics
3.1.5. Overall Operation and Event Dynamics
3.2. Implementation Aspects and Associated Configuration and Monitoring Processes
3.2.1. Wireless Communications and Networking and Support for Monitoring the MANET Nodes
3.2.2. Initialization and Configuration
3.2.3. Hardware Details
3.2.4. Routing Protocols Implemented in the Platform
4. Devices Enabling Mobility in the MANET Platform
4.1. UxV Devices Enabling Mobility in the ATLAS/RAWFIE Experiments
4.2. Enabling Mobility through Simple Arduino-Based Mobile Robots
5. Results from Experiments Using the Platform
5.1. Setup and Methodology
5.2. Results
5.3. Further Discussion and Real-World Effects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kurkowski, S.; Camp, T.; Colagrosso, M. MANET simulation studies: The incredible. ACM SIGMOBILE Mob. Comput. Commun. Rev. 2005, 9, 50–61. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, S. Techniques for Real-World Implementation of a Manet. In Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February 2019; pp. 519–524. [Google Scholar]
- Ngu, A.H.; Gutierrez, M.; Metsis, V.; Nepal, S.; Sheng, Q.Z. IoT Middleware: A Survey on Issues and Enabling Technologies. IEEE Internet Things J. 2017, 4, 1–20. [Google Scholar] [CrossRef]
- Bruzgiene, R.; Narbutaite, L.; Adomkus, T. MANET Network in Internet of Things System. Ad Hoc Netw. 2017, 3, 89–114. [Google Scholar]
- Bellavista, P.; Cardone, G.; Corradi, A.; Foschini, L. Convergence of MANET and WSN in IoT Urban Scenarios. IEEE Sens. J. 2013, 13, 3558–3567. [Google Scholar] [CrossRef]
- Chibelushi, C.; Eardley, A.; Arabo, A. Identity Management in the Internet of Things: The Role of MANETs for Healthcare Applications. Comput. Sci. Inf. Technol. 2013, 1, 73–81. [Google Scholar] [CrossRef]
- Glass, S.; Mahgoub, I.; Rathod, M. Leveraging MANET-based cooperative cache discovery techniques in VANETs: A survey and analysis. IEEE Commun. Surv. Tutor. 2017, 19, 2640–2661. [Google Scholar] [CrossRef]
- Sumalee, A.; Ho, H.W. Smarter and more connected: Future intelligent transportation system. IATSS Res. 2018, 42, 67–71. [Google Scholar] [CrossRef]
- Schranz, M.; Umlauft, M.; Sende, M.; Elmenreich, W. Swarm robotic behaviors and current applications. Front. Robot. AI 2020, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulou, P.; Kolomvatsos, K.; Hadjiefthymiades, S. Internet of Things Business Models: The RAWFIE Case. In Digital Transformation for a Sustainable Society in the 21st Century; Pappas, I., Mikalef, P., Dwivedi, Y., Jaccheri, L., Krogstie, J., Mäntymäki, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 11701. [Google Scholar]
- Kalatzis, N.; Avgeris, M.; Dechouniotis, D.; Papadakis-Vlachopapadopoulos, K.; Roussaki, I.; Papavassiliou, S. Edge computing in IoT ecosystems for UAV-enabled early fire detection. In Proceedings of the IEEE International Conference on Smart Computing (SMARTCOMP), Taormina, Italy, 18–20 June 2018; pp. 106–114. [Google Scholar]
- Zhang, T.; Liu, G.; Zhang, H.; Kang, W.; Karagiannidis, G.K.; Nallanathan, A. Energy-efficient resource allocation and trajectory design for UAV relaying systems. IEEE Trans. Commun. 2020, 68, 6483–6498. [Google Scholar] [CrossRef]
- Benhamida, F.Z.; Bouabdellah, A.; Challal, Y. Using delay tolerant network for the Internet of Things: Opportunities and challenges. In Proceedings of the 8th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 4–6 April 2017; pp. 252–257. [Google Scholar]
- Hogie, L.; Bouvry, P.; Guinand, F. An Overview of MANETs Simulation. Electron. Notes Theor. Comput. Sci. 2006, 150, 81–101. [Google Scholar] [CrossRef] [Green Version]
- Borboruah, G.; Nandi, G. A study on large scale network simulators. Int. J. Comput. Sci. Inf. Technol. 2014, 5, 7318–7322. [Google Scholar]
- Boukerche, A.; Bononi, L. Simulation and Modeling of Wireless, Mobile and Ad Hoc Networks. Mob. Ad HocNetw. 2004, 373–409. [Google Scholar] [CrossRef]
- Guruprasad, S.; Ricci, R.; Lepreau, J. Integrated Network Experimentation using Simulation and Emulation. In Proceedings of the First International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities (TRIDENTCOM), Trento, Italy, 23–25 February 2005; pp. 204–212. [Google Scholar]
- Krop, T.; Bredel, M.; Hollick, M.; Steinmetz, R. JiST/MobNet: Combined simulation emulation and real-world testbed for ad hoc networks. In Proceedings of the Second ACM International Workshop on Wireless Network Testbeds, Experimental Evaluation and Characterization (WinTECH’07), New York, NY, USA, 10 September 2007; pp. 27–34. [Google Scholar]
- Mahadevan, P.; Rodriguez, A.; Becker, D.; Vahdat, A. MobiNet: A Scalable Emulation Infrastructure for Ad-hoc and Wireless Networks. ACM SIGMOBILE Mob. Comput. Commun. Rev. 2006, 10, 26–37. [Google Scholar] [CrossRef]
- Sanchez-Aguero, V.; Valera, F.; Nogales, B.; Gonzalez, L.F.; Vidal, I. VENUE: Virtualized environment for multi-UAV network emulation. IEEE Access 2019, 7, 154659–154671. [Google Scholar] [CrossRef]
- Ruffieux, S.; Gisler, C.; Wagen, J.; Buntschu, F.; Bovet, G. TAKE-Tactical ad-hoc network emulation. In Proceedings of the 2018 International Conference on Military Communications and Information Systems (ICMCIS), Warsaw, Poland, 22–23 May 2018; pp. 1–8. [Google Scholar]
- Poylisher, A.; Serban, C.; Lee, J.; Lu, T.-C.; Chadha, R.; Chiang, C.-Y.; Orlando, R.; Jakubowski, K. A virtual ad hoc network testbed. Int. J. Commun. Netw. Distrib. Syst. 2010, 5, 5–24. [Google Scholar] [CrossRef]
- McGregor, I. The relationship between simulation and emulation. In Proceedings of the Winter Simulation Conference, San Diego, CA, USA, 8–11 December 2002; pp. 1683–1688. [Google Scholar]
- Göktürk, E. Emulating Ad Hoc Networks: Differences from Simulations and Emulation Specific Problems. In Proceedings of the 20th International Symposium on Computer and Information Sciences (ISCIS 2005), Istanbul, Turkey, 26–28 October 2005; pp. 198–203. [Google Scholar]
- Kropff, M.; Krop, T.; Hollick, M.; Mogre, P.; Steinmetz, R. A Survey on Real World and Emulation Testbeds for Mobile Ad hoc Networks. In Proceedings of the 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities (TRIDENTCOM 2006), Barcelona, Spain, 1–3 March 2006; pp. 1989–1993. [Google Scholar]
- De, P.; Raniwala, A.; Krishnan, R.; Tatavarthi, K.; Modi, J.; Syed, N.; Sharma, S.; Chiueh, T. MiNT-m: An Autonomous Mobile Wireless Experimentation Platform. In Proceedings of the 4th International Conference on Mobile Systems, Applications and Services (MobiSys’06), New York, NY, USA, 19–22 June 2006; pp. 124–137. [Google Scholar]
- Martinez-de Dios, J.; Jimenez-Gonzalez, A.; San Bernabe, A.; Ollero, A. CONET integrated testbed architecture. In a Remote Integrated Testbed for Cooperating Objects; Springer International Publishing: Cham, Switzerland, 2014; pp. 23–39. [Google Scholar]
- Fok, C.; Petz, A.; Stovall, D.; Paine, N.; Julien, C.; Vishwanath, S. Pharos: A testbed for mobile cyber-physical systems. Univ. Tex. Austin Tech. Rep. 2011. Available online: https://www.yumpu.com/en/document/read/51122653/a-testbed-for-mobile-cyber-physical-systems-the-university-of- (accessed on 18 February 2022).
- Pu, Y.-C.; You, P.-C. Indoor positioning system based on BLE location fingerprinting with classification approach. Appl. Math. Model. 2018, 62, 654–663. [Google Scholar] [CrossRef]
- Pechlivanidou, K.; Katsalis, K.; Igoumenos, I.; Katsaros, D.; Korakis, T.; Tassiulas, L. NITOS Testbed: A Cloud based Wireless Experimentation Facility. In Proceedings of the 26th International Teletraffic Congress (ITC), Karlskrona, Sweden, 9–11 September 2014; pp. 1–6. [Google Scholar]
- Dahlberg, T.A.; Nasipuri, A.; Taylor, C. Explorebots: A Mobile Network Experimentation Testbed. In Proceedings of the 2005 ACM SIGCOMM Workshop Experimental Approaches to Wireless Network Design and Analysis (E-WIND’05), New York, NY, USA, 22 August 2005; pp. 76–81. [Google Scholar]
- Acroname Corp. Garcia Robot. Available online: http://www.acroname.com/garcia/garcia.html (accessed on 18 February 2022).
- Farkhana, M.; Hanan, A.A. Mobility in mobile ad-hoc network testbed using robot: Technical and critical review. Robot. Auton. Syst. 2018, 108, 153–178. [Google Scholar] [CrossRef]
- Kulla, E.; Ikeda, M.; Barolli, L.; Xhafa, F.; Iwashige, J. A Survey on MANET Testbeds and Mobility Models. In Computer Science and Convergence, Lecture Notes in Electrical Engineering; Springer: Dordrecht, The Netherlands, 2012; pp. 651–657. [Google Scholar]
- RAWFIE Project (Road-, Air-, and Water-based Future Internet Experimentation); Funded by the European Union’s Horizon 2020 Framework Programme for Research and Innovation—Future Internet Research and Experimentation (FIRE+), under Grant Agreement No 645220. Available online: www.rawfie.eu (accessed on 18 February 2022).
- Albers, H.C. Beschreibung einer neuen Kegelprojektion. Zach’s Mon. Corresp. Beford. Erd- Himmels-Kunde 1805, 12, 450–459. [Google Scholar]
- Adams, O.S. Tables for Albers Projection: U.S. Coast and Geodetic Survey Special Publication; DC Government Printing Office: Washington, DC, USA, 1927. [Google Scholar]
- Snyder, J.P. Map Projections Used by the U.S. Geological Survey; United States Government Printing Office: Washington, DC, USA, 1982. Available online: http://pubs.er.usgs.gov/publication/b1532 (accessed on 18 February 2022).
- Killijian, M.-O.; Powell, D.; Roy, M.; Severac, G. Experimental Evaluation, of Ubiquitous Systems: Why and How to Reduce WiFi Communication Range. In Proceedings of the 2nd International Conference on Distributed Event-Based Systems (DEBS 2008), Rome, Italy, 2–4 July 2008. [Google Scholar]
- Killijian, M.-O.; Roy, M.; Severac, G. The ARUM experimentation platform: An open tool to evaluate mobile systems applications. In Advances in Autonomous Mini Robots; Rückert, U., Joaquin, S., Felix, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 221–234. [Google Scholar]
- The Official Raspberry Pi Site. Available online: https://www.raspberrypi.org/ (accessed on 18 February 2022).
- TP-Link TL-WN722N. Available online: https://www.tp-link.com/us/home-networking/usb-adapter/tl-wn722n/#overview (accessed on 18 February 2022).
- Description of the u-blox 7 Receiver Description Including Protocol Specification V14. Available online: https://www.u-blox.com/sites/default/files/products/documents/u-blox7-V14_ReceiverDescriptionProtocolSpec_%28GPS.G7-SW-12001%29_Public.pdf (accessed on 18 February 2022).
- NEO-M8N GPS. Available online: https://www.u-blox.com/sites/default/files/NEO-M8-FW3_DataSheet_UBX-15031086.pdf (accessed on 18 February 2022).
- Takagi, H.; Kleinrock, L. Optimal transmission ranges for randomly distributed packet radio terminals. IEEE Trans. Commun. 1984, 32, 246–257. [Google Scholar] [CrossRef] [Green Version]
- Lebrun, J.; Chuah, C.-N.; Ghosal, D.; Zhang, M. Knowledge-based Opportunistic Forwarding in Vehicular Wireless Ad Hoc Networks. In Proceedings of the 2005 IEEE 61st Vehicular Technology Conference, Stockholm, Sweden, 30 May–1 June 2005; pp. 2289–2293. [Google Scholar]
- Manolopoulos, I.; Kontovasilis, K.; Stavrakakis, I.; Thomopoulos, S.C.A. Methodologies for calculating decision-related event occurrence times, with applications to effective routing in diverse MANET environments. Ad Hoc Netw. 2020, 99, 102068. [Google Scholar] [CrossRef]
- Manolopoulos, I.; Kontovasilis, K.; Stavrakakis, I.; Thomopoulos, S.C.A. MAD: A Dynamically Adjustable Hybrid Location and Motion-based Routing Protocol for VANETs. In Proceedings of the IEEE 7th International Symposium on Wireless Communication Systems (IEEE ISWCS’10), York, UK, 19–22 September 2010. [Google Scholar]
- Manolopoulos, I.; Kontovasilis, K.; Stavrakakis, I.; Thomopoulos, S.C.A. Exploiting Topology and Behavioral Attributes for Effective Routing in Mobile Networks. In Proceedings of the IFIP/IEEE 10th International Conference on Wireless On-Demand Network Systems and Services (IFIP/IEEE WONS’13), Banff, AB, Canada, 18–20 March 2013. [Google Scholar]
- FLEXUS-Flexible Unmanned Surface Vehicles for the Internet of Moving Things. Available online: https://flexus.inesctec.pt/ (accessed on 18 February 2022).
- PlaDyFleet—A Fleet of Unmanned Surface Marine Vehicles. Available online: https://labust.fer.hr/labust/research/pladyfleet (accessed on 18 February 2022).
- ALTU: Provision of All-Terrain UGVs, Model Endeavour. Available online: https://vehicularlab.uni.lu/project/fcd4its/ (accessed on 18 February 2022).
- Loukatos, D.; Arvanitis, K.G. Extending Smart Phone Based Techniques to Provide AI Flavored Interaction with DIY Robots, over Wi-Fi and LoRa interfaces. Educ. Sci. 2019, 9, 224. [Google Scholar] [CrossRef] [Green Version]
- Loukatos, D.; Petrongonas, E.; Manes, K.; Kyrtopoulos, I.-V.; Dimou, V.; Arvanitis, K.G. A Synergy of Innovative Technologies towards Implementing an Autonomous DIY Electric Vehicle for Harvester-Assisting Purposes. Machines 2021, 9, 82. [Google Scholar] [CrossRef]
- Camp, T.; Boleng, J.; Davies, V. A survey of mobility models for ad hoc networks research. Wirel. Commun. Mob. Comput. 2002, 2, 483–502. [Google Scholar] [CrossRef]
Group of Parameters | Parameter | Example | Types of Nodes Using the Parameter |
---|---|---|---|
Ad hoc network | Network specifier | 192.168.167.0/24 | All |
Port specifier | 10,000 | All | |
Monitoring Network | Monitoring IP | 192.168.168.100 | All |
Monitoring Port | 11,000 | All | |
Node Characteristics | ID (host part of ad hoc net address) | 100 | All |
Transmission range threshold (m) | 20 | Mobile, Source | |
Period for message table checks (s) | 2 | Mobile, Source | |
Beacon period (s) | 2 | Mobile, Destination | |
Beacon table entry timeout threshold (s) | 4 | Mobile, Source | |
Localization Characteristics | Reference Latitude | zz.zzz | All |
Reference Longitude | rr.rrr | All | |
Rotation Angle (Degrees) | 0 | All | |
Buffer size for least squares smoothing | 5 | Mobile | |
Location update period (s) | 2 | Mobile | |
Source Latitude | yy.yyy | Source | |
Source Longitude | qq.qqq | Source | |
Destination Latitude | xx.xxx | Destination | |
Destination Longitude | ww.www | Destination | |
Experiment Characteristics | # Routing Protocols | 4 | All |
# Messages per protocol | 10 | Source | |
Message generation period (s) | 100 | Source | |
Destination IP Address | 192.168.167.103 | Source | |
Destination ID (host part of the address) | 103 | Source | |
Destination Latitude | xx.xxx | Source | |
Destination Longitude | ww.www | Source |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manolopoulos, I.; Loukatos, D.; Kontovasilis, K. A Versatile MANET Experimentation Platform and Its Evaluation through Experiments on the Performance of Routing Protocols under Diverse Conditions. Future Internet 2022, 14, 154. https://doi.org/10.3390/fi14050154
Manolopoulos I, Loukatos D, Kontovasilis K. A Versatile MANET Experimentation Platform and Its Evaluation through Experiments on the Performance of Routing Protocols under Diverse Conditions. Future Internet. 2022; 14(5):154. https://doi.org/10.3390/fi14050154
Chicago/Turabian StyleManolopoulos, Ioannis, Dimitrios Loukatos, and Kimon Kontovasilis. 2022. "A Versatile MANET Experimentation Platform and Its Evaluation through Experiments on the Performance of Routing Protocols under Diverse Conditions" Future Internet 14, no. 5: 154. https://doi.org/10.3390/fi14050154
APA StyleManolopoulos, I., Loukatos, D., & Kontovasilis, K. (2022). A Versatile MANET Experimentation Platform and Its Evaluation through Experiments on the Performance of Routing Protocols under Diverse Conditions. Future Internet, 14(5), 154. https://doi.org/10.3390/fi14050154