ICT in Rural Areas from the Perspective of Dairy Farming: A Systematic Review
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Connectivity and Digital Inclusion (35 Documents)
3.2. Financial Development (15 Documents)
3.3. Innovation and Technology (22 Documents)
3.4. Smart Farming (12 Documents)
3.5. Internet of Things (16 Documents)
3.6. Market (12 Documents)
3.7. Production (18 Documents)
3.8. Management and Counselling (8 Documents)
3.9. Administration (36 Documents)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Warf, B. Teaching Digital Divides. J. Geogr. 2019, 118, 77–87. [Google Scholar] [CrossRef]
- Diez-Olivan, A.; Del Ser, J.; Galar, D.; Sierra, B. Data fusion and machine learning for industrial prognosis: Trends and perspectives towards industry 4.0. Inf. Fusion 2019, 50, 92–111. [Google Scholar] [CrossRef]
- Townsend, L.; Salemink, K.; Wallace, C.D. Gypsy—Traveller communities in the United Kingdom and the Netherlands: Socially and digitally excluded? Media Cult. Soc. 2018. [Google Scholar] [CrossRef]
- European Union. European Commission, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and to the Committee of the Regions—A Digital Agenda for Europe, 19/05/2010, COM/2010/0245 final. Available online: https://eur-lex.europa.eu/legal-content/es/ALL/?uri=CELEX:52010DC0245 (accessed on 30 March 2021).
- Correa, T.; Pavez, I. Digital inclusion in rural areas: A qualitative exploration of challenges faced by people from isolated communities. J. Comput. Med. Commun. 2016, 21, 247–263. [Google Scholar] [CrossRef]
- Oesterreich, T.D.; Teuteberg, F. Understanding the implications of digitisation and automation in the context of Industry 4.0: A triangulation approach and elements of a research agenda for the construction industry. Comput. Ind. 2016, 83, 121–139. [Google Scholar] [CrossRef]
- Salemink, K.; Strijker, D.; Bosworth, G. The community reclaims control? Learning experiences from rural broadband initiatives in the Netherlands. Sociol. Rural. 2017, 57, 555–575. [Google Scholar] [CrossRef] [Green Version]
- De Olde, E.M.; Moller, H.; Marchand, F.; McDowell, R.W.; MacLeod, C.J.; Sautier, M.; Bokkers, E.A. When experts disagree: The need to rethink indicator selection for assessing sustainability of agriculture. Environ. Dev. Sustain. 2017, 19, 1327–1342. [Google Scholar] [CrossRef] [Green Version]
- Correa, T.; Pavez, I.; Contreras, J. Beyond access: A relational and resource-based model of household Internet adoption in isolated communities. Telecommun. Policy 2017, 41, 757–768. [Google Scholar] [CrossRef]
- Rotz, S.; Gravely, E.; Mosby, I.; Duncan, E.; Finnis, E.; Horgan, M.; Pant, L. Automated pastures and the digital divide: How agricultural technologies are shaping labour and rural communities. J. Rural Stud. 2019, 68, 112–122. [Google Scholar] [CrossRef]
- Wallace, C.; Vincent, K.; Luguzan, C.; Townsend, L.; Beel, D. Information technology and social cohesion: A tale of two villages. J. Rural Stud. 2017, 54, 426–434. [Google Scholar] [CrossRef] [Green Version]
- Reidsma, P.; Bakker, M.M.; Kanellopoulos, A.; Alam, S.J.; Paas, W.; Kros, J.; de Vries, W. Sustainable agricultural development in a rural area in the Netherlands? Assessing impacts of climate and socio-economic change at farm and landscape level. Agric. Syst. 2015, 141, 160–173. [Google Scholar] [CrossRef]
- Läpple, D.; Thorne, F. The Role of Innovation in Farm Economic Sustainability: Generalised Propensity Score Evidence from Irish Dairy Farms. J. Agric. Econ. 2019, 70, 178–197. [Google Scholar] [CrossRef] [Green Version]
- Kulatunga, C.; Shalloo, L.; Donnelly, W.; Robson, E.; Ivanov, S. Opportunistic wireless networking for smart dairy farming. IT Prof. 2017, 19, 16–23. [Google Scholar] [CrossRef]
- O’Grady, M.J.; O’Hare, G.M. Modelling the smart farm. Inf. Process. Agric. 2017, 4, 179–187. [Google Scholar] [CrossRef]
- Zambon, I.; Cecchini, M.; Egidi, G.; Saporito, M.G.; Colantoni, A. Revolution 4.0: Industry vs. Agriculture in a Future Development for SMEs. Processes 2019, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Coble, K.H.; Mishra, A.K.; Ferrell, S.; Griffin, T. Big data in agriculture: A challenge for the future. Appl. Econ. Perspect. Policy 2018, 40, 79–96. [Google Scholar] [CrossRef] [Green Version]
- Jakku, E.; Taylor, B.; Fleming, A.; Mason, C.; Fielke, S.; Sounness, C.; Thorburn, P. “If they don’t tell us what they do with it, why would we trust them?” Trust, transparency and benefit-sharing in Smart Farming. NJAS Wagening. J. Life Sci. 2019, 90, 100285. [Google Scholar] [CrossRef]
- Sellitto, M.A.; Vial, L.A.M.; Viegas, C.V. Critical success factors in Short Food Supply Chains: Case studies with milk and dairy producers from Italy and Brazil. J. Clean. Prod. 2018, 170, 1361–1368. [Google Scholar] [CrossRef]
- Pérez-López, R.J.; Olguín Tiznado, J.E.; Mojarro Magaña, M.; Camargo Wilson, C.; López Barreras, J.A.; García-Alcaraz, J.L. Information sharing with ICT in production systems and operational performance. Sustainability 2019, 11, 3640. [Google Scholar] [CrossRef] [Green Version]
- Espelt, R.; Peña-López, I.; Miralbell, O.; Martín, T.; Vega, N. Impact of information and communication technologies in agroecological cooperativism in Catalonia. Agric. Econ. 2019, 65, 59–66. [Google Scholar] [CrossRef]
- Vaillant, L.; Halter, G. The inclusion of ICTs in the logistics of short food supply chains. A survey in the Hauts-de-France region. Reflets Perspect. Econ. 2020, 58, 5–17. [Google Scholar] [CrossRef]
- Wang, D.; Rao, X.; Ying, Y. Development of agri-products traceability in main developed agriculture region of the world. Trans. Chin. Soc. Agric. Eng. 2014, 30, 236–250. [Google Scholar]
- Kirilova, E.G.; Vaklieva-Bancheva, N.G. Environmentally friendly management of dairy supply chain for designing a green products’ portfolio. J. Clean. Prod. 2017, 167, 493–504. [Google Scholar] [CrossRef]
- Jia, F.; Peng, S.; Green, J.; Koh, L.; Chen, X. Soybean supply chain management and sustainability: A systematic literature review. J. Clean. Prod. 2020, 255, 120254. [Google Scholar] [CrossRef]
- Roberts, E.; Farrington, J.; Skerratt, S. Evaluating new digital technologies through a framework of resilience. Scott. Geogr. J. 2015, 131, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Roberts, E.; Anderson, B.A.; Skerratt, S.; Farrington, J. A review of the rural-digital policy agenda from a community resilience perspective. J. Rural Stud. 2017, 54, 372–385. [Google Scholar] [CrossRef] [Green Version]
- Wright, D.; Hammond, N.; Thomas, G.; MacLeod, B.; Abbott, L.K. The provision of pest and disease information using Information Communication Tools (ICT); an Australian example. Crop Prot. 2018, 103, 20–29. [Google Scholar] [CrossRef]
- Williams, F.; Philip, L.; Farrington, J.; Fairhurst, G. ‘Digital by Default’ and the ‘hard to reach’: Exploring solutions to digital exclusion in remote rural areas. Local Econ. 2016, 31, 757–777. [Google Scholar] [CrossRef] [Green Version]
- Townsend, L.; Wallace, C.; Fairhurst, G. ‘Stuck out here’: The critical role of broadband for remote rural places. Scott. Geogr. J. 2015, 131, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Wallace, C.; Vincent, K.; Luguzan, C.; Talbot, H. Community Broadband Initiatives: What makes them successful and why? In Proceedings of the 7th International Conference on Communities and Technologies, Limerick, Ireland, 27–30 June 2015; pp. 109–117. [Google Scholar]
- Townsend, L.; Wallace, C.; Fairhurst, G.; Anderson, A. Broadband and the creative industries in rural Scotland. J. Rural Stud. 2017, 54, 451–458. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.A.; Alam, K.; Taylor, B.; Rafiq, S. Does digital inclusion affect quality of life? Evidence from Australian household panel data. Telemat. Inform. 2020, 101405. [Google Scholar] [CrossRef]
- Salemink, K. Digital margins: Social and digital exclusion of Gypsy-Travelers in the Netherlands. Environ. Plan. A Econ. Space 2016, 48, 1170–1187. [Google Scholar] [CrossRef] [Green Version]
- Salemink, K.; Strijker, D. Rural broadband initiatives in the Netherlands as a training ground for neo-endogenous development. Local Econ. 2016, 31, 778–794. [Google Scholar] [CrossRef]
- Scheerder, A.; van Deursen, A.; van Dijk, J. Determinants of Internet skills, uses and outcomes. A systematic review of the second-and third-level digital divide. Telemat. Inform. 2017, 34, 1607–1624. [Google Scholar] [CrossRef]
- Inkinen, T.; Merisalo, M.; Makkonen, T. Variations in the adoption and willingness to use e-services in three differentiated urban areas. Eur. Plan. Stud. 2018, 26, 950–968. [Google Scholar] [CrossRef]
- Philip, L.; Cottrill, C.; Farrington, J.; Williams, F.; Ashmore, F. The digital divide: Patterns, policy and scenarios for connecting the ’final few’ in rural communities across Great Britain. J. Rural Stud. 2017, 54, 386–398. [Google Scholar] [CrossRef] [Green Version]
- Macevičiūtė, E.; Wilson, T.D. Digital means for reducing digital inequality: Literature review. Inf. Sci. Int. J. Emerg. Transdiscipl. 2018, 269–287. [Google Scholar] [CrossRef]
- Drewry, J.L.; Shutske, J.M.; Trechter, D.; Luck, B.D.; Pitman, L. Assessment of digital technology adoption and access barriers among crop, dairy and livestock producers in Wisconsin. Comput. Electron. Agric. 2019, 165, 104960. [Google Scholar] [CrossRef]
- Castilla, D.; Botella, C.; Miralles, I.; Bretón-López, J.; Dragomir-Davis, A.M.; Zaragoza, I.; Garcia-Palacios, A. Teaching digital literacy skills to the elderly using a social network with linear navigation: A case study in a rural area. Int. J. Hum. Comput. Stud. 2018, 118, 24–37. [Google Scholar] [CrossRef]
- Ioannou, N.; Katsianis, D.; Varoutas, D. Comparative techno-economic evaluation of LTE fixed wireless access, FTTdp G. fast and FTTC VDSL network deployment for providing 30 Mbps broadband services in rural areas. Telecommun. Policy 2019, 101875. [Google Scholar] [CrossRef]
- Salemink, K.; Strijker, D.; Bosworth, G. Rural development in the digital age: A systematic literature review on unequal ICT availability, adoption, and use in rural areas. J. Rural Stud. 2017, 54, 360–371. [Google Scholar] [CrossRef]
- Pavez, I.; Correa, T.; Contreras, J. Meanings of (dis) connection: Exploring non-users in isolated rural communities with internet access infrastructure. Poetics 2017, 63, 11–21. [Google Scholar] [CrossRef]
- Freeman, J.; Park, S.; Middleton, C. Technological literacy and interrupted internet access. Inf. Commun. Soc. 2019, 1–18. [Google Scholar] [CrossRef]
- Magnusson, D.; Hermelin, B. ICT development from the perspective of connectivity and inclusion–the operation of a local digital agenda in Sweden. Norsk Geografisk Tidsskrift Nor. J. Geogr. 2019, 1–15. [Google Scholar] [CrossRef]
- Stocker, V.; Whalley, J. Who replies to consultations, and what do they say? The case of broadband universal service in the UK. Telecommun. Policy 2019, 101823. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, S.; Lane, M.; Alam, K. Do social networking sites build and maintain social capital online in rural communities? J. Rural Stud. 2019, 66, 1–10. [Google Scholar] [CrossRef]
- Young, J.C. Rural digital geographies and new landscapes of social resilience. J. Rural Stud. 2019, 70, 66–74. [Google Scholar] [CrossRef]
- Park, S.; Freeman, J.; Middleton, C. Intersections between connectivity and digital inclusion in rural communities. Commun. Res. Pract. 2019, 5, 139–155. [Google Scholar] [CrossRef]
- Hardy, J.; Dailey, D.; Wyche, S.; Su, N.M. Rural computing: Beyond access and infrastructure. In Proceedings of the Companion of the 2018 ACM Conference on Computer Supported Cooperative Work and Social Computing, Jersey City, NJ, USA, 3–7 November 2018; pp. 463–470. [Google Scholar]
- Price, L.; Shutt, J.; Sellick, J. Supporting rural Small and Medium-sized Enterprises to take up broadband-enabled technology: What works? Local Econ. 2018, 33, 515–536. [Google Scholar] [CrossRef]
- Ghajar, S.; Fernández-Giménez, M.E.; Wilmer, H. Home on the Digital Range: Ranchers’ Web Access and Use. Rangel. Ecol. Manag. 2019. [Google Scholar] [CrossRef] [Green Version]
- Hodge, H.; Carson, D.; Carson, D.; Newman, L.; Garrett, J. Using Internet technologies in rural communities to access services: The views of older people and service providers. J. Rural Stud. 2017, 54, 469–478. [Google Scholar] [CrossRef]
- Baker, S.; Warburton, J.; Hodgkin, S.; Pascal, J. The supportive network: Rural disadvantaged older people and ICT. Ageing Soc. 2017, 37, 1291–1309. [Google Scholar] [CrossRef]
- Philip, L.; Williams, F. Remote rural home based businesses and digital inequalities: Understanding needs and expectations in a digitally underserved community. J. Rural Stud. 2019, 68, 306–318. [Google Scholar] [CrossRef]
- Janc, K.; Czapiewski, K.; Wójcik, M. In the starting blocks for smart agriculture: The internet as a source of knowledge in transitional agriculture. NJAS Wagening. J. Life Sci. 2019, 100309. [Google Scholar] [CrossRef]
- Weber, K.M.; Gudowsky, N.; Aichholzer, G. Foresight and technology assessment for the Austrian parliament—Finding new ways of debating the future of industry 4.0. Futures 2019, 109, 240–251. [Google Scholar] [CrossRef]
- Gökalp, E.; Şener, U.; Eren, P.E. Development of an assessment model for industry 4.0: Industry 4.0-MM. In Proceedings of the International Conference on Software Process Improvement and Capability Determination 2017, Palma de Mallorca, Spain, 4–5 October 2017; pp. 128–142. [Google Scholar]
- Szeles, M.R. New insights from a multilevel approach to the regional digital divide in the European Union. Telecommun. Policy 2018, 42, 452–463. [Google Scholar] [CrossRef]
- Meyer, U. The emergence of an envisioned future. Sensemaking in the case of “Industrie 4.0” in Germany. Futures 2019, 109, 130–141. [Google Scholar] [CrossRef]
- Flores, M.; Maklin, D.; Golob, M.; Al-Ashaab, A.; Tucci, C. Awareness Towards Industry 4.0: Key Enablers and Applications for Internet of Things and Big Data. In Proceedings of the Working Conference on Virtual Enterprises 2018, Cardiff, UK, 17–19 September 2018; pp. 377–386. [Google Scholar]
- Mushtaq, R.; Bruneau, C. Microfinance, financial inclusion and ICT: Implications for poverty and inequality. Technol. Soc. 2019, 59, 101154. [Google Scholar] [CrossRef]
- Lucendo-Monedero, A.L.; Ruiz-Rodríguez, F.; González-Relaño, R. Measuring the digital divide at regional level. A spatial analysis of the inequalities in digital development of households and individuals in Europe. Telemat. Inform. 2019, 41, 197–217. [Google Scholar] [CrossRef]
- Butler, D.; Holloway, L. Technology and restructuring the social field of dairy farming: Hybrid capitals, ’stockmanship’ and automatic milking systems. Sociol. Rural. 2016, 56, 513–530. [Google Scholar] [CrossRef]
- Sinnett, A.; Ho, C.K.M.; Malcolm, B. Expanding a dairy business affects business and financial risk. Anim. Prod. Sci. 2017, 57, 2167–2174. [Google Scholar] [CrossRef]
- Verhees, F.; Malak-Rawlikowska, A.; Stalgiene, A.; Kuipers, A.; Klopčič, M. Dairy farmers’ business strategies in Central and Eastern Europe based on evidence from Lithuania, Poland and Slovenia. Ital. J. Anim. Sci. 2018, 17, 755–766. [Google Scholar] [CrossRef] [Green Version]
- Shadbolt, N.M.; Olubode-Awosola, F. Resilience, risk and entrepreneurship. Int. Food Agribus. Manag. Rev. 2016. [Google Scholar] [CrossRef]
- Barrane, F.Z.; Karuranga, G.E.; Poulin, D. Technology Adoption and Diffusion: A New Application of the UTAUT Model. Int. J. Innov. Technol. Manag. 2018, 15, 1950004. [Google Scholar] [CrossRef]
- Bucci, G.; Bentivoglio, D.; Finco, A. Precision agriculture as a driver for sustainable farming systems: State of art in litterature and research. Calitatea 2018, 19, 114–121. [Google Scholar]
- Oughton, E.J.; Tran, M.; Jones, C.B.; Ebrahimy, R. Digital communications and information systems. In The Future of National Infrastructure: A System-of-Systems Approach; Hall, W., Tran, M., Hickford, A.J., Nicholls, R.J., Eds.; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Vilkė, R.; Vidickienė, D.; Gedminaitė-Raudonė, Ž. Innovating apart or together: Lithuanian farmers and rural communities. Res. Rural Dev. 2018, 2. [Google Scholar] [CrossRef]
- Guo, J.; Jin, S.; Chen, L.; Zhao, J. Impacts of Distance Education on Agricultural Performance and Household Income: Micro-Evidence from Peri-Urban Districts in Beijing. Sustainability 2018, 10, 3945. [Google Scholar] [CrossRef] [Green Version]
- Young, J.C. The new knowledge politics of digital colonialism. Environ. Plan. A Econ. Space 2019. [Google Scholar] [CrossRef]
- Hanrahan, L.; Geoghegan, A.; O’Donovan, M.; Griffith, V.; Ruelle, E.; Wallace, M.; Shalloo, L. PastureBase Ireland: A grassland decision support system and national database. Comput. Electron. Agric. 2017, 136, 193–201. [Google Scholar] [CrossRef]
- Hou, J.; Huo, X.; Yin, R. Does computer usage change farmers’ production and consumption? Evidence from China. China Agric. Econ. Rev. 2019, 11, 387–410. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.M.; Tonmoy, S.S.; Quayum, S.; Sarker, A.R.; Hani, S.U.; Mannan, M.A. Smart Poultry Farm Incorporating GSM and IoT. In Proceedings of the 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), Dhaka, Bangladesh, 10–12 January 2019; pp. 277–280. [Google Scholar]
- O’Donoghue, C.; Heanue, K. The impact of formal agricultural education on farm level innovation and management practices. J. Technol. Transf. 2018, 43, 844–863. [Google Scholar] [CrossRef]
- Morris, W.; Henley, A.; Dowell, D. Farm diversification, entrepreneurship and technology adoption: Analysis of upland farmers in Wales. J. Rural Stud. 2017, 53, 132–143. [Google Scholar] [CrossRef] [Green Version]
- Hammond, J.; Fraval, S.; van Etten, J.; Suchini, J.G.; Mercado, L.; Pagella, T.; Frelat, R.; Lannerstad, M.; Douxchamps, S.; Teufel, N.; et al. The Rural Household Multi-Indicator Survey (RHoMIS) for rapid characterisation of households to inform climate smart agriculture interventions: Description and applications in East Africa and Central America. Agric. Syst. 2017, 151, 225–233. [Google Scholar] [CrossRef] [Green Version]
- McKillop, J.; Heanue, K.; Kinsella, J. Are all young farmers the same? An exploratory analysis of on-farm innovation on dairy and drystock farms in the Republic of Ireland. J. Agric. Educ. Ext. 2018, 24, 137–151. [Google Scholar] [CrossRef]
- Methorst, R.R.; Roep, D.D.; Verhees, F.F.; Verstegen, J.J. Differences in farmers’ perception of opportunities for farm development. NJAS Wagening. J. Life Sci. 2017, 81, 9–18. [Google Scholar] [CrossRef]
- Hennessy, T.; Läpple, D.; Moran, B. The digital divide in farming: A problem of access or engagement? Appl. Econ. Perspect. Policy 2016, 38, 474–491. [Google Scholar] [CrossRef]
- Eastwood, C.R.; Rue, B.D.; Gray, D.I. Using a ’network of practice’ approach to match grazing decision-support system design with farmer practice. Anim. Prod. Sci. 2017, 57, 1536–1542. [Google Scholar] [CrossRef]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.J. Big data in smart farming–a review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Bronson, K. Smart farming: Including rights holders for responsible agricultural innovation. Technol. Innov. Manag. Rev. 2017, 8, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, C.A.G.; Kateris, D.; Bochtis, D. ICT Innovations and Smart Farming. In Proceedings of the International Conference on Information and Communication Technologies in Agriculture, Food & Environment 2017, Chania, Greece, 21–24 September 2017; pp. 1–19. [Google Scholar]
- Walter, A.; Finger, R.; Huber, R.; Buchmann, N. Opinion: Smart farming is key to developing sustainable agriculture. Proc. Natl. Acad. Sci. USA 2017, 114, 6148–6150. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Cai, C.; Zhang, R.; Ju, L.; He, J. Deep cascaded convolutional models for cattle pose estimation. Comput. Electron. Agric. 2019, 164, 104885. [Google Scholar] [CrossRef]
- Riaboff, L.; Aubin, S.; Bedere, N.; Couvreur, S.; Madouasse, A.; Goumand, E.; Chauvin, A.; Plantier, G. Evaluation of pre-processing methods for the prediction of cattle behaviour from accelerometer data. Comput. Electron. Agric. 2019, 165, 104961. [Google Scholar] [CrossRef]
- Bucci, G.; Bentivoglio, D.; Finco, A. Factors affecting ICT adoption in agriculture: A case study in Italy. Calitatea 2019, 20, 122–129. [Google Scholar]
- Michels, M.; Bonke, V.; Musshoff, O. Understanding the adoption of smartphone apps in dairy herd management. J. Dairy Sci. 2019, 102, 9422–9434. [Google Scholar] [CrossRef] [PubMed]
- Kamilaris, A.; Kartakoullis, A.; Prenafeta-Boldú, F.X. A review on the practice of big data analysis in agriculture. Comput. Electron. Agric. 2017, 143, 23–37. [Google Scholar] [CrossRef]
- Satamraju, K.P.; Shaik, K.; Vellanki, N. Rural bridge: A novel system for smart and co-operative farming using IoT architecture. In Proceedings of the 2017 International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT), Aligarh, India, 24–26 November 2017; pp. 22–26. [Google Scholar]
- Muangprathub, J.; Boonnam, N.; Kajornkasirat, S.; Lekbangpong, N.; Wanichsombat, A.; Nillaor, P. IoT and agriculture data analysis for smart farm. Comput. Electron. Agric. 2019, 156, 467–474. [Google Scholar] [CrossRef]
- Baranwal, T.; Pateriya, P.K. Development of IoT based smart security and monitoring devices for agriculture. In Proceedings of the 2016 6th International Conference-Cloud System and Big Data Engineering (Confluence), Noida, India, 14–15 January 2016; pp. 597–602. [Google Scholar]
- De Boer, P.S.; van Deursen, A.J.; Van Rompay, T.J. Accepting the Internet-of-Things in our homes: The role of user skills. Telemat. Inform. 2019, 36, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Verdouw, C.; Wolfert, S.; Tekinerdogan, B. Internet of Things in agriculture. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2016, 11, 1–12. [Google Scholar] [CrossRef]
- Jayaraman, P.; Yavari, A.; Georgakopoulos, D.; Morshed, A.; Zaslavsky, A. Internet of things platform for smart farming: Experiences and lessons learnt. Sensors 2016, 16, 1884. [Google Scholar] [CrossRef]
- Eitzinger, A.; Cock, J.; Atzmanstorfer, K.; Binder, C.R.; Läderach, P.; Bonilla-Findji, O.; Bartling, M.; Caroline, M.; Zurita-Arthos, L.; Jarvis, A. GeoFarmer: A monitoring and feedback system for agricultural development projects. Comput. Electron. Agric. 2019, 158, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Brewster, C.; Roussaki, I.; Kalatzis, N.; Doolin, K.; Ellis, K. IoT in agriculture: Designing a Europe-wide large-scale pilot. IEEE Commun. Mag. 2017, 55, 26–33. [Google Scholar] [CrossRef]
- Davies, F.T.; Garrett, B. Technology for Sustainable Urban Food Ecosystems in the Developing World: Strengthening the Nexus of Food–Water–Energy–Nutrition. Front. Sustain. Food Syst. 2018, 2, 84. [Google Scholar] [CrossRef] [Green Version]
- Natori, T.; Ariyama, N.; Tsuichihara, S.; Takemura, H.; Aikawa, N. Study of Activity Collecting System for Grazing Cattle. In Proceedings of the 2019 34th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), Jeju Shinhwa World, Korea, 23–26 June 2019; pp. 1–4. [Google Scholar]
- Natori, T.; Oishi, Y.; Tsuichihara, S.; Takemura, H.; Aikawa, N. Development of activity collecting system for grazing cattle in vast land. IEEJ Trans. Electron. Inf. Syst. 2021, 141, 281–287. [Google Scholar]
- Bhattacharya, T.; Karmakar, C.; Wilkin, T.; Loke, S. Behaviour-based Intelligent Power Management of the eShepherd Virtual Fencing Collar for Cattle. In Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, Singapore, 8–12 October 2018; pp. 13–16. [Google Scholar]
- Muminov, A.; Na, D.; Lee, C.W.; Kang, H.K. Monitoring and controlling behaviors of livestock using virtual fences. J. Theor. Appl. Inf. Technol. 2019, 97, 4909–4920. [Google Scholar]
- Hsu, C.K.; Chiu, Y.H.; Wu, K.R.; Liang, J.M.; Chen, J.J.; Tseng, Y.C. Design and implementation of image electronic fence with 5G technology for smart farms. In Proceedings of the 2019 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS), Singapore, 28–30 August 2019; pp. 1–3. [Google Scholar]
- Ali, A.S.J.; Abdullah, L.; Musa, M.; Yunos, M.A.; Ki, N.W.W.; Tukiran, Z.; Hamdan, R.; Zainuddin, M.H.A.J. Towards IoT-based Notification System for Agriculture Electric Fence. In Proceedings of the 2020 IEEE Student Conference on Research and Development (SCOReD), Batu Pahat, Johor, Malaysia, 27–29 September 2020; pp. 269–273. [Google Scholar]
- Lutz, S.U. The European digital single market strategy: Local indicators of spatial association 2011–2016. Telecommun. Policy 2019, 43, 393–410. [Google Scholar] [CrossRef]
- Anderson, A.R.; Wallace, C.; Townsend, L. Great expectations or small country living? Enabling small rural creative businesses with ICT. Sociol. Rural. 2016, 56, 450–468. [Google Scholar] [CrossRef]
- Townsend, L.; Wallace, C.; Smart, A.; Norman, T. Building virtual bridges: How rural micro-enterprises develop social capital in online and face-to-face settings. Sociol. Rural. 2016, 56, 29–47. [Google Scholar] [CrossRef] [Green Version]
- Barmpounakis, S.; Kaloxylos, A.; Groumas, A.; Katsikas, L.; Sarris, V.; Dimtsa, K.; Fournier, F.; Antoniou, E.; Alonistioti, N.; Wolfert, S. Management and control applications in Agriculture domain via a Future Internet Business-to-Business platform. Inf. Process. Agric. 2015, 2, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Flanigan, S.; Sutherland, L.A. Buying Access to Social Capital? From Collaboration to Service Provision in an Agricultural Co-operative. Sociol. Rural. 2016, 56, 471–490. [Google Scholar] [CrossRef]
- Fecke, W.; Danne, M.; Musshoff, O. E-commerce in agriculture–The case of crop protection product purchases in a discrete choice experiment. Comput. Electron. Agric. 2018, 151, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Caja, G.; Castro-Costa, A.; Knight, C.H. Engineering to support wellbeing of dairy animals. J. Dairy Res. 2016, 83, 136–147. [Google Scholar] [CrossRef]
- Pappa, I.; Illiopoulos, C.; Massouras, T. On Sustainability of a Dairy Sector in Crisis. Int. J. Food Syst. Dyn. 2019, 10, 130–150. [Google Scholar]
- Mor, R.S.; Jaiswal, S.K.; Singh, S.; Bhardwaj, A. Demand Forecasting of the Short-Lifecycle Dairy Products. In Understanding the Role of Business Analytics; Chahal, H., Jyoti, J., Wirtz, J., Eds.; Springer: Singapore, 2019; pp. 87–117. [Google Scholar]
- Triste, L.; Debruyne, L.; Vandenabeele, J.; Marchand, F.; Lauwers, L. Communities of practice for knowledge co-creation on sustainable dairy farming: Features for value creation for farmers. Sustain. Sci. 2018, 13, 1427–1442. [Google Scholar] [CrossRef]
- Zhang, Y.; Long, H.; Ma, L.; Tu, S.; Li, Y.; Ge, D. Analysis of rural economic restructuring driven by e-commerce based on the space of flows: The case of Xiaying village in central China. J. Rural Stud. 2018. [Google Scholar] [CrossRef]
- Micheli, M.R.; Rossi, A.; Rossi, G.; Rosamilia, A.; Guidi, E. Farm products’ direct sale in accordance with national and EC Regulations. Ital. J. Food Saf. 2019, 8. [Google Scholar] [CrossRef]
- Methorst, R.; Roep, D.; Verhees, F.; Verstegen, J. Drivers for differences in dairy farmers’ perceptions of farm development strategies in an area with nature and landscape as protected public goods. Local Econ. 2016, 31, 554–571. [Google Scholar] [CrossRef]
- Salmon, G.; Teufel, N.; Baltenweck, I.; van Wijk, M.; Claessens, L.; Marshall, K. Trade-offs in livestock development at farm level: Different actors with different objectives. Glob. Food Secur. 2018, 17, 103–112. [Google Scholar] [CrossRef]
- Clay, N.; Garnett, T.; Lorimer, J. Dairy intensification: Drivers, impacts and alternatives. Ambio 2020, 49, 35–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jan, P.; Repar, N.; Nemecek, T.; Dux, D. Production intensity in dairy farming and its relationship with farm environmental performance: Empirical evidence from the Swiss alpine area. Livest. Sci. 2019, 224, 10–19. [Google Scholar] [CrossRef]
- Tullo, E.; Fontana, I.; Gottardo, D.; Sloth, K.H.; Guarino, M. Validation of a commercial system for the continuous and automated monitoring of dairy cow activity. J. Dairy Sci. 2016, 99, 7489–7494. [Google Scholar] [CrossRef] [PubMed]
- Repar, N.; Jan, P.; Nemecek, T.; Dux, D.; Doluschitz, R. Factors affecting global versus local environmental and economic performance of dairying: A case study of Swiss mountain farms. Sustainability 2018, 10, 2940. [Google Scholar] [CrossRef] [Green Version]
- Gaspar, P.D.; Soares, V.N.; Caldeira, J.M.; Andrade, L.P.; Domingues, C. Potential for Technological Modernisation and Innovation based on ICT in Agri-Food Companies of Central Region of Portugal. In Proceedings of the 2015 International Conference on Food and Agricultural Engineering (ICFAE 2015), Warsaw, Poland, 12–13 May 2015. [Google Scholar]
- Lampridi, M.G.; Kateris, D.; Vasileiadis, G.; Marinoudi, V.; Pearson, S.; Sørensen, C.G.; Balafoutis, A.; Bochtis, D. A case-based economic assessment of robotics employment in precision arable farming. Agronomy 2019, 9, 175. [Google Scholar] [CrossRef] [Green Version]
- Lampridi, M.G.; Sørensen, C.G.; Bochtis, D. Agricultural sustainability: A review of concepts and methods. Sustainability 2019, 11, 5120. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Mejia, A.; Styles, D.; Wilson, P.; Gibbons, J. Metrics and methods for characterizing dairy farm intensification using farm survey data. PLoS ONE 2018, 13, e0195286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gargiulo, J.I.; Eastwood, C.R.; Garcia, S.C.; Lyons, N.A. Dairy farmers with larger herd sizes adopt more precision dairy technologies. J. Dairy Sci. 2018, 101, 5466–5473. [Google Scholar] [CrossRef] [PubMed]
- Paraforos, D.S.; Vassiliadis, V.; Kortenbruck, D.; Stamkopoulos, K.; Ziogas, V.; Sapounas, A.A.; Griepentrog, H.W. Multi-level automation of farm management information systems. Comput. Electron. Agric. 2017, 142, 504–514. [Google Scholar] [CrossRef]
- Schuppli, C.A.; Von Keyserlingk, M.A.G.; Weary, D.M. Access to pasture for dairy cows: Responses from an online engagement. J. Anim. Sci. 2014, 92, 5185–5192. [Google Scholar] [CrossRef] [PubMed]
- Pereira, Á.; Carballo-Penela, A.; González-López, M.; Vence, X. A case study of servicizing in the farming-livestock sector: Organisational change and potential environmental improvement. J. Clean. Prod. 2016, 124, 84–93. [Google Scholar] [CrossRef]
- Susanty, A.; Bakhtiar, A.; Jie, F.; Muthi, M. The empirical model of trust, loyalty, and business performance of the dairy milk supply chain: A comparative study. Br. Food J. 2017, 119, 2765–2787. [Google Scholar] [CrossRef]
- Durst, P.T.; Moore, S.J.; Ritter, C.; Barkema, H.W. Evaluation by employees of employee management on large US dairy farms. J. Dairy Sci. 2018, 101, 7450–7462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyland, J.J.; Heanue, K.; McKillop, J.; Micha, E. Factors influencing dairy farmers’ adoption of best management grazing practices. Land Use Policy 2018, 78, 562–571. [Google Scholar] [CrossRef]
- Tummers, J.; Kassahun, A.; Tekinerdogan, B. Obstacles and features of Farm Management Information Systems: A systematic literature review. Comput. Electron. Agric. 2019, 157, 189–204. [Google Scholar] [CrossRef]
- European Union. European Commission, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and to the Committee of the Regions A Strategy for Smart, Sustainable and Inclusive Growth, 3.3.2010, COM(2010). 2020. Available online: https://ec.europa.eu/eu2020/pdf/COMPLET%20EN%20BARROSO%20%20%20007%20-%20Europe%202020%20-%20EN%20version.pdf (accessed on 30 March 2021).
- Costa, C.; Murphy, M. EU digital media policies and education: The challenge of a digital agenda for Europe. In Education and Public Policy in the European Union; St. John, S.K., Murphy, M., Eds.; Palgrave Macmillan: Cham, Switzerland, 2019; pp. 149–164. [Google Scholar]
- Aerschot, L.V.; Rodousakis, N. The link between socio-economic background and Internet use: Barriers faced by low socio-economic status groups and possible solutions. Innovation Eur. J. Soc. Sci. Res. 2008, 21, 317–351. [Google Scholar] [CrossRef]
- Kim, Y.; Jeong, J.S. Personality predictors for the use of multiple internet functions. Internet Res. 2015, 25, 399–415. [Google Scholar] [CrossRef]
- Blank, G.; Graham, M.; Calvino, C. Local geographies of digital inequality. Soc. Sci. Comput. Rev. 2018, 36, 82–102. [Google Scholar] [CrossRef] [Green Version]
- Rajabiun, R. Technological change, civic engagement and policy legitimization: Perspectives from the rise of broadband Internet as an essential utility in Canada. Gov. Inf. Q. 2019, 101403. [Google Scholar] [CrossRef]
- Tucci, C.L.; Poulin, D. Introduction to the special issue on electronic government: Investment in communities, firms, technologies and infrastructure. Electron. Commer. Res. 2015, 15, 301–302. [Google Scholar] [CrossRef] [Green Version]
- Choudrie, J.; Zamani, E.D.; Umeoji, E.; Emmanuel, A. Implementing E-government in Lagos State: Understanding the impact of cultural perceptions and working practices. Gov. Inf. Q. 2017, 34, 646–657. [Google Scholar] [CrossRef] [Green Version]
- Galindo-Pérez-de-Azpillaga, L.; Foronda-Robles, C. Digital governance and information technologies in local action groups (LAGs). Cogent Soc. Sci. 2018, 4, 1528730. [Google Scholar] [CrossRef]
- Sideridis, A.B.; Protopappas, L. Recent ICT Advances Applied to Smart e-Government Systems in Life Sciences. In Proceedings of the HAICTA 2015 7th International Conference on Information and Communication Technologies in Agriculture, Food and Environment, Kavala, Greece, 17–20 September 2017; pp. 92–106. [Google Scholar]
- Rose, J.; Flak, L.S.; Sæbø, Ø. Stakeholder theory for the E-government context: Framing a value-oriented normative core. Gov. Inf. Q. 2018, 35, 362–374. [Google Scholar] [CrossRef]
- Jacob, D.W.; Fudzee, M.F.M.; Salamat, M.A.; Herawan, T. A review of the generic end-user adoption of e-government services. Int. Rev. Adm. Sci. 2019, 85, 799–818. [Google Scholar] [CrossRef]
- De Angeli, A.; Jovanović, M.; McNeill, A.; Coventry, L. Desires for active ageing technology. Int. J. Hum. Comput. Stud. 2020, 138, 102412. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Zhu, Y. Comparing attitudes towards adoption of e-government between urban users and rural users: An empirical study in Chongqing municipality, China. Behav. Inf. Technol. 2020, 1–15. [Google Scholar] [CrossRef]
- Demirdoven, B.; Cubuk, E.B.S.; Karkin, N. Establishing relational trust in e-Participation: A systematic literature review to propose a model. In Proceedings of the 13th International Conference on Theory and Practice of Electronic Governance 2020, Athens, Greece, 23–25 September2020; pp. 341–348. [Google Scholar]
- Mensah, I.K.; Adams, S. A comparative analysis of the impact of political trust on the adoption of E-Government services. Int. J. Public Adm. 2020, 43, 682–696. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Naranjo-Zolotov, M.; Oliveira, T.; Casteleyn, S.; Irani, Z. Continuous usage of e-participation: The role of the sense of virtual community. Gov. Inf. Q. 2019, 36, 536–545. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Rana, N.P.; Janssen, M.; Lal, B.; Williams, M.D.; Clement, M. An empirical validation of a unified model of electronic government adoption (UMEGA). Gov. Inf. Q. 2017, 34, 211–230. [Google Scholar] [CrossRef] [Green Version]
- Mensah, I.K.; Zeng, G.; Luo, C. E-Government Services Adoption: An Extension of the Unified Model of Electronic Government Adoption. SAGE Open 2020, 10. [Google Scholar] [CrossRef]
- Mellouli, S.; Chartier, A.; Roy, M.C.; Poulin, D. Government Services in Outlying Regions. In E-Government Success around the World: Cases, Empirical Studies, and Practical Recommendations; IGI Global: Hershey, PA, USA, 2013; pp. 1–14. [Google Scholar]
- Mensah, I.K.; Zeng, G.; Luo, C. The Effect of Gender, Age, and Education on the Adoption of Mobile Government Services. Int. J. Semant. Web Inf. Syst. IJSWIS 2020, 16, 35–52. [Google Scholar] [CrossRef]
- Apostolopoulos, K.; Geli, M.; Petrelli, P.; Potsiou, C.; Ioannidis, C. A new model for cadastral surveying using crowdsourcing. Surv. Rev. 2018, 50, 122–133. [Google Scholar] [CrossRef]
- Mandari, H.E.; Chong, Y.L.; Wye, C.K. The influence of government support and awareness on rural farmers’ intention to adopt mobile government services in Tanzania. J. Syst. Inf. Technol. 2017. [Google Scholar] [CrossRef]
- Mandari, H.E.; Chong, Y.L. Gender and age differences in rural farmers’ intention to use m-government services. Electron. Gov. Int. J. 2018, 14, 217–239. [Google Scholar]
- Fröhlich, K.; Nieminen, M.; Pinomaa, A. Assessing the e-Readiness of Marginalised Communities for e-Government Services: A Case of Oniipa, Namibia. In Proceedings of the International Conference on Innovations and Interdisciplinary Solutions for Underserved Areas, Nairobi, Kenya, 8–9 March 2020; pp. 149–163. [Google Scholar]
- Frohlich, K.; Nieminen, M.; Pinomaa, A. Factors Influencing the Adoption of m-Government: Perspectives from a Namibian Marginalised Community. In Proceedings of the International Conference on e-Infrastructure and e-Services for Developing Countries, Porto-Novo, Benin, 3–4 December 2019; pp. 219–236. [Google Scholar]
- Michailidou, E.; Eraslan, S.; Yesilada, Y.; Harper, S. Automated prediction of visual complexity of web pages: Tools and evaluations. Int. J. Hum. Comput. Stud. 2021, 145, 102523. [Google Scholar] [CrossRef]
- Michels, M.; Fecke, W.; Feil, J.H.; Musshoff, O.; Pigisch, J.; Krone, S. Smartphone adoption and use in agriculture: Empirical evidence from Germany. Precis. Agric. 2019, 1–23. [Google Scholar] [CrossRef]
- Fuerst-Waltl, B.; Weissensteiner, R.; Fuchs, K.; Gstoettinger, F.; Hoermann, M.; Janacek, R.; Koblmueller, M.; Mayerhofer, M.; Perner, J.; Schagerl, M.; et al. Exchange of data to improve dairy cattle health: Farmers’ and veterinarians’ needs. Acta Agric. Slovenica 2016, 5, 8. [Google Scholar]
Thematic | Number of Papers Found | References |
---|---|---|
Connectivity and Inclusion | 35 | [1,3,5,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57] |
Financial Development | 15 | [2,12,13,56,58,59,60,61,62,63,64,65,66,67,68] |
Innovation and Technology | 22 | [6,10,11,16,28,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84] |
Smart Farming | 12 | [15,16,18,85,86,87,88,89,90,91,92,93] |
IoT | 16 | [14,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108] |
Market | 12 | [87,109,110,111,112,113,114,115,116,117,118] |
Production | 18 | [14,73,79,99,106,116,119,120,121,122,123,124,125,126,127,128,129,130,131] |
Management and Councelling | 8 | [78,117,133,134,135,136,137,138] |
Administration | 36 | [29,34,37,38,50,53,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez-López, A.; Barrasa-Rioja, M.; Marey-Perez, M. ICT in Rural Areas from the Perspective of Dairy Farming: A Systematic Review. Future Internet 2021, 13, 99. https://doi.org/10.3390/fi13040099
Vázquez-López A, Barrasa-Rioja M, Marey-Perez M. ICT in Rural Areas from the Perspective of Dairy Farming: A Systematic Review. Future Internet. 2021; 13(4):99. https://doi.org/10.3390/fi13040099
Chicago/Turabian StyleVázquez-López, Alba, Martín Barrasa-Rioja, and Manuel Marey-Perez. 2021. "ICT in Rural Areas from the Perspective of Dairy Farming: A Systematic Review" Future Internet 13, no. 4: 99. https://doi.org/10.3390/fi13040099
APA StyleVázquez-López, A., Barrasa-Rioja, M., & Marey-Perez, M. (2021). ICT in Rural Areas from the Perspective of Dairy Farming: A Systematic Review. Future Internet, 13(4), 99. https://doi.org/10.3390/fi13040099