Dashboard COMPRIME_COMPRI_MOv: Multiscalar Spatio-Temporal Monitoring of the COVID-19 Pandemic in Portugal
Abstract
:1. Introduction
- COMPRIME—COnhecer Mais PaRa Intervir MElhor (Get to Know More for Intervention)—has as its main objective to identify the propagation dynamics of SARS-CoV-2, in its relations with the demographic and socioeconomic profiles of the territories, at the municipality scale, identifying the determining factors of this propagation;
- COMPRI_MOv—COnhecer Mais PaRa Intervir melhor no contexto da Mobilidade (Get to Know More for Intervention in the context of mobility)—aims to characterize the mobility of populations given the intensity, motivation, and geographical pattern of the flows and, associating these dynamics with epidemiological data, assess the risk of propagation associated with mobility. The project intends to propose a monitoring system to support the decision and present the basis of a model for the simulation of propagation based on mobility.
2. Use of Dashboards in the Context of the Pandemic
3. Materials and Methods
3.1. Background
3.2. Architecture
3.3. Data
4. Results
4.1. International Scale
- The left half that results from the WHO data collection [3] in which the main figures (confirmed cases, deaths, new cases, new deaths, and mortality rate) and the countries that register a rapid increase in them in absolute terms and by their population are highlighted. The proportions of cases and deaths in the world context are also represented for the 10 most affected countries (Figure 5a,c).
- The right half where six external elements are incorporated: daily variation of new confirmed cases per country (Figure 5b), new cases per million inhabitants, new deaths per million inhabitants (Figure 5d), evolution of the total number of cases and deaths in the world, evolution of vaccination doses administered and, finally, the WHO dashboard.
4.2. National Level
4.3. Regional Level
4.4. Municipal Level
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- WHO—World Health Organization. Ten Threats to Global Health in 2019. 2019. Available online: https://www.who.int/news-room/feature-stories/ten-threats-to-global-health-in-2019 (accessed on 19 September 2020).
- WHO—World Health Organization. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19–11 March 2020. 2020. Available online: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on 10 October 2020).
- WHO—World Health Organization. Coronavirus Disease (COVID-19) Outbreak Situation, 2020. WHO, 2020. Available online: https://covid19.who.int/ (accessed on 6 December 2020).
- WHO—World Health Organization. SARS: How a Global Epidemic Was Stopped; World Health Organization Western Pacific Region: Geneva, Switzerland, 2006. [Google Scholar]
- DGS—Direção-Geral da Saúde. REACT-COVID: Inquérito sobre Alimentação e Atividade Física em Contexto de Contenção Social. 2020. Available online: https://nutrimento.pt/noticias/react-covid/ (accessed on 9 February 2021).
- Boulos, K.; Geraghty, E. Geographical tracking and mapping of coronavirus disease COVID 19/severe acute respiratory syndrome coronavirus 2 (SARS CoV 2) epidemic and associated events around the world: How 21st century GIS technologies are supporting the global fight against outbreaks and epidemics. Int. J. Health Geogr. 2020, 19, 8. [Google Scholar] [CrossRef] [Green Version]
- DGS—Direção-Geral da Saúde. Relatório de Situação. Lisboa: Ministério da Saúde—Direção Geral da Saúde. 2020. Available online: https://covid19.min-saude.pt/relatorio-de-situacao/ (accessed on 9 February 2021).
- Cliff, A.; Haggett, P. Atlas of disease Distributions: Analytic Approaches to Epidemiological Data; Blackwell Publishers: Oxford, UK, 1993. [Google Scholar]
- Lyseen, A.K.; Nøhr, C.; Sørensen, E.M.; Gudes, O.; Geraghty, E.M.; Shaw, N.T.; Bivona-Tellez, C. A review and framework for categorizing current research and development in health related geographical information systems (GIS) studies. Yearb Med. Inform. 2014, 23, 110–124. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Su, F.; Pei, T.; Zhang, A.; Du, Y.; Luo, B.; Cao, Z.; Wang, J.; Yuan, W.; Zhu, Y.; et al. COVID-19: Challenges to GIS with Big Data. Geogr. Sustain. 2020, 1. [Google Scholar] [CrossRef]
- Franch-Pardo, I.; Napoletano, B.M.; Rosete-Verges, F.; Billa, L. Spatial analysis and GIS in the study of COVID-19. A review. Sci. Total Environ. 2020, 739, 140033. [Google Scholar] [CrossRef] [PubMed]
- Sarfo, A.; Karuppannan, S. Application of Geospatial Technologies in the COVID-19 Fight of Ghana. Trans. Indian Natl. Acad. Eng. 2020, 5. [Google Scholar] [CrossRef]
- Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020, 20, 533–534. [Google Scholar] [CrossRef]
- Fernandez-Lozano, C.; Cedron, F. Shiny Dashboard for Monitoring the COVID-19 Pandemic in Spain. Proceedings 2020, 54, 23. [Google Scholar] [CrossRef]
- Barone, S.; Chakhunashvili, A.; Comelli, A. Building a statistical surveillance dashboard for COVID-19 infection worldwide. Qual. Eng. 2020, 32, 754–763. [Google Scholar] [CrossRef]
- Florez, H.; Singh, S. Online dashboard and data analysis approach for assessing COVID-19 case and death data. F1000Research 2020, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- ECDC—European Centre for Disease Prevention and Control (2020). Situation Updates on COVID-19. Available online: https://www.ecdc.europa.eu/en/covid-19/situation-updates (accessed on 11 October 2020).
- DGS—Direção-Geral da Saúde & Esri. Coronavírus (COVID-19): Prevenção Através de Dashboards. 2020. Available online: https://www.esri-portugal.pt/pt-pt/landing-pages/covid19 (accessed on 9 February 2021).
- INE—Instituto Nacional de Estatística. Dashboard COVID-19: COVID-19 | Contexto e Impacto. 2020. Available online: https://ine-pt.maps.arcgis.com/apps/opsdashboard/index.html#/7af78fbbbdd9456397317f822dac503d (accessed on 9 February 2021).
- COTEC e NOVA IMS—Information Management School da Universidade Nova de Lisboa. COVID 19 Insights. 2020. Available online: https://insights.cotec.pt/ (accessed on 9 February 2021).
- APG—Associação Portuguesa de Geógrafos. Acompanhamento da Pandemia COVID-19 pela APG. Available online: http://www.apgeo.pt/acompanhamento-da-pandemia-covid-19-pela-apg (accessed on 9 February 2021).
- Yigitbasioglu, O.; Velcu, O. A review of dashboards in performance management: Implications for design and research. Int. J. Account. Inf. Syst. 2012, 13, 41–59. [Google Scholar] [CrossRef]
- Jing, C.; Du, M.; Li, S.; Liu, S. Geospatial Dashboards for Monitoring Smart City Performance. Sustainability 2019, 11, 5648. [Google Scholar] [CrossRef] [Green Version]
- Kourtit, K.; Nijkamp, P. Big data dashboards as smart decision support tools for i-cities—An experiment on Stockholm. Land Use Policy 2018, 71, 24–35. [Google Scholar] [CrossRef]
- Simms, R.; Ping, A.; Yelland, A.; Beringer, A.; Fox, R.; Draycott, T. Development of maternity dashboards across a UK health region; current practice, continuing problems. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 170, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Few, S. Information Dashboard Design: The Efective Visual Communication of Data; O’Reilly Media: Boston, MA, USA, 2006. [Google Scholar]
- Pappas, L.; Whitman, L. Riding the technology wave: Efective dashboard data visualization. In Symposium on Human Interface; Springer: Berlin/Heidelberg, Germany, 2011; pp. 249–258. [Google Scholar]
- Donohue, R.; Sack, C.; Roth, R. Time Series Proportional Symbol Maps with Leaflet and jQuery. Cartogr. Perspect. 2013, 43–66. [Google Scholar] [CrossRef] [Green Version]
- Roser, M.; Ritchie, H.; Ortiz-Ospina, E.; Hasell, J. Coronavirus Pandemic (COVID-19). 2020. Available online: https://ourworldindata.org/coronavirus (accessed on 9 February 2021).
- Marques da Costa, E.; Marques da Costa, N. A Pandemia de COVID-19 em Portugal Continental—uma análise geográfica da evolução verificada nos meses de março e abril. Hygeia Rev. Bras. Geogr. Médica Saúde 2020, 72–79. [Google Scholar] [CrossRef]
- Marques da Costa, E.; Marques da Costa, N. O processo pandémico da Covid-19 em Portugal Continental. Análise geográfica dos primeiros 100 dias. Finisterra 2020, 115, 11–18. [Google Scholar] [CrossRef]
- Sá Marques, T.; Santos, H.; Honório, F.; Ferreira, M.; Ribeiro, D.; Barbosa, M. O Mosaico Territorial do Risco ao Contágio e à Mortalidade por COVID-19 em Portugal Continental. Finisterra 2020, 115, 19–26. [Google Scholar] [CrossRef]
- Matheus, R.; Janssen, M.; Maheshwari, D. Data science empowering the public: Data-driven dashboards for transparent and accountable decision-making in smart cities. Gov. Inf. Q. 2020, 37, 101284. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques da Costa, N.; Mileu, N.; Alves, A. Dashboard COMPRIME_COMPRI_MOv: Multiscalar Spatio-Temporal Monitoring of the COVID-19 Pandemic in Portugal. Future Internet 2021, 13, 45. https://doi.org/10.3390/fi13020045
Marques da Costa N, Mileu N, Alves A. Dashboard COMPRIME_COMPRI_MOv: Multiscalar Spatio-Temporal Monitoring of the COVID-19 Pandemic in Portugal. Future Internet. 2021; 13(2):45. https://doi.org/10.3390/fi13020045
Chicago/Turabian StyleMarques da Costa, Nuno, Nelson Mileu, and André Alves. 2021. "Dashboard COMPRIME_COMPRI_MOv: Multiscalar Spatio-Temporal Monitoring of the COVID-19 Pandemic in Portugal" Future Internet 13, no. 2: 45. https://doi.org/10.3390/fi13020045