Emotion Recognition in Horses with Convolutional Neural Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Defining a Horse Emotion Tracking Framework
- Eyes: open eyes with little or no sclera
- Ears: stiffly forward
- Nose: open nostrils, usually slightly tense mouth or muzzle
- Neck: above parallel, head higher than back
- Eyes: open with perhaps some sclera
- Ears: stiffly back or pinned back, close to the horse’s head
- Nose: nostrils slightly closed, tense mouth or muzzle
- Neck: usually parallel or above parallel
- Eyes: open with little or no sclera
- Ears: pointing forward/sides but relaxed
- Nose: open nostrils, relaxed mouth and muzzle
- Neck: usually parallel to ground but may be slightly below or above
- Eyes: partially to mostly shut
- Ears: relaxed, opening pointing to the sides
- Nose: relaxed mouth and muzzle
- Neck: approximately parallel or below
2.2. Detector
2.3. Model
2.4. Final Steps
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gendron, M. Defining Emotion: A Brief History. Emot. Rev. 2010, 2, 371–372. [Google Scholar] [CrossRef]
- Kremer, L.; Klein Holkenborg, S.E.J.; Reimert, I.; Bolhuis, J.E.; Webb, L.E. The Nuts and Bolts of Animal Emotion. Neurosci. Biobehav. Rev. 2020, 113, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Zuckerman, M.; Lipets, M.S.; Koivumaki, J.H.; Rosenthal, R. Encoding and Decoding Nonverbal Cues of Emo-Tion. J. Personal. Soc. Psychol. 1975, 32, 1068. [Google Scholar] [CrossRef]
- DePaulo, B.M. Decoding Discrepant Nonverbal Cues. J. Pers. Soc. Psychol. 1978, 36, 313–323. [Google Scholar] [CrossRef]
- Creek, L.V.; Watkins, J.T. Responses to Incongruent Verbal and Nonverbal Emotional Cues. J. Commun. 1972, 22, 311–316. [Google Scholar] [CrossRef]
- Panksepp, J. Affective Consciousness: Core Emotional Feelings in Animals and Humans. Conscious. Cogn. 2005, 14, 30–80. [Google Scholar] [CrossRef] [PubMed]
- Waller, B.M.; Peirce, K.; Caeiro, C.C.; Scheider, L.; Burrows, A.M.; McCune, S.; Kaminski, J. Paedomorphic Facial Expressions Give Dogs a Selective Advantage. PLoS ONE 2013, 8, e82686. [Google Scholar] [CrossRef] [Green Version]
- Paul, E.S.; Sher, S.; Tamietto, M.; Winkielman, P.; Mendl, M.T. Towards a Comparative Science of Emotion: Affect and Consciousness in Humans and Animals. Neurosci. Biobehav. Rev. 2020, 108, 749–770. [Google Scholar] [CrossRef]
- Leliveld, L.M.C.; Düpjan, S.; Tuchscherer, A.; Puppe, B. Behavioural and Physiological Measures Indicate Subtle Variations in the Emotional Valence of Young Pigs. Physiol. Behav. 2016, 157, 116–124. [Google Scholar] [CrossRef]
- Von Borell, E.; Langbein, J.; Després, G.; Hansen, S.; Leterrier, C.; Marchant-Forde, J.; Marchant-Forde, R.; Minero, M.; Mohr, E.; Prunier, A.; et al. Heart Rate Variability as a Measure of Autonomic Regulation of Cardiac Activity for Assessing Stress and Welfare in Farm Animals—A Review. Physiol. Behav. 2007, 92, 293–316. [Google Scholar] [CrossRef]
- Budzyńska, M. Stress Reactivity and Coping in Horse Adaptation to Environment. J. Equine Vet. Sci. 2014, 34, 935–941. [Google Scholar] [CrossRef]
- Yarnell, K.; Hall, C.; Billett, E. An Assessment of the Aversive Nature of an Animal Management Procedure (Clipping) Using Behavioral and Physiological Measures. Physiol. Behav. 2013, 118, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.A.; Johnson, P.J.; Megarani, D.V.; Patel, S.D.; Yaglom, H.D.; Osterlind, S.; Grindler, K.; Vogelweid, C.M.; Parker, T.M.; Pascua, C.K.; et al. Horses Working in Therapeutic Riding Programs: Cortisol, Adrenocorticotropic Hormone, Glucose, and Behavior Stress Indicators. J. Equine Vet. Sci. 2017, 57, 77–85. [Google Scholar] [CrossRef]
- McDonnell, S.M.; Haviland, J.C.S. Agonistic Ethogram of the Equid Bachelor Band. Appl. Anim. Behav. Sci. 1995, 43, 147–188. [Google Scholar] [CrossRef]
- Arnold, G.W.; Grassia, A. Ethogram of Agonistic Behaviour for Thoroughbred Horses. Appl. Anim. Ethol. 1982, 8, 5–25. [Google Scholar] [CrossRef]
- McDonnell, S.M.; Poulin, A. Equid Play Ethogram. Appl. Anim. Behav. Sci. 2002, 78, 263–290. [Google Scholar] [CrossRef]
- Rietmann, T.R.; Stuart, A.E.A.; Bernasconi, P.; Stauffacher, M.; Auer, J.A.; Weishaupt, M.A. Assessment of Mental Stress in Warmblood Horses: Heart Rate Variability in Comparison to Heart Rate and Selected Behavioural Parameters. Appl. Anim. Behav. Sci. 2004, 88, 121–136. [Google Scholar] [CrossRef]
- Żelazna, R.; Jezierski, T. Behavioural Reactions of Horses (Equus Caballus) to Separation Stress in Conspecifics: A Pilot Study on Emotional Contagion in the Horse. Anim. Sci. Pap. Rep. 2018, 36, 333–338. [Google Scholar]
- Lansade, L.; Nowak, R.; Lainé, A.L.; Leterrier, C.; Bonneau, C.; Parias, C.; Bertin, A. Facial Expression and Oxy-Tocin as Possible Markers of Positive Emotions in Horses. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hintze, S.; Murphy, E.; Bachmann, I.; Wemelsfelder, F.; Würbel, H. Qualitative Behaviour Assessment of Horses Exposed to Short-Term Emotional Treatments. Appl. Anim. Behav. Sci. 2017, 196, 44–51. [Google Scholar] [CrossRef]
- Hall, C.; Randle, H.; Pearson, G.; Preshaw, L.; Waran, N. Assessing Equine Emotional State. Appl. Anim. Behav. Sci. 2018, 205, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Wathan, J.; Burrows, A.M.; Waller, B.M.; McComb, K. EquiFACS: The Equine Facial Action Coding System. PLoS ONE 2015, 10, e0131738. [Google Scholar]
- Gleerup, K.B.; Forkman, B.; Lindegaard, C.; Andersen, P.H. An Equine Pain Face. Vet. Anaesth. Analg. 2015, 42, 103–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, P.H.; Gleerup, K.B.; Wathan, J.; Coles, B.; Kjellstrom, H.; Broomé, S.; Forster, D. Can a Machine Learn to See Horse Pain? An Interdisciplinary Approach Towards Automated Decoding of Facial Expressions of Pain in the Horse. Meas. Behav. 2018, 6–8. Available online: https://web.cs.ucdavis.edu/~yjlee/projects/mb2018a.pdf (accessed on 25 September 2021).
- Rashid, M.; Broome, S.; Andersen, P.H.; Gleerup, K.B.; Lee, Y.J. What Should I Annotate ? An Automatic Tool for Finding Video Segments for EquiFACS Annotation. Meas. Behav. 2018, 6–8. Available online: https://arxiv.org/pdf/2108.13258.pdf (accessed on 25 September 2021).
- Rashid, M.; Silventoinen, A.; Gleerup, K.B.; Andersen, P.H. Equine Facial Action Coding System for Determination of Pain-Related Facial Responses in Videos of Horses. bioRxiv 2020, 15, e0231608. [Google Scholar] [CrossRef]
- McDuff, D.; Kaliouby, R.E.; Picard, R.W. Crowdsourcing Facial Responses to Online Videos. IEEE Trans. Affect. Comput. 2012, 3, 456–468. [Google Scholar] [CrossRef]
- Martens, P.; Enders-Slegers, M.J.; Walker, J.K. The Emotional Lives of Companion Animals: Attachment and Subjec-Tive Claims by Owners of Cats and Dogs. Anthrozoös 2016, 29, 73–88. [Google Scholar] [CrossRef] [Green Version]
- Vick, S.-J.; Waller, B.M.; Parr, L.A.; Smith Pasqualini, M.C.; Bard, K.A.A. Cross-Species Comparison of Facial Morphology and Movement in Humans and Chimpanzees Using the Facial Action Coding System (FACS). J. Nonverbal. Behav. 2007, 31, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Niklas, L.; Ferres, K. Creating a Smart System to Detect Dog Emotions Based on Facial Expressions. In Proceedings of the Seminar Thesis Coins Seminar; University of Cologne: Cologne, Germany, 2019. [Google Scholar]
- Hantke, S.; Cummins, N.; Schuller, B. What Is My Dog Trying to Tell Me? The Automatic Recognition of the Con-Text and Perceived Emotion of Dog Barks. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; IEEE: Piscataway, NJ, USA; pp. 5134–5138. [Google Scholar]
- Stewart, M.; Stratton, R.B.; Beausoleil, N.J.; Stafford, K.J.; Worth, G.M.; Waran, N.K. Assessment of Positive Emotions in Horses: Implications for Welfare and Performance. J. Vet. Behav. 2011, 6, 296. [Google Scholar] [CrossRef]
- Peters, S.M.; Bleijenberg, E.H.; van Dierendonck, M.C.; van der Harst, J.E.; Spruijt, B.M. Characterization of Anticipatory Behaviour in Domesticated Horses (Equus Caballus). Appl. Anim. Behav. Sci. 2012, 138, 60–69. [Google Scholar] [CrossRef]
- Mendl, M.; Burman, O.H.P.; Paul, E.S. An Integrative and Functional Framework for the Study of Animal Emotion and Mood. Proc. Biol. Sci. 2010, 277, 2895–2904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, C.; Heleski, C. The Role of the Ethogram in Equitation Science. Appl. Anim. Behav. Sci. 2017, 190, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Jørgensen, G.H.M.; Liestøl, S.H.O.; Bøe, K.E. Effects of Enrichment Items on Activity and Social Interactions in Do-Mestic Horses (Equus Caballus). Appl. Anim. Behav. Sci. 2011, 78, 263–290. [Google Scholar]
- Malavasi, R.; Huber, L. Evidence of Heterospecific Referential Communication from Domestic Horses (Equus Caballus) to Humans. Anim. Cogn. 2016, 19, 899–909. [Google Scholar] [CrossRef] [PubMed]
- Wathan, J.; McComb, K. The Eyes and Ears Are Visual Indicators of Attention in Domestic Horses. Curr. Biol. 2014, 24, R677–R679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wathan, J.; Proops, L.; Grounds, K.; McComb, K. Horses Discriminate between Facial Expressions of Conspecifics. Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-Cnn: Towards Real-Time Object Detection with Region Proposal Net-Works. Adv. Neural Infor-Mation Process. Syst. 2015, 28, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Stolz, K.; Heyder, T.; Gloor, P.A.; Posegga, O. Measuring Human-Animal Interaction with Smartwatches: An Initial Experiment. In Studies on Entrepreneurship, Structural Change and Industrial Dynamics; Springer International Publishing: Cham, Switzerland, 2019; pp. 165–182. [Google Scholar]
- Boissy, A.; Manteuffel, G.; Jensen, M.B.; Moe, R.O.; Spruijt, B.; Keeling, L.J.; Winckler, C.; Forkman, B.; Dimitrov, I.; Langbein, J.; et al. Assessment of Positive Emotions in Animals to Improve Their Welfare. Physiol. Behav. 2007, 92, 375–397. [Google Scholar] [CrossRef]
- Waran, N.; Randle, H. What We Can Measure, We Can Manage: The Importance of Using Robust Welfare Indicators in Equitation Science. Appl. Anim. Behav. Sci. 2017, 190, 74–81. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corujo, L.A.; Kieson, E.; Schloesser, T.; Gloor, P.A. Emotion Recognition in Horses with Convolutional Neural Networks. Future Internet 2021, 13, 250. https://doi.org/10.3390/fi13100250
Corujo LA, Kieson E, Schloesser T, Gloor PA. Emotion Recognition in Horses with Convolutional Neural Networks. Future Internet. 2021; 13(10):250. https://doi.org/10.3390/fi13100250
Chicago/Turabian StyleCorujo, Luis A., Emily Kieson, Timo Schloesser, and Peter A. Gloor. 2021. "Emotion Recognition in Horses with Convolutional Neural Networks" Future Internet 13, no. 10: 250. https://doi.org/10.3390/fi13100250
APA StyleCorujo, L. A., Kieson, E., Schloesser, T., & Gloor, P. A. (2021). Emotion Recognition in Horses with Convolutional Neural Networks. Future Internet, 13(10), 250. https://doi.org/10.3390/fi13100250