Environmental Hazards: A Coverage Response Approach
Abstract
:1. Introduction
2. Vulnerabilities
3. Systems Interaction
4. Actionable Gaps in Response (“How i-Verifi”)
5. Shaping Pathways (Moving from “How i-Verifi” to COVERAGE by Societal Smart Systems)
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Anderson, J.; Rainie, L. The Future of Smart Systems. Pew Research Center, Internet and Technology. 2012. Available online: http://www.pewinternet.org/2012/06/29/the-future-of-smart-systems/ (accessed on 30 October 2018).
- Xu, L.D.; He, W.; Li, S. Internet of Things in Industries: A Survey. IEEE Trans. Ind. Inform. 2014, 10, 2233–2243. [Google Scholar] [CrossRef]
- Lee, J.; Ardakani, H.D.; Yang, S.; Bagheri, B. Industrial Big Data Analytics and Cyber-physical Systems for Future Maintenance & Service Innovation. Procedia CIRP 2015, 38, 3–7. [Google Scholar] [CrossRef] [Green Version]
- Chan, M.; Campo, E.; Estève, D.; Fourniols, J.-Y. Smart homes—Current features and future perspectives. Maturitas 2009, 64, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Druce, K.L.; McBeth, J.; van der Veer, S.N.; Selby, D.A.; Vidgen, B.; Georgatzis, K.; Hellman, B.; Lakshminarayana, R.; Chowdhury, A.; Schultz, D.M.; et al. Recruitment and Ongoing Engagement in a UK Smartphone Study Examining the Association Between Weather and Pain: Cohort Study. JMIR mHealth uHealth 2017, 5, e168. [Google Scholar] [CrossRef] [Green Version]
- Ergüner-Tekinalp, B.; Johnson-Migalski, L.; Belangee, S.E. Diversity and Social Justice: Applying Theory and Adapting Practices. J. Individ. Psychol. 2018, 74, 1–3. [Google Scholar] [CrossRef]
- Phan, M.; Montz, B.; Curtis, S.; Rickenbach, T. Weather on the Go: An Assessment of Smartphone Mobile Weather Applications Use among College Students. Bull. Am. Meteorol. Soc. 2018. [Google Scholar] [CrossRef]
- Albino, V.; Berardi, U.; Dangelico, R.M. Smart Cities: Definitions, Dimensions, Performance, and Initiatives. J. Urban Technol. 2015, 22, 3–21. [Google Scholar] [CrossRef]
- Cord, A.F.; Roeßiger, F.; Schwarz, N. Geocaching data as an indicator for recreational ecosystem services in urban areas: Exploring spatial gradients, preferences and motivations. Landsc. Urban Plan. 2015, 144, 151–162. [Google Scholar] [CrossRef]
- Carta, S.; Boratto, L. Introduction to the Special Issue on Human–Computer Interaction and the Social Web. Future Internet 2016, 8, 43. [Google Scholar] [CrossRef]
- Kalkstein, A.; Kalkstein, L.; Vanos, J.; Eisenman, D.; Grady, D.P. Heat/mortality sensitivities in Los Angeles during winter: A unique phenomenon in the United States. Environ. Health 2018, 17, 45. [Google Scholar] [CrossRef]
- Yanga, J.; llamathy, D.; Kumara, M.; Pyrgoub, A.; Chonga, A.; Santamourisa, M.; Kolokotsad, D.; Leea, S.E. Green and cool roofs’ urban heat island mitigation potential in tropical climate. Sol. Energy 2018, 173, 597–609. [Google Scholar] [CrossRef]
- Lai, S.; Zoppi, C. An Ontology of the Strategic Environmental Assessment of City Masterplans. Future Internet 2011, 3, 362–378. [Google Scholar] [CrossRef] [Green Version]
- Obeysekera, J.; Graham, W.; Sukop, M.; Asefa, T.; Wang, D.; Ghebremichael, K.; Mwashote, B.M. Implications of Climate Change on Florida’s Water Resources. In Chapter 3 in Florida’s Climate: Changes, Variations, & Impacts; Florida Climate Institute: Gainesville, FL, USA, 2017. [Google Scholar]
- Lucas, C. Concerning values: What underlies public polarisation about climate change? Geogr. Res. 2017, 56, 298–310. [Google Scholar] [CrossRef]
- Chen, Y.; Dawei, H. Water quality monitoring in smart city: A pilot project. Autom. Constr. 2018, 89, 307–316. [Google Scholar] [CrossRef]
- Geetha, S.; Gouthami, S. Internet of things enabled real time water quality monitoring system. Smart Water Int. Smart ICT Water 2017, 2, 1. [Google Scholar] [CrossRef]
- Loskyll, M.; Heck, I.; Schlick, J.; Schwarz, M. Context-Based Orchestration for Control of Resource-Efficient Manufacturing Processes. Future Internet 2012, 4, 737–761. [Google Scholar] [CrossRef] [Green Version]
- Riebsame, W.E.; Diaz, H.F.; Moses, T.; Price, M. The Social Burden of Weather and Climate Hazards. Bull. Am. Meteorol. Soc. 1986, 67, 1378–1388. [Google Scholar] [CrossRef] [Green Version]
- De-Pablos-Heredero, C. Future Intelligent Systems and Networks, Editorial. Future Internet 2017, 9, 49. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Chu, E.T.-H.; Ku, L.-W.; Liu, J.W.S. Active Disaster Response System for a Smart Building. Sensors 2014, 14, 17451–17470. [Google Scholar] [CrossRef]
- Rahman, K.M.; Alam, T.; Chowdhury, M. Location based early disaster warning and evacuation system on mobile phones using OpenStreetMap. In Proceedings of the IEEE Conference on Open Systems, Kuala Lumpur, Malaysia, 21–24 October 2012; pp. 1–6. [Google Scholar]
- Vieweg, S.; Hughes, A.L.; Starbird, K.; Palen, L. Microblogging during two natural hazards events: What twitter may contribute to situational awareness. In Proceedings of the 28th International Conference on Human Factors in Computing Systems, Atlanta, GE, USA, 10–15 April 2010; pp. 1079–1088. [Google Scholar]
- Alvear, O.; Calafate, C.; Cano, J.C.; Manzoni, P. Crowdsensing in Smart Cities: Overview, Platforms, and Environment Sensing Issues. Sensors 2018, 18, 460. [Google Scholar] [CrossRef]
- Liu, S.B.; Palen, L.; Sutton, J.; Hughes, A.L.; Vieweg, S. In search of the bigger picture: The emergent role of on-line photo sharing in times of disaster. In Proceedings of the Information Systems for Crisis Response and Management Conference, Washington, DC, USA, 4–7 May 2008. [Google Scholar]
- Le Coz, J.; Patalano, A.; Collins, D.; Guillén, N.F.; García, C.M.; Smart, G.M.; Bind, J.; Chiaverini, A.; Le Boursicaud, R.; Dramais, G.; et al. Crowdsourced data for flood hydrology: Feedback from recent citizen science projects in Argentina, France and New Zealand. J. Hydrol. 2016, 541 Pt B, 766–777. [Google Scholar] [CrossRef]
- Chapman, L.; Muller, C.L.; Young, D.T.; Warren, E.L.; Grimmond, G.S.; Cai, X.; Ferranti, E.J. The Birmingham Urban Climate Laboratory: An Open Meteorological Test Bed and Challenges of the Smart City. Bull. Am. Meteorol. Soc. 2015, 96, 1545–1560. [Google Scholar] [CrossRef]
- Earle, P.S.; Bowden, D.C.; Guy, M. Twitter earthquake detection: Earthquake monitoring in a social world. Ann. Geophys. 2012, 54, 708–715. [Google Scholar] [CrossRef]
- De Longueville, B.; Luraschi, G.; Smits, P.; Peedell, S.; de Groeve, T. Citizens as sensors for natural hazards: A VGI integration workflow. Can. Inst. Geomat. 2010, 64, 41–59. [Google Scholar]
- Goodchild, M.F. Citizens as sensors: The world of volunteered geography. GeoJournal 2007, 69, 211–221. [Google Scholar] [CrossRef]
- Cutter, S.L.; Finch, C. Temporal and spatial changes in social vulnerability to natural hazards. Proc. Natl. Acad. Sci. USA 2008, 105, 2301–2306. [Google Scholar] [CrossRef] [Green Version]
- Zanocco, C.; Boudet, H.; Nilson, R.; Satein, H.; Whitley, H.; Flora, J. Place, proximity, and perceived harm: Extreme weather events and views about climate change. Clim. Chang. 2018, 149, 349–365. [Google Scholar] [CrossRef]
- Lee, C.C.; Sheridan, S.C. Trends in weather type frequencies across North America. Clim. Atmos. Sci. 2018, 1, 41. [Google Scholar] [CrossRef]
- Pollino, M.; Fattoruso, G.; La Porta, L.; Rocca, A.B.D.; James, V. Collaborative Open Source Geospatial Tools and Maps Supporting the Response Planning to Disastrous Earthquake Events. Future Internet 2012, 4, 451–468. [Google Scholar] [CrossRef] [Green Version]
- Hillier, J. Introduction to Part Two. In The Ashgate Companion to Planning Theory; Hillier, J., Healey, P., Eds.; Ashgate Publishing Limited: Farnham, Surrey, UK, 2010; pp. 235–250. [Google Scholar]
- Morss, R.E.; Cuite, C.L.; Demuth, J.L.; Hallman, W.K.; Shwom, R.L. Is storm surge scary? The influence of hazard, impact, and fear-based messages and individual differences on responses to hurricane risks in the U.S. Int. J. Disaster Risk Reduct. 2018, 30 Pt A, 44–58. [Google Scholar] [CrossRef]
- Tatham, P.; Houghton, L. The wicked problem of humanitarian logistics and disaster relief aid. J. Humanit. Logist. Supply Chain Manag. 2011, 1, 15–31. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, S.H.; Cieciuch, J.; Vecchione, M.; Davidov, E.; Fischer, R.; Beierlein, C.; Ramos, A.; Verkasalo, M.; Lönnqvist, J.E.; Demirutku, K.; et al. Refining the theory of basic individual values. J. Personal. Soc. Psychol. 2012, 103, 663–688. [Google Scholar] [CrossRef] [PubMed]
- McHugh, C.P. Preparing public safety organizations for disaster response: A study of Tucson, Arizona′s response to flooding. Disaster Prev. Manag. Int. J. 1995, 4, 25–36. [Google Scholar] [CrossRef]
- Sun, C.; Yuan, X.; Xu, M. The public perceptions and willingness to pay: From the perspective of the smog crisis in China. J. Clean. Prod. 2016, 112 Pt 2, 1635–1644. [Google Scholar] [CrossRef]
- Laituri, M.; Kodrich, K. On line disaster response community: People as sensors of high magnitude disasters using internet GIS. Sensors 2008, 8, 3037–3055. [Google Scholar] [CrossRef]
- Van der Linden, S.; Lewandowsky, S. How to combat distrust of science. In Chapter in Book: Return to Reason: The Science of Thought; Scientific American: New York, NY, USA, September 2018; ISBN 978-1-948933-03-2. [Google Scholar]
- Grimberg, B.I.; Ahmed, S.; Ellis, C.; Miller, Z.; Menalled, F. Climate Change Perceptions and Observations of Agricultural Stakeholders in the Northern Great Plains. Sustainability 2018, 10, 1687. [Google Scholar] [CrossRef]
- Jost, J. Underestimating belief in climate change. Nat. Clim. Chang. 2018, 8, 189–190. [Google Scholar] [CrossRef]
- Besley, J.; Dudo, A. Topline Takeaways from Trainer Interviews in Report: Landscaping Overview of the North American Science Communication Training Community. Available online: http://informalscience.org/support-systems-scientists%E2%80%99-communication-and-engagement-workshop-i-communication-training-0 (accessed on 30 August 2018).
- Beebe, J.; Baghramian, M.; Drury, L.; Dellsen, F. Divergent Perspectives on Expert Disagreement: Preliminary Evidence from Climate Science, Climate Policy, Astrophysics, and Public Opinion. Environ. Commun. 2018, 13, 35–50. [Google Scholar] [CrossRef]
- Ecker, U.K.H.; Swire, B.; Lewandowsky, S. Correcting misinformation—A challenge for education and cognitive science. In Processing Inaccurate Information: Theoretical and Applied Perspectives from Cognitive Science and the Educational Sciences; Rapp, D.N., Braasch, J.L.G., Eds.; MIT Press: Cambridge, MA, USA, 2014; pp. 13–38. [Google Scholar]
- Kobayashi, K. The Impact of Perceived Scientific and Social Consensus on Scientific Beliefs. Sci. Commun. 2018, 40, 63–88. [Google Scholar] [CrossRef]
- Drummond, A.; Hall, L.C.; Sauer, J.D.; Palmer, M.A. Is public awareness and perceived threat of climate change associated with governmental mitigation targets? Clim. Chang. 2018, 149, 159–171. [Google Scholar] [CrossRef]
- Croft, P. A “Sandy” Storm of Criticism and the Vulnerability Capacity Gap. 2013. Available online: https://www.researchgate.net/publication/258078624_A_SANDY_STORM_OF_CRITICISM_AND_THE_VULNERABILITY_CAPACITY_GAP_Choosing_pathways_for_discussion_and_action (accessed on 24 November 2018).
- Eden, J.; Kew, S.; Bellprat, O.; Lenderink, G.; Manola, I.; Omrani, H.; Van Oldenborgh, G. Extreme precipitation in the Netherlands: An event attribution case study. Weather Clim. Extrem. 2018, 21, 90–101. [Google Scholar] [CrossRef]
- Coles, S. An Introduction to Statistical Modeling of Extreme Values; Springer: Berlin/Heidelberg, Germany, 2001; 208p. [Google Scholar]
- Cooley, D. Return periods and return levels under climate change. In Extremes in a Changing Climate: Detection, Analysis and Uncertainty; AghaKouchak, A., Easterling, D., Hsu, K., Schubert, S., and Sorooshian, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 97–114. [Google Scholar]
- Katz, R. Statistics of extremes in climate change. Clim. Chang. 2010, 100, 71–76. [Google Scholar] [CrossRef]
- National Academies of Sciences. Attribution of Extreme Weather Events in the Context of Climate Change; The National Academies Press: Washington, DC, USA, 2016; 186p. [Google Scholar] [CrossRef]
- Otto, F.; van Oldenborgh, G.; Eden, J.; Stott, P.; Karoly, D.; Allen, M. The attribution question. Nat. Clim. Chang. 2016, 6, 813–816. [Google Scholar] [CrossRef]
- Gunver, M.; Senocak, M.; Vehid, S. To Determine Skewness, Mean and Deviation with a New Approach on Continuous Data. Ponte Int. Sci. Res. J. 2018, 74. [Google Scholar] [CrossRef]
- Ripberger, J.; Jenkins-Smith, H.; Silva, C.; Czajkowski, J.; Kunreuther, H.; Simmons, K. Tornado Damage Mitigation: Homeowner Support for Enhanced Building Codes in Oklahoma: Tornado Damage Mitigation. Risk Anal. 2018, 38, 2300–2317. [Google Scholar] [CrossRef]
- Scott, L.N.; Johnson, E.W. From fringe to core? The integration of environmental sociology. Environ. Sociol. 2016, 17–29. [Google Scholar] [CrossRef]
- Cioffi-Revilla, C. Introduction to Computational Social Science: Principles and Applications; Springer: Berlin, Germany, 2013; p. 342. [Google Scholar]
- Ray, A.; Hughes, L.; Konisky, D.; Kaylor, C. Extreme weather exposure and support for climate change adaptation. Glob. Environ. Chang. 2017, 46, 104–113. [Google Scholar] [CrossRef]
- Wang, Y.; Bellus, M.; Geleyn, J.; Ma, X.; Tian, W.; Weidle, F. A New Method for Generating Initial Condition Perturbations in a Regional Ensemble Prediction System: Blending. Mon. Weather Rev. 2014, 142, 2043–2059. [Google Scholar] [CrossRef]
- Houtekamer, P.L.; Derome, J. Methods for Ensemble Prediction. Mon. Weather Rev. 1995, 123, 2181–2196. [Google Scholar] [CrossRef] [Green Version]
- Wanik, D.W.; Anagnostou, E.N.; Astitha, M.; Hartman, B.M.; Lackmann, G.M.; Yang, J.; Cerrai, D.; He, J.; Frediani, M.E. A Case Study on Power Outage Impacts from Future Hurricane Sandy Scenarios. J. Appl. Meteorol. Climatol. 2018, 57, 51–79. [Google Scholar] [CrossRef]
- Saharia, M.; Kirstetter, P.; Vergara, H.; Gourley, J.J.; Hong, Y.; Giroud, M. Mapping Flash Flood Severity in the United States. J. Hydrometeorol. 2017, 18, 397–411. [Google Scholar] [CrossRef]
- Emrich, C.T.; Cutter, S.L. Social Vulnerability to Climate-Sensitive Hazards in the Southern United States. Weather Clim. Soc. 2011, 3, 193–208. [Google Scholar] [CrossRef]
- Stewart, A.E.; Lazo, J.K.; Morss, R.E.; Demuth, J.L. The Relationship of Weather Salience with the Perceptions and Uses of Weather Information in a Nationwide Sample of the United States. Weather Clim. Soc. 2012, 4, 172–189. [Google Scholar] [CrossRef]
- Wang, X.; Lin, L. The Relationships among Actual Weather Events, Perceived Unusual Weather, Media Use, and Global Warming Belief Certainty in China. Weather Clim. Soc. 2018, 10, 137–144. [Google Scholar] [CrossRef]
- Morss, R.E.; Demuth, J.L.; Lazrus, H.; Palen, L.; Barton, C.M.; Davis, C.A.; Snyder, C.; Wilhelmi, O.V.; Anderson, K.M.; Ahijevych, D.A.; et al. Hazardous Weather Prediction and Communication in the Modern Information Environment. Bull. Am. Meteorol. Soc. 2017, 98, 2653–2674. [Google Scholar] [CrossRef]
- Ye, M.; Wu, J.; Wang, C.; He, X. Historical and future changes in asset value and GDP in areas exposed to tropical cyclones in China. Weather Clim. Soc. 2019, 11, 307–319. [Google Scholar] [CrossRef]
- Lettieri, N. Computational Social Science, the Evolution of Policy Design and Rule Making in Smart Societies. Future Internet 2016, 8, 19. [Google Scholar] [CrossRef]
- Cioffi-Revilla, C.; Rouleau, M. MASON RebeLand: An agent-based model of politics, environment, and insurgency. Int. Stud. Rev. 2010, 12, 31–52. [Google Scholar] [CrossRef]
- Lerman, K.; Yan, X.; Wu, X.Z. The “Majority Illusion” in Social Networks. PLoS ONE 2016, 11, e0147617. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, M.G.; Gummadi, K.; Schoelkopf, B. Quantifying Information Overload in Social Media and its Impact on Social Contagions. In Proceedings of the Eighth International AAAI Conference on Weblogs and Social Media, Ann Arbor, MI, USA, 1–4 June 2014. [Google Scholar]
- Roser-Renouf, C.; Maibach, E. Strategic Communication Research to Illuminate and Promote Public Engagement with Climate Change. Neb. Symp. Motiv. 2018, 167–218. [Google Scholar] [CrossRef]
- Blanchard-Boehm, R.D. Understanding Public Response to Increased Risk from Natural Hazards: Application of the Hazards Risk Communication Framework Citation. Int. J. Mass Emerg. Disasters 1998, 16, 247–278. [Google Scholar]
- Maibach, E.; Roser-Renouf, C.; Leiserowitz, A. Global Warming’s Six Americas 2009: An Audience Segmentation Analysis. Available through George Mason Center for Climate Change Communication Website. Available online: https://www.climatechangecommunication.org/all/ (accessed on 28 November 2018).
- Bau, S.D. Countering Superintelligence Misinformation. Information 2018, 9, 244. [Google Scholar] [CrossRef]
- Lerman, K. Information Is Not a Virus, and Other Consequences of Human Cognitive Limits. Future Internet 2016, 8, 21. [Google Scholar] [CrossRef]
- Broad, K.; Leiserowitz, A.; Weinkle, J.; Steketee, M. Misinterpretations of the “cone of uncertainty” in Florida during the 2004 hurricane season. Bull. Am. Meteorol. Soc. 2007, 88, 651–667. [Google Scholar] [CrossRef]
- Benjamin, D.M.; Budescu, D.V. The Role of Type and Source of Uncertainty on the Processing of Climate Models Projections. Front. Psychol. 2018, 9, 403–420. [Google Scholar] [CrossRef]
- Ashley, W.S.; Strader, S.; Dziubla, D.C.; Haberlie, A. Driving blind: Weather-related vision hazards and fatal motor vehicle crashes. Bull. Am. Meteorol. Soc. 2015, 96, 755–778. [Google Scholar] [CrossRef]
- Strader, S.; Ashley, W. Fine-Scale Assessment of Mobile-Home Tornado Vulnerability in the Central and Southeast U.S. Weather Clim. Soc. 2018. [Google Scholar] [CrossRef]
- Pfost, R.L. Reassessing the impact of two historical Florida hurricanes. Bull. Am. Meteorol. Soc. 2003, 84, 1367–1372. [Google Scholar] [CrossRef]
- Becker, J.S.; Taylor, H.L.; Doody, B.J.; Wright, K.C.; Gruntfest, E.; Webber, D. A review of people’s behavior in and around floodwater. Weather Clim. Soc. 2015, 7, 321–332. [Google Scholar] [CrossRef]
- Papagiannaki, K.; Kotroni, V.; Lagouvardos, K. Urban Area Response to Flash Flood–Triggering Rainfall, Featuring Human Behavioral Factors: The Case of 22 October 2015 in Attica, Greece. Weather Clim. Soc. 2015, 9, 621–638. [Google Scholar] [CrossRef]
- Wang, X.H.; Kapucu, N. Public complacency under repeated emergency threats: Some empirical evidence. J. Public Admin. Res. Theory 2007, 18, 57–78. [Google Scholar] [CrossRef]
- Eckert, A.W. A Time of Terror—The Great Dayton Flood; Landfall Press: Dayton, OH, USA, 1965; ISBN 0-913428-02-7. [Google Scholar]
- Lejano, R.P.; Casas, E.V., Jr.; Montes, R.B.; Lengwa, L.P. Weather, Climate, and Narrative: A Relational Model for Democratizing Risk Communication. Weather Clim. Soc. 2018, 10, 579–594. [Google Scholar] [CrossRef]
- Wei, H.-L.; Lindell, M.K.; Prater, C.S. “Certain death” from storm surge: A comparative study of household responses to warnings about Hurricanes Rita and Ike. Weather Clim. Soc. 2014, 6, 425–433. [Google Scholar] [CrossRef]
- Lê, Q.; Nguyen, H.B.; Barnett, T. Smart Homes for Older People: Positive Aging in a Digital World. Future Internet 2012, 4, 607–617. [Google Scholar] [CrossRef]
- Boukerche, A.; Coutinho, R. Smart Disaster Detection and Response System for Smart Cities. In Proceedings of the 2018 IEEE Symposium on Computers and Communications (ISCC), Natal, Brazil, 25–28 June 2018. [Google Scholar]
- Hu, X.; Zhang, X.; Wei, J. Public Attention to Natural Hazard Warnings in Social Media in China. Weather Clim. Soc. 2019, 11, 183–197. [Google Scholar] [CrossRef]
- Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 1254–12259. [Google Scholar] [CrossRef]
- Schellart, A.; Liguori, S.; Krämer, S.; Saul, A.; Rico-Ramirez, M.A. Comparing quantitative precipitation forecast methods for prediction of sewer flows in a small urban area. Hydrol. Sci. J. Spec. Issue Weather Radar Hydrol. 2014, 59, 1418–1436. [Google Scholar] [CrossRef] [Green Version]
- Burke, M.; Dykema, J.; Lobell, D.B.; Miguel, E.; Satyanath, S. Incorporating climate uncertainty into estimates of climate change impacts. Rev. Econ. Stat. 2015, 97, 461–471. [Google Scholar] [CrossRef]
- Clapp, C.; Lund, H.F.; Aamaas, B.; Lannoo, E. Shades of climate risk: Categorizing climate risk for investors. CICERO Clim. Financ. Cent. Rep. 2017, 1, 45. [Google Scholar]
- Forzieri, G.; Feyen, L.; Russo, S.; Vousdoukas, M.; Alfieri, L.; Outten, S.; Migliavacca, M.; Bianchi, A.; Rojas, R.; Cid, A. Multi-hazard assessment in Europe under climate change. Clim. Chang. 2016, 137, 105–119. [Google Scholar] [CrossRef] [Green Version]
- Sillmann, J.; Russo, S.; Sippel, S.; Alnes, K. From Hazard to Risk. Meetings Summary. Bull. Am. Meteorol. Soc. 2018, 99, 1689–1693. [Google Scholar] [CrossRef]
- Ruin, I.; Lutoff, C.; Boudevillain, B.; Creutin, J.D.; Anquetin, S.; Rojo, M.B.; Boissier, L.; Bonnifait, L.; Borga, M.; Colbeau-Justin, L.; et al. Social and hydrological responses to extreme precipitations: An interdisciplinary strategy for post flood investigation. Weather Clim. Soc. 2014, 6, 135–153. [Google Scholar] [CrossRef]
- Simona, T.; Goldberg, A.; Adini, B. Socializing in emergencies—A review of the use of social media in emergency situations. Int. J. Inf. Manag. 2015, 35, 609–619. [Google Scholar] [CrossRef] [Green Version]
- Carrino, F.; Mugellini, E.; Khaled, O.A.; Ouerhani, N.; Ehrensberger, J. iNUIT: Internet of Things for Urban Innovation. Future Internet 2016, 8, 18. [Google Scholar] [CrossRef]
- Baumann, P.; Rossi, A.P.; Bell, B.; Clements, O.; Evans, B.; Hoenig, H.; Hogan, P.; Kakaletris, G.; Koltsida, P.; Mantovani, S.; et al. Fostering Cross-Disciplinary Earth Science Through Datacube Analytics. In Earth Observation Open Science and Innovation; Mathieu, P.-P., Aubrecht, C., Eds.; ISSI Scientific Report Series 15; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Thomo, A. Handbook of Latent Semantic Analysis, 1st ed.; University of Colorado, Institute of Cognitive Science Series; Landauer Thomas, K., Ed.; Psychology Press: London, UK, 2007. [Google Scholar]
- Landauer, T.K.; Foltz, P.W.; Laham, D. Introduction to Latent Semantic Analysis. Discourse Process. 1998, 25, 259–284. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, J. Chinese Event Extraction Based on Attention and Semantic Features: A Bidirectional Circular Neural Network. Future Internet 2018, 10, 95. [Google Scholar] [CrossRef]
- Schade, S.; Ostermann, F.; Spinsanti, L.; Kuhn, W. Semantic Observation Integration. Future Internet 2012, 4, 807–829. [Google Scholar] [CrossRef] [Green Version]
- Parkins, J.R.; Hempel, C.; Beckley, T.M.; Stedman, R.C.; Sherren, K. Identifying energy discourses in Canada with Q methodology: Moving beyond the environment versus economy debates. Environ. Sociol. 2015, 1, 304–314. [Google Scholar] [CrossRef]
- Fantacci, R.; Marabissi, D. Cognitive Spectrum Sharing: An Enabling Wireless Communication Technology for a Wide Use of Smart Systems. Review. Future Internet 2016, 8, 23. [Google Scholar] [CrossRef]
- Schultz, D.; Bosart, L.; Colle, B.; Davies, H.; Dearden, C.; Keyser, D.; Martius, O.; Roebber, P.; Steenburgh, W.; Volkert, H.; et al. Extratropical American Meteorological Society Cyclones: A Century of Research on Meteorology’ Centerpiece. Meteorol. Monogr. 2018. [Google Scholar] [CrossRef]
- Ortiz, L.; Gonzalez, J.; Wu, W.; Schoonen, M.; Tongue, J.; Bornstein, R. New York City Impacts on a Regional Heat Wave. J. Appl. Meteorol. Climatol. 2018, 57, 837–851. [Google Scholar] [CrossRef]
- Rothfusz, L.P.; Schneider, R.; Novak, D.; Klockow-McClain, K.; Gerard, A.E.; Karstens, C.; Stumpf, G.J.; Smith, T.M. FACETs: A Proposed Next-Generation Paradigm for High-Impact Weather Forecasting. Bull. Am. Meteorol. Soc. 2018, 99, 2025–2043. [Google Scholar] [CrossRef] [Green Version]
- Argyle, E.; Gourley, J.; Flamig, Z.; Hansen, T.; Manross, K. Toward a user-centered design of a weather forecasting decision-support tool. Bull. Am. Meteorol. Soc. 2017, 98, 373–382. [Google Scholar] [CrossRef]
- O’Dea, C.J.; Bueno, A.M.C.; Saucier, D.A. Social vigilantism and the extremity, superiority, and defense of attitudes toward climate change. Personal. Individ. Differ. 2018, 130. [Google Scholar] [CrossRef]
- Krumm, J.; Kun, A.L.; Varsanyi, P. Tweet Count: Urban Insights by Counting Tweets. In Proceedings of the UBICOMP/ISWC’17 ADJUNT, Maui, HI, USA, 11–15 September 2017. [Google Scholar]
- Rametta, C.; Schembra, G. Designing a Softwarized Network Deployed on a Fleet of Drones for Rural Zone Monitoring. Future Internet 2017, 9, 8. [Google Scholar] [CrossRef]
- Frickel, S.; Gross, N. A General Theory of Scientific/Intellectual Movements. Am. Sociol. Rev. 2005, 70, 204–232. [Google Scholar] [CrossRef]
- Vlacheas, P.; Giaffreda, R.; Stavroulaki, V.; Kelaidonis, D.; Foteinos, V.; Poulios, G.; Demestichas, P.; Somov, A.; Biswas, A.; Moessner, K. Enabling smart cities through a cognitive management framework for the internet of things. IEEE Commun. Mag. 2013, 51, 102–111. [Google Scholar] [CrossRef]
- Massa, D.; Spano, L.D. FaceMashup: An End-User Development Tool for Social Network Data. Future Internet 2016, 8, 10. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Croft, P.J. Environmental Hazards: A Coverage Response Approach. Future Internet 2019, 11, 72. https://doi.org/10.3390/fi11030072
Croft PJ. Environmental Hazards: A Coverage Response Approach. Future Internet. 2019; 11(3):72. https://doi.org/10.3390/fi11030072
Chicago/Turabian StyleCroft, Paul J. 2019. "Environmental Hazards: A Coverage Response Approach" Future Internet 11, no. 3: 72. https://doi.org/10.3390/fi11030072
APA StyleCroft, P. J. (2019). Environmental Hazards: A Coverage Response Approach. Future Internet, 11(3), 72. https://doi.org/10.3390/fi11030072