Analysis of the Uptake of Hypericin by Candida albicans Yeast Cells Using Fluorescence Methods and Comparison of the Dynamics of This Process over Time
Abstract
1. Introduction
2. Materials and Methods
2.1. Organisms and Growth Conditions
2.2. Hypericin Solution
2.3. Cell Preparation and Hypericin Incubation
2.4. Light Source
2.5. Microscopic Registration of Hypericin Absorption by Candida albicans Cells
2.6. Image Analysis
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yamazaki, T.; Ohta, N.; Yamazaki, I.; Song, P.S. Excited-state properties of hypericin: Electronic spectra and fluorescence decay kinetics. J. Phys. Chem. 1993, 97, 7870–7875. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, M.; Ren, X.; Shi, W.; Yin, T.; Luo, T.; Lan, Y.; Li, X.; Guan, L. Effect of conjugation length on fluorescence characteristics of carbon dots. RSC Adv. 2023, 13, 27714–27721. [Google Scholar] [CrossRef]
- Thanh, M.T.G.; Van Toan, N.; Toan, D.T.T.; Thang, N.P.; Dong, N.Q.; Dung, N.T.; Hang, P.T.T.; Anh, L.Q.; Tra, N.T.; Ngoc, V.T.N. Diagnostic value of fluorescence methods, visual inspection and photographic visual examination in initial caries lesion: A systematic review and meta-analysis. Dent. J. 2021, 9, 30. [Google Scholar] [CrossRef]
- Oh, S.H.; Choi, J.Y.; Kim, S.H. Evaluation of dental caries detection with quantitative light-induced fluorescence in comparison to different field of view devices. Sci. Rep. 2022, 12, 6139. [Google Scholar] [CrossRef]
- Kapor, S.; Janjić, M.; Ranković, M.; Khazaei, Y.; Crispin, A.; Schüler, I.; Krause, F.; Lussi, A.; Neuhaus, K.; Eggmann, F.; et al. Systematic review and meta-analysis of diagnostic methods for occlusal surface caries. Clin. Oral Investig. 2021, 25, 4801–4815. [Google Scholar] [CrossRef]
- Lennon, Á.M.; Buchalla, W.; Brune, L.; Techert, S. Fluorescence spectroscopy shows porphyrins produced by cultured oral bacteria differ depending on composition of growth media. Caries Res. 2023, 57, 74–86. [Google Scholar] [CrossRef] [PubMed]
- Naik, L.R.K.; Dinkar, C.C.; Hegde, K. Fluorescence of Candida in diagnosis of oral candidiasis. Indian J. Dent. Res. 2016, 27, 618–622. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Shi, L.; Zhang, C.; Sun, H.; Wu, L. Application of fungal fluorescent staining in oral candidiasis: Diagnostic analysis of 228 specimens. BMC Microbiol. 2019, 19, 96. [Google Scholar] [CrossRef]
- Hu, L.; Zhou, P.; Zhao, W.; Hua, H.; Yan, Z. Fluorescence staining vs. routine KOH smear for rapid diagnosis of oral candidiasis: A diagnostic test. Oral Dis. 2020, 26, 941–947. [Google Scholar] [CrossRef]
- Al-Maweri, S.A.; Alhajj, M.N.; Anweigi, L.; Halboub, E.; Ashraf, S.; Salleh, N.M.; Alanazi, R.H.; Nassani, M.Z.; Noushad, M.; Al Khabuli, J.O.; et al. Efficacy of photodynamic therapy on Candida colonization and clinical symptoms in denture stomatitis: A systematic review and meta-analysis. BMC Oral Health 2024, 24, 84. [Google Scholar] [CrossRef] [PubMed]
- Nie, L.; Zhang, P.; Pathak, J.L.; Wang, X.; Wu, Y.; Yang, J.; Shen, Y. Photodynamic therapy in periodontitis: A narrative review. Photodermatol. Photoimmunol. Photomed. 2024, 40, e12946. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, Q.; Liu, D. Development of photodynamic therapy in treating oral diseases. Front. Oral Health 2025, 5, 1506407. [Google Scholar] [CrossRef]
- Jendželovská, Z.; Jendželovský, R.; Kuchárová, B.; Fedoročko, P. Hypericin in the light and in the dark: Two sides of the same coin. Front. Plant Sci. 2016, 7, 560. [Google Scholar] [CrossRef] [PubMed]
- Kawczyk-Krupka, A.; Czuba, Z.; Szliszka, E.; Król, W.; Sieroń, A. The role of photosensitized macrophages in photodynamic therapy. Oncol. Rep. 2011, 26, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sun, G.; Xie, J.; Xiao, S.; Lin, C. Antimicrobial photodynamic therapy against oral biofilm: Influencing factors, mechanisms, and combined actions with other strategies. Front. Microbiol. 2023, 14, 1192955. [Google Scholar] [CrossRef]
- Aebisher, D.; Czech, S.; Dynarowicz, K.; Misiołek, M.; Komosińska-Vassev, K.; Kawczyk-Krupka, A.; Bartusik-Aebisher, D. Photodynamic therapy: Past, current, and future. Int. J. Mol. Sci. 2024, 25, 11325. [Google Scholar] [CrossRef]
- Kaleta-Richter, M.; Aebisher, D.; Jaworska, D.; Czuba, Z.; Cieślar, G.; Kawczyk-Krupka, A. The influence of hypericin-mediated photodynamic therapy on interleukin-8 and -10 secretion in colon cancer cells. Integr. Cancer Ther. 2020, 19, 1534735420918931. [Google Scholar] [CrossRef]
- Olek, M.; Machorowska-Pieniążek, A.; Czuba, Z.P.; Cieślar, G.; Kawczyk-Krupka, A. Effect of hypericin-mediated photodynamic therapy on the secretion of soluble TNF receptors by oral cancer cells. Pharmaceutics 2023, 15, 1279. [Google Scholar] [CrossRef]
- Krupka-Olek, M.; Bożek, A.; Czuba, Z.P.; Kłósek, M.; Cieślar, G.; Kawczyk-Krupka, A. Cytotoxic and immunomodulatory effects of hypericin as a photosensitizer in photodynamic therapy used on skin cell cultures. Pharmaceutics 2024, 16, 696. [Google Scholar] [CrossRef]
- Ellepola, A.N.; Samaranayake, L.P.; Khan, Z.U. Extracellular phospholipase production of oral Candida albicans isolates from smokers, diabetics, asthmatics, denture wearers and healthy individuals following brief exposure to polyene, echinocandin and azole antimycotics. Braz. J. Microbiol. 2016, 47, 911–916. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nguyen, T.T.; Tran, N.M.; Nguyen, T.T.; Nguyen, H.T. Comparative cytotoxic effects of methanol, ethanol and DMSO on human cancer cell lines. Biomed. Res. Ther. 2020, 7, 3855–3859. [Google Scholar] [CrossRef]
- Landskroner, E.A.; Tsai, C.S.-J. Impact of ethanol as a vehicle for water-insoluble pollutants in BEAS-2B cell toxicity assays. Toxicol. Mech. Methods 2025, 35, 141–153. [Google Scholar] [CrossRef]
- Schmitt, L.A.; Liu, Y.; Murphy, P.A.; Petrich, J.W.; Dixon, P.M.; Birt, D.F. Reduction in hypericin-induced phototoxicity by Hypericum perforatum extracts and pure flavonoids. J. Photochem. Photobiol. B 2006, 85, 118–130. [Google Scholar] [CrossRef]
- Bassler, M.C.; Hiller, J.; Wackenhut, F.; zur Oven-Krockhaus, S.; Frech, P.; Schmidt, F.; Kertzscher, C.; Rammler, T.; Ritz, R.; Braun, K.; et al. Fluorescence lifetime imaging unravels the pathway of glioma cell death upon hypericin-induced photodynamic therapy. RSC Chem. Biol. 2024, 5, 1219–1231. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Wiench, R.; Nowicka, J.; Pajączkowska, M.; Kuropka, P.; Skaba, D.; Kruczek-Kazibudzka, A.; Kuśka-Kiełbratowska, A.; Grzech-Leśniak, K. Influence of incubation time on ortho-toluidine blue mediated antimicrobial photodynamic therapy directed against selected Candida strains: An in vitro study. Int. J. Mol. Sci. 2021, 22, 10971. [Google Scholar] [CrossRef]
- ImageJ Documentation. Analyze Particles and Thresholding. National Institutes of Health. 2023. Available online: https://imagej.net/ij/docs/index.html (accessed on 8 August 2025).
- Bassler, M.C.; Rammler, T.; Wackenhut, F.; Oven-Krockhaus, S.Z.; Secic, I.; Ritz, R.; Meixner, A.J.; Brecht, M. Accumulation and penetration behavior of hypericin in glioma tumor spheroids studied by fluorescence microscopy and confocal fluorescence lifetime imaging microscopy. Anal. Bioanal. Chem. 2022, 414, 4849–4860. [Google Scholar] [CrossRef]
- Pupo, Y.M.; Gomes, G.M.; Santos, E.B.; Chaves, L.; Michel, M.D.; Kozlowski, V.A., Jr.; Gomes, O.M.M.; Gomes, J.C. Susceptibility of Candida albicans to photodynamic therapy using methylene blue and toluidine blue as photosensitizing dyes. Acta Odontol. Latinoam. 2011, 24, 188–192. [Google Scholar]
- Du, M.; Li, F.; Hu, Y.A. A uniform design method can optimize the combinatorial parameters of antimicrobial photodynamic therapy, including the concentrations of methylene blue and potassium iodide, light dose, and methylene blue’s incubation time, to improve fungicidal effects on Candida species. Microorganisms 2023, 11, 2557. [Google Scholar] [CrossRef] [PubMed]
- Kubizna, M.; Dawiec, G.; Wiench, R. Efficacy of curcumin-mediated antimicrobial photodynamic therapy on Candida spp.: Systematic review. Int. J. Mol. Sci. 2024, 25, 8136. [Google Scholar] [CrossRef] [PubMed]
- Łopaciński, M.; Fiegler-Rudol, J.; Niemczyk, W.; Skaba, D.; Wiench, R. Riboflavin- and hypericin-mediated antimicrobial photodynamic therapy as alternative treatments for oral candidiasis: A systematic review. Pharmaceutics 2024, 17, 33. [Google Scholar] [CrossRef]
- An, Y.W.; Jin, H.-T.; Yuan, B.; Wang, J.-C.; Wang, C.; Liu, H.-Q. Research progress of berberine mediated photodynamic therapy. Oncol. Lett. 2021, 21, 359. [Google Scholar] [CrossRef]
- Lopes, T.Z.; de Moraes, F.R.; Tedesco, A.C.; Arni, R.K.; Rahal, P.; Calmon, M.F. Berberine associated photodynamic therapy promotes autophagy and apoptosis via ROS generation in renal carcinoma cells. Biomed. Pharmacother. 2020, 123, 109794, Correction in Biomed. Pharmacother. 2020, 125, 110038. https://doi.org/10.1016/j.biopha.2020.110038. Correction in Biomed. Pharmacother. 2021, 126, 111175. https://doi.org/10.1016/j.biopha.2020.111175. [Google Scholar] [CrossRef]
- Tong, Y.; Zhang, J.; Sun, N.; Wang, X.M.; Wei, Q.; Zhang, Y.; Huang, R.; Pu, Y.; Dai, H.; Ren, B.; et al. Berberine reverses multidrug resistance in Candida albicans by hijacking the drug efflux pump Mdr1p. Sci. Bull. 2021, 66, 1895–1905. [Google Scholar] [CrossRef]
- Amendola, G.; Di Luca, M.; Sgarbossa, A. Antimicrobial photodynamic strategies in the fight against biofilms. Int. J. Mol. Sci. 2025, 26, 7993. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Saw, C.L.L.; Olivo, M.; Sudhaharan, T.; Ahmed, S.; Heng, P.W.S.; Wohland, T. Study of interaction of hypericin and its pharmaceutical preparation by FCS/FLIM: Role of PVP in hypericin delivery. J. Biomed. Opt. 2009, 14, 014003. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, S.; Sharaf, A.; Youssef, T.; El-Mansy, M.K.; Abdel-Mottaleb, M.S.A. Spectroscopic and photostability study of water-soluble hypericin encapsulated with PVP. Biophys. Chem. 2020, 266, 106454. [Google Scholar] [CrossRef]
- Sousa, J.N.L.; Correia, A.; Ribeiro, A.; Laranjo, M.; Caramelo, F.; Botelho, M.F. Photoinactivation of Candida albicans using methylene blue as photosensitizer. RGO 2015, 63, 411–417. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Z.H.; Li, Y.Y.; Shi, S.-J.; Zhou, S.-W.; Fu, Y.-Y.; Zhang, Q.; Yang, X.; Fu, R.-Q.; Lu, L.-C. Hypericin-photodynamic therapy induces apoptosis in human umbilical vein endothelial cells. Sci. Rep. 2015, 5, 18398. [Google Scholar] [CrossRef]
- Taraszkiewicz, A.; Szewczyk, G.; Sarna, T.; Bielawski, K.P.; Nakonieczna, J. Photodynamic inactivation of Candida albicans with imidazoacridinones: Influence of irradiance, photosensitizer uptake and reactive oxygen species generation. PLoS ONE 2015, 10, e0129301. [Google Scholar] [CrossRef] [PubMed]
- Duterte, M.M.D.; Morales, N.P.; Pitiphat, W.; Puthongking, P.; Damrongrungruang, T. Effects of photodynamic therapy using bisdemethoxycurcumin combined with melatonin or acetyl-melatonin on Candida albicans. Sci. Rep. 2024, 14, 23082. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Cerdeira, C.; Martínez-Herrera, E.; Fabbrocini, G.; Sanchez-Blanco, B.; López-Barcenas, A.; El-Samahy, M.; Juárez-Durán, E.R.; González-Cespón, J.L. New applications of photodynamic therapy in the management of candidiasis. J. Fungi 2021, 7, 1025. [Google Scholar] [CrossRef] [PubMed]





| Time | 1 min | 3 min | 5 min | 7 min | 10 min | 15 min | 20 min | 25 min | 30 min | 35 min | 40 min | 45 min |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Trial 1 | 0.056 | 0.084 | 0.091 | 0.090 | 0.092 | 0.098 | 0.097 | 0.112 | 0.111 | 0.111 | 0.117 | 0.106 |
| Trial 2 | 0.078 | 0.098 | 0.109 | 0.107 | 0.127 | 0.126 | 0.106 | 0.131 | 0.122 | 0.125 | 0.124 | 0.146 |
| Trial 3 | 0.140 | 0.192 | 0.229 | 0.251 | 0.220 | 0.259 | 0.242 | 0.239 | 0.256 | 0.243 | 0.242 | 0.233 |
| Mean | 0.091 | 0.125 | 0.143 | 0.149 | 0.146 | 0.161 | 0.148 | 0.161 | 0.163 | 0.160 | 0.161 | 0.162 |
| SD | 0.044 | 0.059 | 0.075 | 0.088 | 0.066 | 0.086 | 0.081 | 0.069 | 0.081 | 0.073 | 0.070 | 0.065 |
| Time | 35 min | 40 min | 45 min |
|---|---|---|---|
| Trial 1 (Dark) | 0.061 | 0.077 | 0.078 |
| Trial 2 (Dark) | 0.110 | 0.119 | 0.122 |
| Trial 3 (Dark) | 0.108 | 0.118 | 0.127 |
| Mean (Dark) | 0.093 | 0.105 | 0.109 |
| SD (Dark) | 0.028 | 0.024 | 0.027 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Turski, R.; Fiegler-Rudol, J.; Hüpsch-Marzec, H.; Skaba, D.; Wiench, R. Analysis of the Uptake of Hypericin by Candida albicans Yeast Cells Using Fluorescence Methods and Comparison of the Dynamics of This Process over Time. Pharmaceutics 2026, 18, 189. https://doi.org/10.3390/pharmaceutics18020189
Turski R, Fiegler-Rudol J, Hüpsch-Marzec H, Skaba D, Wiench R. Analysis of the Uptake of Hypericin by Candida albicans Yeast Cells Using Fluorescence Methods and Comparison of the Dynamics of This Process over Time. Pharmaceutics. 2026; 18(2):189. https://doi.org/10.3390/pharmaceutics18020189
Chicago/Turabian StyleTurski, Radosław, Jakub Fiegler-Rudol, Hanna Hüpsch-Marzec, Dariusz Skaba, and Rafał Wiench. 2026. "Analysis of the Uptake of Hypericin by Candida albicans Yeast Cells Using Fluorescence Methods and Comparison of the Dynamics of This Process over Time" Pharmaceutics 18, no. 2: 189. https://doi.org/10.3390/pharmaceutics18020189
APA StyleTurski, R., Fiegler-Rudol, J., Hüpsch-Marzec, H., Skaba, D., & Wiench, R. (2026). Analysis of the Uptake of Hypericin by Candida albicans Yeast Cells Using Fluorescence Methods and Comparison of the Dynamics of This Process over Time. Pharmaceutics, 18(2), 189. https://doi.org/10.3390/pharmaceutics18020189

