Boron Theranostic Nanoplatform Utilizing a GO@Carborane@Au Hybrid Framework for Targeted Delivery
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of GO
2.2. Synthesis of GO@Carb
2.3. Synthesis of GO@Carb@Au
2.4. Characterization of the Platform Using Microscopy
2.5. In Vitro Biological Study
2.5.1. Cell Culture
2.5.2. Cell Viability (Alamar Blue) Assay
2.5.3. Fixation of Cells for Raman Spectroscopy
2.5.4. Characterization and Study of the GO@Carb@Au Using Vibrational Spectroscopy
2.5.5. Characterization and Study of the GO@Carb@Au Using Atomic Force Microscopy (AFM)
3. Results
3.1. Morphological and Chemical Characterization of the GO@Carb@Au Nanoplatforms
3.2. Evaluation of Plasmonic Properties
3.3. Confirmation of Carborane Functionalization
3.4. Evaluation of the Cytotoxicity
3.5. Studies of Cellular Internalization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| SEM | Scanning electron microscopy |
| TEM | Transmission electron microscopy |
| PVA | Polyvinyl alcohol |
| GO | Graphene oxide |
| Carb | m-carborane-1-carboxylic acid |
| EDC | 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide |
| SERS | Surface-enhanced Raman spectroscopy |
| RPM | Revolutions per minute |
References
- Chen, G.; Yang, J.; Lu, G.; Liu, P.C.; Chen, Q.; Xie, Z.; Wu, C. One Stone Kills Three Birds: Novel Boron-Containing Vesicles for Potential BNCT, Controlled Drug Release, and Diagnostic Imaging. Mol. Pharm. 2014, 11, 3291–3299. [Google Scholar] [CrossRef]
- Coghi, P.; Li, J.; Hosmane, N.S.; Zhu, Y. Next Generation of Boron Neutron Capture Therapy (BNCT) Agents for Cancer Treatment. Med. Res. Rev. 2023, 43, 1809–1830. [Google Scholar] [CrossRef] [PubMed]
- Nedunchezhian, K.; Aswath, N.; Thiruppathy, M.; Thirugnanamurthy, S. Boron Neutron Capture Therapy—A Literature Review. J. Clin. Diagn. Res. JCDR 2016, 10, ZE01. [Google Scholar] [CrossRef]
- Barth, R.F.; Soloway, A.H.; Fairchild, R.G. Boron Neutron Capture Therapy of Cancer. Cancer Res. 1990, 50, 1061–1070. [Google Scholar] [CrossRef]
- Luderer, M.J.; De La Puente, P.; Azab, A.K. Advancements in Tumor Targeting Strategies for Boron Neutron Capture Therapy. Pharm. Res. 2015, 32, 2824–2836. [Google Scholar] [CrossRef]
- Kwiatkowska, A.; Sobczak, M.; Mikolajczyk, B.; Janczak, S.; Olejniczak, A.B.; Sochacki, M.; Lesnikowski, Z.J.; Nawrot, B. siRNAs Modified with Boron Cluster and Their Physicochemical and Biological Characterization. Bioconjug. Chem. 2013, 24, 1017–1026. [Google Scholar] [CrossRef]
- Barth, R.F.; Mi, P.; Yang, W. Boron Delivery Agents for Neutron Capture Therapy of Cancer. Cancer Commun. 2018, 38, 1–15. [Google Scholar] [CrossRef]
- Barth, R.F.; Grecula, J.C. Boron Neutron Capture Therapy at the Crossroads—Where Do We Go from Here? Appl. Radiat. Isot. 2020, 160, 109029. [Google Scholar] [CrossRef]
- Xu, J.; Wang, J.; Wei, Q. Boron Neutron Capture Therapy in Clinical Application: Progress and Prospect. Kexue Tongbao/Chin. Sci. Bull. 2022, 67, 1479–1489. [Google Scholar] [CrossRef]
- Barth, R.F.; Gupta, N.; Kawabata, S. Evaluation of Sodium Borocaptate (BSH) and Boronophenylalanine (BPA) as Boron Delivery Agents for Neutron Capture Therapy (NCT) of Cancer: An Update and a Guide for the Future Clinical Evaluation of New Boron Delivery Agents for NCT. Cancer Commun. 2024, 44, 893–909. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Yung, B.; Huang, P.; Chen, X. Nanotechnology for Multimodal Synergistic Cancer Therapy. Chem. Rev. 2017, 117, 13566–13638. [Google Scholar] [CrossRef] [PubMed]
- Shim, G.; Kim, M.G.; Park, J.Y.; Oh, Y.K. Graphene-Based Nanosheets for Delivery of Chemotherapeutics and Biological Drugs. Adv. Drug Deliv. Rev. 2016, 105, 205–227. [Google Scholar] [CrossRef]
- Gu, Z.; Zhu, S.; Yan, L.; Zhao, F.; Zhao, Y. Graphene-Based Smart Platforms for Combined Cancer Therapy. Adv. Mater. 2019, 31, 1800662. [Google Scholar] [CrossRef] [PubMed]
- Mirzaie, Z.; Reisi-Vanani, A.; Barati, M.; Atyabi, S.M. The Drug Release Kinetics and Anticancer Activity of the GO/PVA-Curcumin Nanostructures: The Effects of the Preparation Method and the GO Amount. J. Pharm. Sci. 2021, 110, 3715–3725. [Google Scholar] [CrossRef]
- Mirzaie, Z.; Reisi-Vanani, A.; Barati, M. Polyvinyl Alcohol-Sodium Alginate Blend, Composited with 3D-Graphene Oxide as a Controlled Release System for Curcumin. J. Drug Deliv. Sci. Technol. 2019, 50, 380–387. [Google Scholar] [CrossRef]
- Khan, M.U.A.; Yaqoob, Z.; Ansari, M.N.M.; Razak, S.I.A.; Raza, M.A.; Sajjad, A.; Haider, S.; Busra, F.M. Chitosan/Poly Vinyl Alcohol/Graphene Oxide Based pH-Responsive Composite Hydrogel Films: Drug Release, Anti-Microbial and Cell Viability Studies. Polymers 2021, 13, 3124. [Google Scholar] [CrossRef]
- Saravanabhavan, S.S.; Rethinasabapathy, M.; Zsolt, S.; Kalambettu, A.B.; Elumalai, S.; Janakiraman, M.; Huh, Y.S.; Natesan, B. Graphene Oxide Functionalized with Chitosan Based Nanoparticles as a Carrier of siRNA in Regulating Bcl-2 Expression on Saos-2 & MG-63 Cancer Cells and Its Inflammatory Response on Bone Marrow Derived Cells from Mice. Mater. Sci. Eng. C 2019, 99, 1459–1468. [Google Scholar] [CrossRef]
- Chen, A.M.; Zhang, M.; Wei, D.; Stueber, D.; Taratula, O.; Minko, T.; He, H. Co-Delivery of Doxorubicin and Bcl-2 siRNA by Mesoporous Silica Nanoparticles Enhances the Efficacy of Chemotherapy in Multidrug-Resistant Cancer Cells. Small 2009, 5, 2673–2677. [Google Scholar] [CrossRef]
- Shen, H.; Liu, M.; He, H.; Zhang, L.; Huang, J.; Chong, Y.; Dai, J.; Zhang, Z. PEGylated Graphene Oxide-Mediated Protein Delivery for Cell Function Regulation. ACS Appl. Mater. Interfaces 2012, 4, 6317–6323. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, L.; Li, X.; Zeng, J.; Jia, X.; Liu, P. Biocompatible Graphene Oxide Nanoparticle-Based Drug Delivery Platform for Tumor Microenvironment-Responsive Triggered Release of Doxorubicin. Langmuir 2014, 30, 10419–10429. [Google Scholar] [CrossRef] [PubMed]
- Ŝtengl, V.; Bakardjieva, S.; Bakardjiev, M.; Ŝtíbr, B.; Kormunda, M. Carborane Functionalized Graphene Oxide, a Precursor for Conductive Self-Assembled Monolayers. Carbon 2014, 67, 336–343. [Google Scholar] [CrossRef]
- Di Meo, C.; Panza, L.; Capitani, D.; Mannina, L.; Banzato, A.; Rondina, M.; Renier, D.; Rosato, A.; Crescenzi, V. Hyaluronan as Carrier of Carboranes for Tumor Targeting in Boron Neutron Capture Therapy. Biomacromolecules 2007, 8, 552–559. [Google Scholar] [CrossRef]
- Wang, J.; Chen, L.; Ye, J.; Li, Z.; Jiang, H.; Yan, H.; Stogniy, M.Y.; Sivaev, I.B.; Bregadze, V.I.; Wang, X. Carborane Derivative Conjugated with Gold Nanoclusters for Targeted Cancer Cell Imaging. Biomacromolecules 2017, 18, 1466–1472. [Google Scholar] [CrossRef]
- Bekbol, Z.A.; Izbasar, K.A.; Zaboronok, A.; Lissovskaya, L.I.; Yang, H.; Pihosh, Y.; Ishikawa, E.; Shakirzyanov, R.I.; Korolkov, I.V.; Bekbol, Z.A.; et al. Carborane-Containing Iron Oxide@Gold Nanoparticles for Potential Application in Neutron Capture Therapy. Nanomaterials 2025, 15, 1243. [Google Scholar] [CrossRef]
- Kaniowski, D.; Suwara, J.; Ebenryter-Olbińska, K.; Jakóbik-Kolon, A.; Nawrot, B.; Kaniowski, D.; Suwara, J.; Ebenryter-Olbińska, K.; Jakóbik-Kolon, A.; Nawrot, B. EGFR-Targeted Cellular Delivery of Therapeutic Nucleic Acids Mediated by Boron Clusters. Int. J. Mol. Sci. 2022, 23, 14793. [Google Scholar] [CrossRef]
- Marfavi, A.; Kavianpour, P.; Rendina, L.M. Carboranes in drug discovery, chemical biology and molecular imaging. Nat. Rev. Chem. 2022, 6, 486–504. [Google Scholar] [CrossRef] [PubMed]
- Sorkin, A. Internalization and Degradation of EGF Receptor; Haley, J.D., Gullick, W.J., Eds.; EGFR Signaling Networks in Cancer Therapy; Humana Press: Totowa, NJ, USA, 2008; pp. 45–59. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, E.; Shan, J.; Zhang, M.; Cai, R.; Li, R.; Pang, L.; Li, B.; Zang, D. State-of-the-art boron clusters for boron neutron-capture therapy. Theranostics 2026, 16, 417–464. [Google Scholar] [CrossRef] [PubMed]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ranc, V.; Žárská, L. Boron Theranostic Nanoplatform Utilizing a GO@Carborane@Au Hybrid Framework for Targeted Delivery. Pharmaceutics 2026, 18, 188. https://doi.org/10.3390/pharmaceutics18020188
Ranc V, Žárská L. Boron Theranostic Nanoplatform Utilizing a GO@Carborane@Au Hybrid Framework for Targeted Delivery. Pharmaceutics. 2026; 18(2):188. https://doi.org/10.3390/pharmaceutics18020188
Chicago/Turabian StyleRanc, Václav, and Ludmila Žárská. 2026. "Boron Theranostic Nanoplatform Utilizing a GO@Carborane@Au Hybrid Framework for Targeted Delivery" Pharmaceutics 18, no. 2: 188. https://doi.org/10.3390/pharmaceutics18020188
APA StyleRanc, V., & Žárská, L. (2026). Boron Theranostic Nanoplatform Utilizing a GO@Carborane@Au Hybrid Framework for Targeted Delivery. Pharmaceutics, 18(2), 188. https://doi.org/10.3390/pharmaceutics18020188

