Selective Nanoparticulate Systems for Drug Delivery in Inflammatory Bowel Disease
Abstract
1. Introduction
2. Etiology and Pathophysiological Mechanisms of Inflammatory Bowel Disease

3. The Gastrointestinal Environment in Inflammatory Bowel Disease
3.1. pH
3.2. Mucus
3.3. Enzymes
3.4. Intestinal Epithelium
3.5. Intestinal Transit Time/Mobility
3.6. Intestinal Volume
3.7. ROS Levels
4. Limitations of Current Dosage Forms for the Delivery of Inflammatory Bowel Disease Drugs
| Class | Drug | Disease | Route of Administration | Common Adverse Effects | |
|---|---|---|---|---|---|
| Aminosalicylates | Sulfasalazine | UC | Oral, Rectal | Headache, dizziness, dyspepsia, epigastric pain, abdominal pain, nausea, vomiting, and diarrhea. | |
| Balsalazide | Mild-to-moderated UC | ||||
| Mesalamine | Mild-to-moderated UC | ||||
| Olsalazine | UC | ||||
| Glucocorticoids | Prednisolone | Moderated-to-severe CD, UC | Oral | Full moon face, difficulty of healing, acne, mood and sleep disturbances, glucose intolerance, osteoporosis, osteonecrosis, subcapsular cataracts, myopathy, infections, acute adrenal insufficiency, myalgia, malaise, arthralgia or intracranial hypertension, and pseudorheumatism. | |
| Prednisone | Moderated-to-severe CD, UC | Oral | |||
| Methylprednisolone | Moderated-to-severe CD, UC | Oral, IV | |||
| Budesonide | Mild-to-moderate CD, UC | Oral, Rectal | |||
| Immunomodulators | Azathioprin | CD, UC | Oral | Black, tarry stools, bleeding gums, chest pain, fever, chills, swollen glands, pain, cough, and weakness. | |
| 6-mercaptopurin | CD, UC | Oral | |||
| Cyclosporin | UC | Oral, IV | |||
| Tracolimus | Active CD | Oral, IV | |||
| Methotrexate | Moderate-to-severe CD, UC | Oral, SC | |||
| Biologics | Anti-TNFα | Infliximab | Moderate-to-severe CD, UC | SC, IV | Abdominal or stomach pain, chest pain, chills, cough, dizziness, fainting, headache, itching, muscle pain, nasal congestion, nausea, sneezing, weakness, vomiting, bloody urine, cracks in the skin, diarrhea, pain, fever, abscess, back or side pain, bone or joint pain, constipation, falls, facial edema, general feeling of illness, hernia, irregular heartbeat, unusual bleeding, weight loss, increased risk of reactivation of latent tuberculosis, increased risk for developing infections, and lymphoma. |
| Adalimumab | CD, UC | SC | |||
| Golimumab | UC | UC | |||
| Certolizumab pegol | Moderate-to-severe CD | SC | |||
| IL-12/23 inhibitors | Ustekinumab | CD, UC | IV | ||
| Risankizumab | CD | SC | |||
| Mirikizumab | Moderate-to-severe CD | IV | |||
| CAM inhibitors | Natalizumab | Moderate-to-severe CD | IV | Nasopharyngitis, headache, abdominal pain, increased risk of serious infections, and progressive multifocal leukoencephalopathy in Natalizumab. | |
| Vedolizumab | CD, UC | SC, IV | |||
| Small Molecules | JAK inhibitors | Tofacitinib | UC | Oral | Increased risk of infection, hyperlipidemia, venous thromboembolism, and cytopenias. |
| Upadacitinib | Moderate-to-severe CD | ||||
| S1P modulators | Ozanimod | Moderate-to-severe CD | Oral | Infections, leukopenia, and bradycardia. | |
| Etrasimod | UC | ||||
5. Nanoparticulate Drug Delivery Systems for IBD Treatment
| Nanoparticulate DDS | Advantages | Challenges | Examples of Its Application in IBD |
|---|---|---|---|
| Polymeric nanoparticles | Versatility Biodegradability and biocompatibility (depending on the polymers used) Protection of cargo against degradation Possibility to modify the release profile Easy functionalization | Limited loading efficiency (especially for large biomacromolecules) Potential toxicity (non-biodegradable polymers) Unpredictable clearance. | Polymeric nanoparticles based on the synthetic methacrylate-based copolymer Eudragit S100 and coated with HA (size~275 nm, ZP~−25 mV and AE~98%) improved BUD therapeutic efficacy and IBD symptoms in a rat model of induced colitis [93]. Mucus-penetrating PEG-PLGA NPs encapsulating cyclosporine A provided higher concentrations of the drug in intestinal inflamed tissues of a rat model of chemical-induced colitis, as well as exhibited anti-inflammatory effects after repeated oral administrations [94]. |
| Lipid-based nanoparticles | Biocompatibility and biodegradability Versatility Low toxicity Simple manufacturing Possibility to modify the release profile | Low encapsulation efficiency for some molecules Fast clearance (need surface PEGylation) Susceptible to physiological conditions | TNF-α siRNA was entrapped (AE~97%) in LNPs composed of Dlin-MC3-DMA, DSPC, cholesterol, and PEG2000-C-DMG (size~150 nm, ZP~−1.4 mV). siRNA-loaded LNPs were further microencapsulated within alginate microparticles and orally administered to mice with TNBS-induced colitis. LNPs in MPs were able to target the inflamed colon, significantly reducing the clinical score (as assessed by survival and weight loss) and providing a therapeutic index similar to that observed in healthy animals [95]. LNPs produced with newly developed ionizable lipids, cholesterol, DSPC, and PEG-DMG (size 50–70 nm, ZP between −6 and 10 mV) were used to deliver ASOs, namely, LNAs to the inflamed colon of mice after retro-orbitally injection. ASO-LNA-loaded LNPs showed 10-fold-enhanced accumulation in the inflamed colons compared to healthy tissue with a consequent decrease in inflammatory cytokines and clinical symptoms (assessed by weight loss and colon length) of DSS-induced colitis mice [96]. |
| Metallic nanoparticles | High stability Unique properties (ex. optical properties) Suitable for simultaneous diagnostic and therapeutic applications | Potential toxicity Limited biodegradability Hard clearance with potential accumulation in tissues | In vivo CT imaging showed that Dextran-coated cerium oxide nanoparticles provided better contrast in the GIT of mice with DSS-induced colitis compared to iopamidol. Additionally, Dex-CeNPs administered via oral gavage significantly decreased DAI scores and diminished GIT bleeding in the same model when compared with 5-ASA [97]. |
| Exosomes | High stability Low immunogenicity Biocompatibility Reduced toxicity Enhanced bioavailability [98] | Batch-to-batch invariability Lack of standardization for isolation, purification and storage Low yield for large scale manufacturing Regulatory issues [99] | miR-146a-loaded EVs significantly suppress inflammation by downregulating TRAF6 and IRAK1 in TNBS-induced colitis mice model [100]. |
5.1. Nanoparticulate Drug Delivery Systems for Selective Targeting of Intestinal Inflammation
5.1.1. Size-Mediated Targeting
5.1.2. Charge-Mediated Targeting
5.1.3. Microenvironment-Responsive Nanoparticles
pH-Responsive NPs
ROS-Responsive NPs
Enzyme-Responsive NPs
5.1.4. Ligand-Receptor-Mediated Targeting
| Target Cell/Tissue | Receptor | Ligand | Nanoparticle Type | Cargo | Disease/Model | References |
|---|---|---|---|---|---|---|
| Colonic epithelial cells and macrophages | PepT1 | KPV | Self-assembly FK506/KPV NPs | Tacolimus (FK506) | DSS-induced colitis | [136] |
| Activated macrophage | CD44 | Hyaluronic Acid (HA) | Self-assembly TWD NPs | Astaxanthin (ASX) | DSS-induced colitis | [137] |
| Intestinal epithelial cells and macrophages | IL-6R | N/A | Self-assembly BBR/PLGA NPs | Berberine (BBR) | DSS-induced colitis | [138] |
| Intestinal epithelial cells and macrophages | Somatostatin (SST) and mannooligosaccharide (MOS) | SST and MOS | Self-assembly EUP-Se/SST and MOS NPs | Eucommia ulmoids polysaccharides | DSS-induced colitis | [139] |
| Monocyte-derived macrophages and neutrophils | Integrin | RGD, cRGD, and functional groups | PEG-Lipid-PLGA-based HNPs/NH2/-COOH/RGD/cRGD | BRP-201 | In vitro: human monocyte-derived macrophages and neutrophils | [140] |
| Colonic and intestinal epithelial cells | Manose receptors (CD206) | Manose (M) | M-Se NPs | Selenium (Se) | DSS-induced colitis | [141] |
| Intestinal epithelial cells and macrophages | CD44 | HA | Self-assembly hydrogel-HA-PLGA bilirubin NPs | Bilirubin | DSS-induced colitis | [142] |
| Macrophages | CD44 | HA | IO, ZIF-8/HA NPs | Iron Oxide (IO) | DSS-induced colitis | [143] |
| Inflamed gut | JAK | N/A | TFC PLGA NPs | Tofacitinib (TFC) | DSS-induced colitis | [144] |
5.1.5. Multi-Targeting NPs
6. Toxicity and Safety Concerns of IBD-Selective-Nanoparticulate Systems
7. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CAM | Cell Adhesion Molecules |
| CD | Crohn’s Disease |
| cfDNA | Cell-free DNA |
| DRA | Downregulated in Adenoma |
| DR3 | Death Receptor 3 |
| ECCO | European Crohn’s and Colitis Organization |
| eEPR | Enhanced Epithelial Permeability and Retention |
| ER | Endoplasmic Reticulum |
| ESNPs | Enzyme-responsive Nanoparticles |
| GI | Gastrointestinal tract |
| IBD | Inflammatory Bowel Disease |
| IECs | Intestinal Epithelial Cells |
| IL | Interleukin |
| IV | Intravenous |
| JAK | Janus Kinase |
| L/D-TA-L/D | Tartaric Acid |
| LNPs | Lipid-based Nanoparticles |
| LPS | Lipopolysaccharides |
| MON | Mesoporous Organosilica Nanoparticles |
| MMPs | Matrix Metalloproteinases |
| MNPs | Metallic Nanoparticles |
| NETs | Neutrophil Extracellular Traps |
| NHEs | Sodium Hydrogen Exchangers |
| NLCs | Nano Structured Lipid Carriers |
| NOD2 | Nucleotide-binding Oligomerization Domain-containing protein 2 |
| NPs | Nanoparticles systems |
| PEI | Polyethylenimine |
| PLNs | Polymer–Lipid Hybrid Nanoparticles |
| ROS | Reactive Oxygen Species |
| SC | Subcutaneous |
| SCFAs | Shory-Chain Fatty Acids |
| SLNs | Solid Lipid Nanoparticles |
| S1P | Sphingosine 1-phosphate |
| TfR | Transferrin Receptors |
| TGF-β | Transforming Growth Factor β |
| Th1 | Type 1 helper-T-cell |
| Th2 | Type 2 helper-T-cell |
| TKNPs | Thioketal-based Nanoparticles |
| TL1-A | TNF Ligand-related molecule 1A |
| UC | Ulcerative Colitis |
References
- Alatab, S.; Sepanlou, S.G.; Ikuta, K.; Vahedi, H.; Bisignano, C.; Safiri, S.; Sadeghi, A.; Nixon, M.R.; Abdoli, A.; Abolhassani, H.; et al. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020, 5, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, G.G. The global burden of IBD: From 2015 to 2025. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 720–727. [Google Scholar] [CrossRef]
- Burisch, J.; Jess, T.; Martinato, M.; Lakatos, P.L.; on behalf of ECCO-EpiCom. The burden of inflammatory bowel disease in Europe. J. Crohns Colitis 2013, 7, 322–337. [Google Scholar] [CrossRef]
- Terzić, J.; Grivennikov, S.; Karin, E.; Karin, M. Inflammation and Colon Cancer. Gastroenterology 2010, 138, 2101–2114.e5. [Google Scholar] [CrossRef]
- Podolsky, D.K. Inflammatory Bowel Disease. N. Engl. J. Med. 2002, 347, 417–429. [Google Scholar] [CrossRef]
- Imbrizi, M.; Magro, F.; Coy, C.S.R. Pharmacological therapy in inflammatory bowel diseases: A narrative review of the past 90 years. Pharmaceuticals 2023, 16, 1272. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Zhao, Z.; Lin, X.; Yang, Z.; Wang, L.; Xi, R.; Long, D. Advances in oral treatment of inflammatory bowel disease using protein-based nanoparticle drug delivery systems. Drug Deliv. 2025, 32, 2544689. [Google Scholar] [CrossRef]
- Xavier, R.J.; Podolsky, D.K. Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007, 448, 427–434. [Google Scholar] [CrossRef]
- Khor, B.; Gardet, A.; Xavier, R.J. Genetics and pathogenesis of inflammatory bowel disease. Nature 2011, 474, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Z.; van Sommeren, S.; Huang, H.; Ng, S.C.; Alberts, R.; Takahashi, A.; Ripke, S.; Lee, J.C.; Jostins, L.; Shah, T.; et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 2015, 47, 979–986. [Google Scholar] [CrossRef]
- Cooney, R.; Baker, J.; Brain, O.; Danis, B.; Pichulik, T.; Allan, P.; Ferguson, D.J.P.; Campbell, B.J.; Jewell, D. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat. Med. 2010, 16, 90–97. [Google Scholar] [CrossRef]
- Ogura, Y.; Bonen, D.K.; Inohara, N.; Nicolae, D.L.; Chen, F.F.; Ramos, R.; Britton, H.; Moran, T.; Karaliuskas, R.; Duerr, R.H.; et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 2001, 411, 603–606. [Google Scholar] [CrossRef]
- Abraham, C.; Cho, J.H. Inflammatory Bowel Disease. N. Engl. J. Med. 2009, 361, 2066–2078. [Google Scholar] [CrossRef]
- Piovani, D.; Danese, S.; Peyrin-Biroulet, L.; Nikolopoulos, G.K.; Lytras, T.; Bonovas, S. Environmental Risk Factors for Inflammatory Bowel Diseases: An Umbrella Review of Meta-analyses. Gastroenterology 2019, 157, 647–659.e4. [Google Scholar] [CrossRef] [PubMed]
- Shouval, D.S.; Rufo, P.A. The role of environmental factors in the pathogenesis of inflammatory bowel diseases: A review. JAMA Pediatr. 2017, 171, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- van der Sloot, K.W.J.; Weersma, R.K.; Alizadeh, B.Z.; Dijkstra, G. Identification of environmental risk factors associated with the development of inflammatory bowel disease. J. Crohns Colitis 2020, 14, 1662–1671. [Google Scholar] [CrossRef]
- Carreras-Torres, R.; Ibáñez-Sanz, G.; Obón-Santacana, M.; Duell, E.J.; Moreno, V. Identifying environmental risk factors for inflammatory bowel diseases: A Mendelian randomization study. Sci. Rep. 2020, 10, 19273. [Google Scholar] [CrossRef]
- Ananthakrishnan, A.N.; Khalili, H.; Konijeti, G.G.; Higuchi, L.M.; de Silva, P.; Korzenik, J.R.; Fuchs, C.S.; Willett, W.C.; Richter, J.M.; Chan, A.T. A prospective study of long-term intake of dietary fiber and risk of Crohn’s disease and ulcerative colitis. Gastroenterology 2013, 145, 970–977. [Google Scholar] [CrossRef]
- Ananthakrishnan, A.N.; Khalili, H.; Konijeti, G.G.; Higuchi, L.M.; de Silva, P.; Fuchs, C.S.; Willett, W.C.; Richter, J.M.; Chan, A.T. Long-term intake of dietary fat and risk of ulcerative colitis and Crohn’s disease. Gut 2014, 63, 776–784. [Google Scholar] [CrossRef] [PubMed]
- Khalili, H.; Chan, S.S.M.; Lochhead, P.; Ananthakrishnan, A.N.; Hart, A.R.; Chan, A.T. The role of diet in the aetiopathogenesis of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 525–535. [Google Scholar] [CrossRef]
- Lee, S.H.; Yun, Y.; Kim, S.J.; Lee, E.J.; Chang, Y.; Ryu, S.; Shin, H.; Kim, H.-L.; Kim, H.-N.; Lee, J.H. Association between Cigarette Smoking Status and Composition of Gut Microbiota: Population-Based Cross-Sectional Study. J. Clin. Med. 2018, 7, 282. [Google Scholar] [CrossRef]
- John, H.T.; Thomas, T.C.; Chukwuebuka, E.C.; Ali, A.B.; Anass, R.; Tefera, Y.Y.; Babu, B.; Negrut, N.; Ferician, A.; Marian, P. The Microbiota–Human Health Axis. Microorganisms 2025, 13, 948. [Google Scholar] [CrossRef]
- Frank, D.N.; St Amand, A.L.; Feldman, R.A.; Boedeker, E.C.; Harpaz, N.; Pace, N.R. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA 2007, 104, 13780–13785. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Z.; Li, Y.Y. Inflammatory bowel disease: Pathogenesis. World J. Gastroenterol. WJG 2014, 20, 91–99. [Google Scholar] [CrossRef]
- Roy, S.; Dhaneshwar, S. Role of prebiotics, probiotics, and synbiotics in management of inflammatory bowel disease: Current perspectives. World J. Gastroenterol. 2023, 29, 2078–2100. [Google Scholar] [CrossRef]
- Weng, M.T.; Hsiung, C.Y.; Wei, S.C.; Chen, Y. Nanotechnology for targeted inflammatory bowel disease therapy: Challenges and opportunities. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2024, 16, e1999. [Google Scholar] [CrossRef]
- Diez-Martin, E.; Hernandez-Suarez, L.; Muñoz-Villafranca, C.; Martin-Souto, L.; Astigarraga, E.; Ramirez-Garcia, A.; Barreda-Gómez, G. Inflammatory bowel disease: A comprehensive analysis of molecular bases, predictive biomarkers, diagnostic methods, and therapeutic options. Int. J. Mol. Sci. 2024, 25, 7062. [Google Scholar] [CrossRef]
- Roda, G.; Sartini, A.; Zambon, E.; Calafiore, A.; Marocchi, M.; Caponi, A.; Belluzzi, A.; Roda, E. Intestinal epithelial cells in inflammatory bowel diseases. World J. Gastroenterol. WJG 2010, 16, 4264–4271. [Google Scholar] [CrossRef] [PubMed]
- Martini, E.; Krug, S.M.; Siegmund, B.; Neurath, M.F.; Becker, C. Mend your fences: The epithelial barrier and its relationship with mucosal immunity in inflammatory bowel disease. Cell Mol. Gastroenterol. Hepatol. 2017, 4, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Kaser, A.; Zeissig, S.; Blumberg, R.S. Inflammatory bowel disease. Annu. Rev. Immunol. 2010, 28, 573–621. [Google Scholar] [CrossRef]
- van Loo, G.; Bertrand, M.J.M. Death by TNF: A road to inflammation. Nat. Rev. Immunol. 2023, 23, 289–303. [Google Scholar] [CrossRef]
- Souza, R.F.; Caetano, M.A.F.; Magalhães, H.I.R.; Castelucci, P. Study of tumor necrosis factor receptor in the inflammatory bowel disease. World J. Gastroenterol. 2023, 29, 2733–2746. [Google Scholar] [CrossRef]
- Schweckendiek, D.; Rogler, G. Antibodies targeting the tumor necrosis factor-like ligand 1A in inflammatory bowel disease: A new hid on the (biologics) block? Digestion 2024, 105, 411–418. [Google Scholar] [CrossRef]
- Bamias, G.; Menghini, P.; Pizarro, T.T.; Cominelli, F. Targeting TL1A and DR3: The new frontier of anti-cytokine therapy in IBD. Gut 2025, 74, 652–668. [Google Scholar] [CrossRef]
- Alhendi, A.; Naser, S.A. The dual role of interleukin-6 in Crohn’s disease pathophysiology. Front. Immunol. 2023, 14, 1295230. [Google Scholar] [CrossRef]
- Jefremow, A.; Neurath, M.F. All are Equal, Some are more equal: Targeting IL 12 and 23 in IBD—A Clinical Perspective. Immuno Targets Ther. 2020, 9, 289–297. [Google Scholar] [CrossRef]
- Parigi, T.L.; Iacucci, M.; Ghosh, S. Blockade of IL-23: What is in the Pipeline? J. Crohns Colitis 2022, 16, ii64–ii72. [Google Scholar] [CrossRef]
- Jiang, P.; Zheng, C.; Xiang, Y.; Malik, S.; Su, D.; Xu, G.; Zhang, M. The involvement of TH17 cells in the pathogenesis of IBD. Cytokine Growth Factor Rev. 2023, 69, 28–42. [Google Scholar] [CrossRef] [PubMed]
- Li, D.F.; Yang, M.F.; Xu, H.M.; Zhu, M.Z.; Zhang, Y.; Tian, C.M.; Nie, Y.; Wang, J.; Liang, Y.; Yao, J.; et al. Nanoparticles for oral delivery: Targeted therapy for inflammatory bowel disease. J. Mater. Chem. B 2022, 10, 5853–5872. [Google Scholar] [CrossRef] [PubMed]
- McConnell, E.L.; Fadda, H.M.; Basit, A.W. Gut instincts: Explorations in intestinal physiology and drug delivery. Int. J. Pharm. 2008, 364, 213–226. [Google Scholar] [CrossRef] [PubMed]
- Naeem, M.; Awan, U.A.; Subhan, F.; Cao, J.; Hlaing, S.P.; Lee, J.; Im, E.; Jung, Y.; Yoo, J.W. Advances in colon-targeted nano-drug delivery systems: Challenges and solutions. Arch. Pharm. Res. 2020, 43, 153–169. [Google Scholar] [CrossRef]
- Dos Santos, A.M.; Carvalho, S.G.; Meneguin, A.B.; Sábio, R.M.; Gremião, M.P.D.; Chorilli, M. Oral delivery of micro/nanoparticulate systems based on natural polysaccharides for intestinal diseases therapy: Challenges, advances and future perspectives. J. Control. Release 2021, 334, 353–366. [Google Scholar] [CrossRef]
- Hansson, G.C.; Johansson, M.E.V. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Gut Microbes 2010, 1, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.E.V.; Larsson, J.M.H.; Hansson, G.C. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host–microbial interactions. Proc. Natl. Acad. Sci. USA 2011, 108, 4659–4665. [Google Scholar] [CrossRef]
- Post Svan der Jabbar, K.S.; Birchenough, G.; Arike, L.; Akhtar, N.; Sjovall, H.; Johansson, M.E.V.; Hansson, G.C. Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis. Gut 2019, 68, 2142–2151. [Google Scholar] [CrossRef]
- Qiao, Y.; He, C.; Xia, Y.; Ocansey, D.K.W.; Mao, F. Intestinal mucus barrier: A potential therapeutic target for IBD. Autoimmun. Rev. 2025, 24, 103717. [Google Scholar] [CrossRef]
- Zhang, S.; Langer, R.; Traverso, G. Nanoparticulate Drug Delivery Systems Targeting Inflammation for Treatment of Inflammatory Bowel Disease. Nano Today 2017, 16, 82–96. [Google Scholar] [CrossRef]
- Hou, J.J.; Ding, L.; Yang, T.; Yang, Y.F.; Jin, Y.P.; Zhang, X.P.; Ma, A.H.; Qin, Y.H. The proteolytic activity in inflammatory bowel disease: Insight from gut microbiota. Microb. Pathog. 2024, 188, 106560. [Google Scholar] [CrossRef] [PubMed]
- Biel, C.; Faber, K.N.; Bank, R.A.; Olinga, P. Matrix metalloproteinases in intestinal fibrosis. J. Crohns Colitis 2024, 18, 462–478. [Google Scholar] [CrossRef] [PubMed]
- Marônek, M.; Marafini, I.; Gardlík, R.; Link, R.; Troncone, E.; Monteleone, G. Metalloproteinases in Inflammatory Bowel Diseases. J. Inflamm. Res. 2021, 14, 1029–1041. [Google Scholar] [CrossRef]
- Coskun, M. Intestinal epithelium in inflammatory bowel disease. Front. Med. 2014, 1, 24. [Google Scholar] [CrossRef] [PubMed]
- Dunleavy, K.A.; Raffals, L.E.; Camilleri, M. Intestinal barrier dysfunction in inflammatory bowel disease: Underpinning pathogenesis and therapeutics. Dig. Dis. Sci. 2023, 68, 4306–4320. [Google Scholar] [CrossRef]
- McGuckin, M.A.; Eri, R.; Simms, L.A.; Florin, T.H.J.; Radford-Smith, G. Intestinal barrier dysfunction in inflammatory bowel diseases. Inflamm. Bowel Dis. 2009, 15, 100–113. [Google Scholar] [CrossRef] [PubMed]
- Ramos, G.P.; Papadakis, K.A. Mechanisms of Disease: Inflammatory bowel diseases. Mayo Clin. Proc. 2019, 94, 155–165. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y.; Jin, T.; Yi, C.; Ocansey, D.K.W.; Mao, F. The role of NOD2 in intestinal immune response and microbiota modulation: A therapeutic target in inflammatory bowel disease. Int. Immunopharmacol. 2022, 113, 109466. [Google Scholar] [CrossRef] [PubMed]
- Simms, L.A.; Doecke, J.D.; Walsh, M.D.; Huang, N.; Fowler, E.V.; Radford-Smith, G.L. Reduced alpha-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn’s disease. Gut 2008, 57, 903–910. [Google Scholar] [CrossRef]
- Wehkamp, J.; Salzman, N.H.; Porter, E.; Nuding, S.; Weichenthal, M.; Petras, R.E.; Shen, B.; Schaeffeler, E.; Schwab, M.; Linzmeier, R.; et al. Reduced paneth cell α-defensins in ileal Crohn’s disease. Proc. Natl. Acad. Sci. USA 2005, 102, 18129–18134. [Google Scholar] [CrossRef]
- Nakai, D.; Miyake, M. Intestinal Membrane Function in Inflammatory Bowel Disease. Pharmaceutics 2023, 16, 29. [Google Scholar] [CrossRef]
- Hollander, D.; Vadheim, C.M.; Brettholz, E.; Petersen, G.M.; Delahunty, T.; Rotter, J.I. Increased intestinal permeability in patients with Crohn’s disease and their relatives. A possible etiologic factor. Ann. Intern. Med. 1986, 105, 883–885. [Google Scholar] [CrossRef]
- Katz, K.D.; Hollander, D.; Vadheim, C.M.; McElree, C.; Delahunty, T.; Dadufalza, V.D.; Krugliak, P.; Rotter, J. Intestinal permeability in patients with Crohn’s disease and their healthy relatives. Gastroenterology 1989, 97, 927–931. [Google Scholar] [CrossRef]
- Munkholm, P.; Langholz, E.; Hollander, D.; Thornberg, K.; Orholm, M.; Katz, K.D.; Binder, V. Intestinal permeability in patients with Crohn’s disease and ulcerative colitis and their first degree relatives. Gut 1994, 35, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Teahon, K.; Smethurst, P.; Levi, A.J.; Menzies, I.S.; Bjarnason, I. Intestinal permeability in patients with Crohn’s disease and their first degree relatives. Gut 1992, 33, 320–323. [Google Scholar] [CrossRef]
- Groschwitz, K.R.; Hogan, S.P. Intestinal barrier function: Molecular regulation and disease pathogenesis. J. Allergy Clin. Immunol. 2009, 124, 3–20, quiz 21–22. [Google Scholar] [CrossRef] [PubMed]
- Hering, N.A.; Fromm, M.; Schulzke, J.D. Determinants of colonic barrier function in inflammatory bowel disease and potential therapeutics. J. Physiol. 2012, 590, 1035–1044. [Google Scholar] [CrossRef]
- O’Grady, J.; Murphy, C.L.; Barry, L.; Shanahan, F.; Buckley, M. Defining gastrointestinal transit time using video capsule endoscopy: A study of healthy subjects. Endosc. Int. Open 2020, 8, E396–E400. [Google Scholar] [CrossRef] [PubMed]
- Haase, A.M.; Gregersen, T.; Christensen, L.A.; Agnholt, J.; Dahlerup, J.F.; Schlageter, V.; Krogh, K. Regional gastrointestinal transit times in severe ulcerative colitis. Neurogastroenterol. Motil. 2016, 28, 217–224. [Google Scholar] [CrossRef]
- Anbazhagan, A.N.; Priyamvada, S.; Alrefai, W.A.; Dudeja, P.K. Pathophysiology of IBD associated diarrhea. Tissue Barriers 2018, 6, e1463897. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, T.; Sun, M.; Song, Y.; Huang, X.; Zhang, S.; Yang, J.; Zhang, J. Advanced nanomedicine: Redefining therapeutic paradigms for inflammatory bowel disease. Adv. Healthc. Mater. 2023, 12, e2300069. [Google Scholar] [CrossRef] [PubMed]
- Lih-Brody, L.; Powell, S.R.; Collier, K.P.; Reddy, G.M.; Cerchia, R.; Kahn, E.; Weissman, G.S.; Katz, S.; Floyd, R.A.; McKinley, M.J.; et al. Increased oxidative stress and decreased antioxidant defenses in mucosa of inflammatory bowel disease. Dig. Dis. Sci. 1996, 41, 2078–2086. [Google Scholar] [CrossRef]
- Sedghi, S.; Fields, J.Z.; Klamut, M.; Urban, G.; Durkin, M.; Winship, D.; Fretland, D.; Olyaee, M.; Keshavarzian, A. Increased production of luminol enhanced chemiluminescence by the inflamed colonic mucosa in patients with ulcerative colitis. Gut 1993, 34, 1191–1197. [Google Scholar] [CrossRef]
- Keshavarzian, A.; Sedghi, S.; Kanofsky, J.; List, T.; Robinson, C.; Ibrahim, C.; Winship, D. Excessive production of reactive oxygen metabolites by inflamed colon: Analysis by chemiluminescence probe. Gastroenterology 1992, 103, 177–185. [Google Scholar] [CrossRef]
- Nj, S.; Re, A.; Tr, S.; Rn, V.S.; Dr, B.; Ds, R. Chemiluminescence assay of mucosal reactive oxygen metabolites in inflammatory bowel disease. Gastroenterology 1992, 103, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Shui, M.; Yuan, Q.; Vong, C.T.; Yang, Z.; Chen, Z.; Wang, S. Wielding the double-edged sword: Redox drug delivery systems for inflammatory bowel disease. J. Control. Release 2023, 358, 510–540. [Google Scholar] [CrossRef] [PubMed]
- Gordon, H.; Minozzi, S.; Kopylov, U.; Verstockt, B.; Chaparro, M.; Buskens, C.; Warusavitarne, J.; Agrawal, M.; Allocca, M.; Atreya, R.; et al. ECCO Guidelines on Therapeutics in Crohn’s Disease: Medical Treatment. J. Crohns Colitis 2024, 18, 1531–1555. [Google Scholar] [CrossRef] [PubMed]
- Burger, D.; Travis, S. Conventional medical management of inflammatory bowel disease. Gastroenterology 2011, 140, 1827–1837.e2. [Google Scholar] [CrossRef]
- Becker, H.E.F.; Demers, K.; Derijks, L.J.J.; Jonkers, D.M.A.E.; Penders, J. Current evidence and clinical relevance of drug-microbiota interactions in inflammatory bowel disease. Front. Microbiol. 2023, 14, 1107976. [Google Scholar] [CrossRef]
- Raine, T.; Bonovas, S.; Burisch, J.; Kucharzik, T.; Adamina, M.; Annese, V.; Bachmann, O.; Bettenworth, D.; Chaparro, M.; Czuber-Dochan, W.; et al. ECCO Guidelines on Therapeutics in Ulcerative Colitis: Medical Treatment. J. Crohns Colitis 2022, 16, 2–17. [Google Scholar] [CrossRef]
- Lautenschläger, C.; Schmidt, C.; Fischer, D.; Stallmach, A. Drug delivery strategies in the therapy of inflammatory bowel disease. Adv. Drug Deliv. Rev. 2014, 71, 58–76. [Google Scholar] [CrossRef]
- Hu, S.; Zhao, R.; Xu, Y.; Gu, Z.; Zhu, B.; Hu, J. Orally-administered nanomedicine systems targeting colon inflammation for the treatment of inflammatory bowel disease: Latest advances. J. Mater. Chem. B 2024, 12, 13–38. [Google Scholar] [CrossRef]
- Feig, V.R.; Zhang, S.; Patel, A.; Santos, B.; Kang, Z.; Wasan, S.; Beloqui, A.; Traverso, G. Designing for medication adherence in inflammatory bowel disease: Multi-disciplinary approaches for self-administrable biotherapeutics. EClinicalMedicine 2024, 77, 102850. [Google Scholar] [CrossRef]
- McCoubrey, L.E.; Favaron, A.; Awad, A.; Orlu, M.; Gaisford, S.; Basit, A.W. Colonic drug delivery: Formulating the next generation of colon-targeted therapeutics. J. Control. Release 2023, 353, 1107–1126. [Google Scholar] [CrossRef] [PubMed]
- Klotz, U.; Schwab, M. Topical delivery of therapeutic agents in the treatment of inflammatory bowel disease. Adv. Drug Deliv. Rev. 2005, 57, 267–279. [Google Scholar] [CrossRef] [PubMed]
- Mulder, C.J.J.; Tytgat, G.N.J. Review article: Topical corticosteroids in inflammatory bowel disease. Aliment. Pharmacol. Ther. 1993, 7, 125–130. [Google Scholar] [CrossRef]
- Gao, J.; Li, J.; Luo, Z.; Wang, H.; Ma, Z. Nanoparticle-based drug delivery systems for inflammatory bowel disease Treatment. Drug Des. Dev. Ther. 2024, 18, 2921–2949. [Google Scholar] [CrossRef]
- Cai, Z.; Wang, S.; Li, J. Treatment of inflammatory bowel disease: A comprehensive review. Front. Med. 2021, 8, 765474. [Google Scholar] [CrossRef]
- Nedelcu, A.; Mosteanu, O.; Pop, T.; Mocan, T.; Mocan, L. Recent advances in nanoparticle-mediated treatment of inflammatory bowel diseases. Appl. Sci. 2021, 11, 438. [Google Scholar] [CrossRef]
- Beach, M.A.; Nayanathara, U.; Gao, Y.; Zhang, C.; Xiong, Y.; Wang, Y.; Such, G.K. Polymeric nanoparticles for drug delivery. Chem. Rev. 2024, 124, 5505–5616. [Google Scholar] [CrossRef]
- Alfutaimani, A.S.; Alharbi, N.K.; Alahmari, A.S.; Alqabbani, A.A.; Aldayel, A.M. Exploring the landscape of Lipid Nanoparticles (LNPs): A comprehensive review of LNPs types and biological sources of lipids. Int. J. Pharm. X 2024, 8, 100305. [Google Scholar] [CrossRef]
- Chandrakala, V.; Aruna, V.; Angajala, G. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems. Emergent Mater. 2022, 5, 1593–1615. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Paul, D.; Nath, V.; A, R. Exosomes: Current knowledge and future perspectives. Tissue Barriers 2024, 12, 2232248. [Google Scholar] [CrossRef]
- Wang, J.; Chen, D.; Ho, E.A. Challenges in the development and establishment of exosome-based drug delivery systems. J. Control. Release 2021, 329, 894–906. [Google Scholar] [CrossRef]
- Joseph, T.; Kar Mahapatra, D.; Esmaeili, A.; Piszczyk, Ł.; Hasanin, M.; Kattali, M.; Haponiuk, J.; Thomas, S. Nanoparticles: Taking a unique position in medicine. Nanomaterials 2023, 13, 574. [Google Scholar] [CrossRef] [PubMed]
- Seoudi, S.S.; Allam, E.A.; El-Kamel, A.H.; Elkafrawy, H.; El-Moslemany, R.M. Targeted delivery of budesonide in acetic acid induced colitis: Impact on miR-21 and E-cadherin expression. Drug Deliv. Transl. Res. 2023, 13, 2930–2947. [Google Scholar] [CrossRef]
- Sato, H.; Inoue, Y.; Adachi, T.; Mizumoto, T.; Yamada, K.; Onoue, S. Cyclosporine A-Loaded Poly(ethylene glycol)-block-poly(lactic-co-glycolic acid)-Based Mucopenetrating Nanoparticles for Treatment of Inflammatory Bowel Diseases. ACS Appl. Bio Mater. 2025, 8, 5109–5119. [Google Scholar] [CrossRef]
- Stalder, T.; Moulari, B.; Cornu, R.; Chatelain, J.; Koenig, N.; Hassan, A.; Chretien, C.; Boidot, R.; Richard, C.; Pellequer, Y.; et al. Targeted oral delivery of microencapsulated TNF-α siRNA in an experimental model of colitis. Drug Deliv. Transl. Res. 2025. [Google Scholar] [CrossRef]
- Qassem, S.; Naidu, G.S.; Goldsmith, M.; Breier, D.; Rampado, R.; Ramishetti, S.; Keller, M.; Schumacher, F.; Lassen, K.G.; Otikovs, L.; et al. Targeting intestinal inflammation using locked nucleic acids delivered via lipid nanoparticles. Nat. Commun. 2025, 16, 7682. [Google Scholar] [CrossRef] [PubMed]
- Rosario-Berríos, D.N.; Pang, A.Y.; Mossburg, K.J.; Kim, J.; Vázquez Marrero, V.R.; Yoon, S.; Gupta, M.; Lenz, O.C.; Liu, L.P.; Kian, A.C.; et al. CT imaging of and therapy for inflammatory bowel disease via low molecular weight dextran coated ceria nanoparticles. Nanoscale 2025, 17, 10356–10370. [Google Scholar] [CrossRef]
- Koh, H.B.; Kim, H.J.; Kang, S.W.; Yoo, T.H. Exosome-based drug delivery: Translation from bench to clinic. Pharmaceutics 2023, 15, 2042. [Google Scholar] [CrossRef]
- Tan, F.; Li, X.; Wang, Z.; Li, J.; Shahzad, K.; Zheng, J. Clinical applications of stem cell-derived exosomes. Signal Transduct. Target. Ther. 2024, 9, 17. [Google Scholar] [CrossRef]
- Wu, H.; Fan, H.; Shou, Z.; Xu, M.; Chen, Q.; Ai, C.; Dong, Y.; Liu, Y.; Nan, Z.; Wang, Y.; et al. Extracellular vesicles containing miR-146a attenuate experimental colitis by targeting TRAF6 and IRAK1. Int. Immunopharmacol. 2019, 68, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Collnot, E.M.; Ali, H.; Lehr, C.M. Nano- and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. J. Control. Release 2012, 161, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Sharma, K.; Mow, R.J.; Bolay, E.; Srinivasan, A.; Merlin, D. Unleashing the potential of oral deliverable nanomedicine in the treatment of inflammatory bowel disease. Cell Mol. Gastroenterol. Hepatol. 2024, 18, 101333. [Google Scholar] [CrossRef]
- Zheng, Y.; Luo, S.; Xu, M.; He, Q.; Xie, J.; Wu, J.; Huang, Y. Transepithelial transport of nanoparticles in oral drug delivery: From the perspective of surface and holistic property modulation. Acta Pharm. Sin. B 2024, 14, 3876–3900. [Google Scholar] [CrossRef]
- Wang, Y.; Mo, Y.; Sun, Y.; Li, J.; An, Y.; Feng, N.; Liu, Y. Intestinal nanoparticle delivery and cellular response: A review of the bidirectional nanoparticle-cell interplay in mucosa based on physiochemical properties. J. Nanobiotechnol. 2024, 22, 669. [Google Scholar] [CrossRef]
- Jacob, E.M.; Borah, A.; Pillai, S.C.; Kumar, D.S. Inflammatory Bowel Disease: The Emergence of New Trends in Lifestyle and Nanomedicine as the Modern Tool for Pharmacotherapy. Nanomaterials 2020, 10, 2460. [Google Scholar] [CrossRef]
- Di Rienzo, A.; Marinelli, L.; Dimmito, M.P.; Toto, E.C.; Di Stefano, A.; Cacciatore, I. Advancements in Inflammatory Bowel Disease Management: From Traditional Treatments to Monoclonal Antibodies and Future Drug Delivery Systems. Pharmaceutics 2024, 16, 1185. [Google Scholar] [CrossRef]
- Niebel, W.; Walkenbach, K.; Béduneau, A.; Pellequer, Y.; Lamprecht, A. Nanoparticle-based clodronate delivery mitigates murine experimental colitis. J. Control. Release 2012, 160, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Jubeh, T.T.; Barenholz, Y.; Rubinstein, A. Differential adhesion of normal and inflamed rat colonic mucosa by charged liposomes. Pharm. Res. 2004, 21, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Jubeh, T.T.; Nadler-Milbauer, M.; Barenholz, Y.; Rubinstein, A. Local treatment of experimental colitis in the rat by negatively charged liposomes of catalase, TMN and SOD. J. Drug Target. 2006, 14, 155–163. [Google Scholar] [CrossRef]
- Troncone, R.; Caputo, N.; Esposito, V.; Campanozzi, A.; Campanozzi, F.; Auricchio, R.; Greco, L.; Cucchiara, S. Increased concentrations of eosinophilic cationic protein in whole-gut lavage fluid from children with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 1999, 28, 164–168. [Google Scholar] [CrossRef]
- Ensign, L.M.; Cone, R.; Hanes, J. Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers. Adv. Drug Deliv. Rev. 2012, 64, 557–570. [Google Scholar] [CrossRef]
- Liu, C.; Jiang, X.; Gan, Y.; Yu, M. Engineering nanoparticles to overcome the mucus barrier for drug delivery: Design, evaluation and state-of-the-art. Med. Drug Discov. 2021, 12, 100110. [Google Scholar] [CrossRef]
- Maisel, K.; Ensign, L.; Reddy, M.; Cone, R.; Hanes, J. Effect of surface chemistry on nanoparticle interaction with gastrointestinal mucus and distribution in the gastrointestinal tract following oral and rectal administration in the mouse. J. Controll. Release 2015, 197, 48–57. [Google Scholar] [CrossRef]
- Date, A.A.; Halpert, G.; Babu, T.; Ortiz, J.; Kanvinde, P.; Dimitrion, P.; Narayan, J.; Zierden, H.; Betageri, K.; Musmanno, O.; et al. Mucus-penetrating budesonide nanosuspension enema for local treatment of inflammatory bowel disease. Biomaterials 2018, 185, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Cristelo, C.; Viegas, J.; Barros, A.S.; Almeida, H.; Das Neves, J.; Sarmento, B.; Nunes, R. Oral delivery of tunable oxidation-responsive budesonide-loaded nanoparticles enhances inflammation modulation in intestinal colitis. J. Controll. Release 2025, 384, 113948. [Google Scholar] [CrossRef] [PubMed]
- Barros, A.S.; Pinto, S.; Viegas, J.; Martins, C.; Almeida, H.; Alves, I.; Pinho, S.; Nunes, R.; Harris, A.; Sarmento, B. Orally delivered stimulus-sensitive nanomedicine to harness teduglutide efficacy in inflammatory bowel disease. Small 2024, 20, 2402502. [Google Scholar] [CrossRef]
- Shrestha, N.; Xu, Y.; Prévost, J.R.C.; McCartney, F.; Brayden, D.; Frédérick, R.; Beloqui, A.; Préat, V. Impact of PEGylation on an antibody-loaded nanoparticle-based drug delivery system for the treatment of inflammatory bowel disease. Acta Biomater. 2022, 140, 561–572. [Google Scholar] [CrossRef]
- Ly, P.D.; Ly, K.N.; Phan, H.L.; Nguyen, H.H.T.; Duong, V.A.; Nguyen, H.V. Recent advances in surface decoration of nanoparticles in drug delivery. Front. Nanotechnol. 2024, 6, 1456939. [Google Scholar] [CrossRef]
- Qu, Z.; Wong, K.Y.; Moniruzzaman Md Begun, J.; Santos, H.A.; Hasnain, S.Z.; Kumeria, T.; McGuckin, M.A.; Popat, A. One-Pot Synthesis of pH-Responsive Eudragit-Mesoporous Silica Nanocomposites Enable Colonic Delivery of Glucocorticoids for the Treatment of Inflammatory Bowel Disease. Adv. Ther. 2021, 4, 2000165. [Google Scholar] [CrossRef]
- Lv, Y.; Ren, M.; Yao, M.; Zou, J.; Fang, S.; Wang, Y.; Lan, M.; Zhao, Y.; Gao, F. Colon-specific delivery of methotrexate using hyaluronic acid modified pH-responsive nanocarrier for the therapy of colitis in mice. Int. J. Pharm. 2023, 635, 122741. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yao, M.; Zou, J.; Ding, W.; Sun, M.; Zhuge, Y.; Gao, F. pH-sensitive nanoparticles for colonic delivery anti-miR-301a in mouse models of inflammatory bowel diseases. Nanomaterials 2023, 13, 2797. [Google Scholar] [CrossRef] [PubMed]
- Hausmann, M.; Seuwen, K.; de Vallière, C.; Busch, M.; Ruiz, P.A.; Rogler, G. Role of pH-sensing receptors in colitis. Pflug. Arch. 2024, 476, 611–622. [Google Scholar] [CrossRef]
- Yamamura, R.; Inoue, K.Y.; Nishino, K.; Yamasaki, S. Intestinal and fecal pH in human health. Front. Microbiomes 2023, 2, 1192316. [Google Scholar] [CrossRef]
- Nugent, S.; Kumar, D.; Rampton, D.; Evans, D. Intestinal luminal pH in inflammatory bowel disease: Possible determinants and implications for therapy with aminosalicylates and other drugs. Gut 2001, 48, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Jiang, Q.; Shen, R.; Peng, L.; Zhou, W.; Meng, T.; Hu, F.; Wang, J.; Yuan, H. ROS-responsive nanoparticles targeting inflamed colon for synergistic therapy of inflammatory bowel disease via barrier repair and anti-inflammation. Nano Res. 2024, 17, 5409–5423. [Google Scholar] [CrossRef]
- Shrestha, P.; Duwa, R.; Lee, S.; Kwon, T.K.; Jeong, J.H.; Yook, S. ROS-responsive thioketal nanoparticles delivering system for targeted ulcerative colitis therapy with potent HDAC6 inhibitor, tubastatin A. Eur. J. Pharm. Sci. 2024, 201, 106856. [Google Scholar] [CrossRef]
- Xiong, T.; Xu, H.; Nie, Q.; Jia, B.; Bao, H.; Zhang, H.; Li, J.; Cao, Z.; Wang, S.; Wu, L.; et al. Reactive oxygen species triggered cleavage of thioketal-containing supramolecular nanoparticles for inflammation-targeted oral therapy in ulcerative colitis. Adv. Funct. Mater. 2025, 35, 2411979. [Google Scholar] [CrossRef]
- Rinaldi, A.; Caraffi, R.; Grazioli, M.V.; Oddone, N.; Giardino, L.; Tosi, G.; Vandelli, M.A.; Calzà, L.; Ruozi, B.; Duskey, J.T. Applications of the ROS-responsive thioketal linker for the production of smart nanomedicines. Polymers 2022, 14, 687. [Google Scholar] [CrossRef]
- Shi, C.; Dawulieti, J.; Shi, F.; Yang, C.; Qin, Q.; Shi, T.; Wang, L.; Hu, H.; Sun, M.; Ren, L.; et al. A nanoparticulate dual scavenger for targeted therapy of inflammatory bowel disease. Sci. Adv. 2022, 8, eabj2372. [Google Scholar] [CrossRef]
- Xu, M.; Xin, W.; Xu, J.; Wang, A.; Ma, S.; Dai, D.; Wang, Y.; Yang, D.; Zhao, L.; Li, H. Biosilicification-mimicking chiral nanostructures for targeted treatment of inflammatory bowel disease. Nat. Commun. 2025, 16, 2551. [Google Scholar] [CrossRef]
- Cao, L.; Duan, D.; Peng, J.; Li, R.; Cao, Q.; Li, X.; Guo, Y.; Li, J.; Liu, K.; Li, Y.; et al. Oral enzyme-responsive nanoprobes for targeted theranostics of inflammatory bowel disease. J. Nanobiotechnol. 2024, 22, 484. [Google Scholar] [CrossRef]
- Wang, C.P.J.; Ko, G.R.; Lee, Y.Y.; Park, J.; Park, W.; Park, T.E.; Jin, Y.; Kim, S.N.; Lee, J.S.; Park, C.G. Polymeric DNase-I nanozymes targeting neutrophil extracellular traps for the treatment of bowel inflammation. Nano Converg. 2024, 11, 6. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Huang, Q.; Yang, Y.; Ma, L.; Liu, W.; Ou, C.; Chen, Q.; Zhao, T.; Xiao, Z.; Wang, M.; et al. Efficient therapy of inflammatory bowel disease (IBD) with highly specific and durable targeted Ta2C modified with chondroitin sulfate (TACS). Adv. Mater. 2023, 35, 2301585. [Google Scholar] [CrossRef]
- Hassan-Zahraee, M.; Ye, Z.; Xi, L.; Baniecki, M.L.; Li, X.; Hyde, C.L.; Zhang, J.; Raha, N.; Karlsson, F.; Quan, J.; et al. Antitumor necrosis factor-like ligand 1A therapy Targets Tissue Inflammation and Fibrosis Pathways and Reduces Gut Pathobionts in Ulcerative Colitis. Inflamm. Bowel Dis. 2022, 28, 434–446. [Google Scholar] [CrossRef]
- Gardey, E.; Brendel, J.C.; Stallmach, A. Pathophysiology of IBD as a key strategy for polymeric nanoparticle development. Adv. Ther. 2025, 8, 2400439. [Google Scholar] [CrossRef]
- Zhang, D.; Jiang, L.; Yu, F.; Yan, P.; Liu, Y.; Wu, Y.; Yang, X. PepT1-targeted nanodrug based on co-assembly of anti-inflammatory peptide and immunosuppressant for combined treatment of acute and chronic DSS-induced colitis. Front. Pharmacol. 2024, 15, 1442876. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Su, W.; Tie, S.; Cui, W.; Yu, X.; Zhang, L.; Hua, Z.; Tan, M. Orally deliverable sequence-targeted astaxanthin nanoparticles for colitis alleviation. Biomaterials 2023, 293, 121976. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Gong, Q.; Liu, W.; Zhao, Y.; Yan, X.; Yang, T. Berberine-loaded PLGA nanoparticles alleviate ulcerative colitis by targeting IL-6/IL-6R axis. J. Transl. Med. 2024, 22, 963. [Google Scholar] [CrossRef]
- Ye, R.; Guo, J.; Yang, Z.; Wang, Z.; Chen, Y.; Huang, J.; Dong, Y. Somatostatin and mannooligosaccharide modified selenium nanoparticles with dual-targeting for ulcerative colitis treatment. ACS Nano 2025, 19, 14914–14930. [Google Scholar] [CrossRef]
- Ismail, J.; Klepsch, L.C.; Dahlke, P.; Tsarenko, E.; Vollrath, A.; Pretzel, D.; Jordan, P.M.; Rezaei, K.; Czaplewska, J.A.; Stumpf, S.; et al. PEG–Lipid–PLGA hybrid particles for targeted delivery of anti-inflammatory drugs. Pharmaceutics 2024, 16, 187. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Z.; Li, L.; Wang, X.; Wei, X.; Gou, S.; Ding, Z.; Cai, Z.; Ling, Q.; Hoffmann, P.R.; et al. Mannose coated selenium nanoparticles normalize intestinal homeostasis in mice and mitigate colitis by inhibiting NF-κB activation and enhancing glutathione peroxidase expression. J. Nanobiotechnol. 2024, 22, 613. [Google Scholar] [CrossRef]
- Zhuo, Z.; Guo, K.; Luo, Y.; Yang, Q.; Wu, H.; Zeng, R.; Jiang, R.; Li, J.; Wei, R.; Lian, Q.; et al. Targeted modulation of intestinal epithelial regeneration and immune response in ulcerative colitis using dual-targeting bilirubin nanoparticles. Theranostics 2024, 14, 528–546. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Sun, W.; Li, C.; Wang, Q.; Wang, X.; Du, Y.; Chen, W.; Wang, M.; Huang, C.; Wang, R. Inflammatory targeted nanoplatform incorporated with antioxidative nano iron oxide to attenuate ulcerative colitis progression. iScience 2025, 28, 112448. [Google Scholar] [CrossRef] [PubMed]
- Seegobin, N.; McCoubrey, L.E.; Vignal, C.; Waxin, C.; Abdalla, Y.; Fan, Y.; Awad, A.; Murdan, S.; Basit, A.W. Dual action tofacitinib-loaded PLGA nanoparticles alleviate colitis in an IBD mouse model. Drug Deliv. Transl. Res. 2025, 15, 2372–2389. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Arif, M.; Chi, Z.; Li, G.; Liu, C.G. Macrophages-targeting mannosylated nanoparticles based on inulin for the treatment of inflammatory bowel disease (IBD). Int. J. Biol. Macromol. 2021, 169, 206–215. [Google Scholar] [CrossRef]
- Mow, R.J.; Kuczma, M.P.; Shi, X.; Mani, S.; Merlin, D.; Yang, C. Harnessing a safe novel lipid nanoparticle: Targeted oral delivery to colonic epithelial and macrophage cells in a colitis mouse model. Nanomaterials 2024, 14, 1800. [Google Scholar] [CrossRef]
- Wei, X.; Yu, S.; Zhang, T.; Liu, L.; Wang, X.; Wang, X.; Chan, Y.S.; Wang, Y.; Meng, S.; Chen, Y.G. MicroRNA-200 loaded lipid nanoparticles promote intestinal epithelium regeneration in canonical microRNA-deficient mice. ACS Nano 2023, 17, 22901–22915. [Google Scholar] [CrossRef]
- Naama, M.; Telpaz, S.; Awad, A.; Ben-Simon, S.; Harshuk-Shabso, S.; Modilevsky, S.; Rubin, E.; Sawaed, J.; Zelik, L.; Zigdon, M.; et al. Autophagy controls mucus secretion from intestinal goblet cells by alleviating ER stress. Cell Host Microbe 2023, 31, 433–446.e4. [Google Scholar] [CrossRef]
- Li, S.; Chen, L.; Wu, T.; Wu, J.; Yang, H.; Ju, Q.; Liu, Z.; Chen, W.; Zhang, D.; Hao, Y. Cell Membrane-Coated Nanotherapeutics for the targeted treatment of acute and chronic colitis. Biomater. Res. 2024, 28, 0102. [Google Scholar] [CrossRef]
- Lotfipour, F.; Shahi, S.; Farjami, A.; Salatin, S.; Mahmoudian, M.; Dizaj, S.M. Safety and toxicity issues of therapeutically used nanoparticles from the oral route. BioMed Res. Int. 2021, 2021, 9322282. [Google Scholar]
- Yan, J.; Wang, D.; Li, K.; Chen, Q.; Lai, W.; Tian, L.; Lin, B.; Tan, Y.; Liu, X.; Xi, Z. Toxic effects of the food additives titanium dioxide and silica on the murine intestinal tract: Mechanisms related to intestinal barrier dysfunction involved by gut microbiota. Environ. Toxicol. Pharmacol. 2020, 80, 103485. [Google Scholar] [CrossRef]
- Cornu, R.; Chrétien, C.; Pellequer, Y.; Martin, H.; Béduneau, A. Small silica nanoparticles transiently modulate the intestinal permeability by actin cytoskeleton disruption in both Caco-2 and Caco-2/HT29-MTX models. Arch. Toxicol. 2020, 94, 1191–1202. [Google Scholar] [CrossRef]
- Pietroiusti, A.; Bergamaschi, E.; Campagna, M.; Campagnolo, L.; De Palma, G.; Iavicoli, S.; Leso, V.; Magrini, A.; Miragoli, M.; Pedata, P.; et al. The unrecognized occupational relevance of the interaction between engineered nanomaterials and the gastro-intestinal tract: A consensus paper from a multidisciplinary working group. Part. Fibre Toxicol. 2017, 14, 47. [Google Scholar] [CrossRef]
- Najahi-Missaoui, W.; Arnold, R.D.; Cummings, B.S. Safe nanoparticles: Are we there yet? Int. J. Mol. Sci. 2020, 22, 385. [Google Scholar] [CrossRef]
- Lazar, K.M.; Shetty, S.; Chilkoti, A.; Collier, J.H. Immune-active polymeric materials for the treatment of inflammatory diseases. Curr. Opin. Colloid Interface Sci. 2023, 67, 101726. [Google Scholar] [CrossRef]
- Ferreira, B.; Ferreira, C.; Martins, C.; Nunes, R.; Das Neves, J.; Leite-Pereira, C.; Sarmento, B. Establishment of a 3D multi-layered in vitro model of inflammatory bowel disease. J. Controll. Release 2025, 377, 675–688. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Merlin, D. Nanoparticle-mediated drug delivery systems for the treatment of IBD: Current perspectives. Int. J. Nanomed. 2019, 14, 8875–8889. [Google Scholar] [CrossRef]
- Long, J.; Liang, X.; Ao, Z.; Tang, X.; Li, C.; Yan, K.; Yu, X.; Wan, Y.; Li, Y.; Li, C.; et al. Stimulus-responsive drug delivery nanoplatforms for inflammatory bowel disease therapy. Acta Biomater. 2024, 188, 27–47. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.X.X.; Ong, B.Y.C.; Dinesh, T.; Srinivasan, D.K. Nanomedicine strategies in the management of inflammatory bowel disease and colorectal cancer. Int. J. Mol. Sci. 2025, 26, 6465. [Google Scholar] [CrossRef]
- Metselaar, J.M.; Lammers, T. Challenges in nanomedicine clinical translation. Drug Deliv. Transl. Res. 2020, 10, 721–725. [Google Scholar] [CrossRef]
- Joyce, P.; Allen, C.J.; Alonso, M.J.; Ashford, M.; Bradbury, M.S.; Germain, M.; Kavallaris, M.; Langer, R.; Lammers, T.; Peracchia, M.T.; et al. A translational framework to deliver nanomedicines to the clinic. Nat. Nanotechnol. 2024, 19, 1597–1611. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ribeiro, A.; Nunes, R. Selective Nanoparticulate Systems for Drug Delivery in Inflammatory Bowel Disease. Pharmaceutics 2026, 18, 55. https://doi.org/10.3390/pharmaceutics18010055
Ribeiro A, Nunes R. Selective Nanoparticulate Systems for Drug Delivery in Inflammatory Bowel Disease. Pharmaceutics. 2026; 18(1):55. https://doi.org/10.3390/pharmaceutics18010055
Chicago/Turabian StyleRibeiro, Alberta, and Rute Nunes. 2026. "Selective Nanoparticulate Systems for Drug Delivery in Inflammatory Bowel Disease" Pharmaceutics 18, no. 1: 55. https://doi.org/10.3390/pharmaceutics18010055
APA StyleRibeiro, A., & Nunes, R. (2026). Selective Nanoparticulate Systems for Drug Delivery in Inflammatory Bowel Disease. Pharmaceutics, 18(1), 55. https://doi.org/10.3390/pharmaceutics18010055

