Inhalable Nanomaterial Discoveries for Lung Cancer Therapy: A Review
Abstract
1. Introduction
2. Delivery Devices for Pulmonary Drug Delivery
2.1. Selection Criteria for Inhalation Devices Based on Nanomaterial Properties in Lung Cancer Therapy
2.2. Dry Powder Inhalers (DPIs)
2.3. Pressurized Metered-Dose Inhalers (pMDIs)
2.4. Nebulizer
2.5. Other Inhaler Technology
3. Clinical Trials of Inhaled Drug Delivery
4. Different Nanomaterials for Pulmonary Drug Delivery
4.1. Lipid-Based Nanocarrier for Inhalation
4.2. Liposomes
4.3. Solid Lipid Nanoparticles
Engineered Nanoparticles | Drugs | Physical Parameters | Performance | Ref. |
---|---|---|---|---|
Liposomes | Paclitaxel | Size: 64.3 ± 2.4 nm ZP: −9 nm ± 0.48 mV MMAD: N/A FPF: N/A | Inhalable paclitaxel-in-liposome-in-bacteria system for primary lung cancer; demonstrated high lung targeting, enhanced cellular uptake (A549 cells), strong apoptosis induction (up to 98.6%), significant tumor suppression in lung cancer rat model, immune activation (↑ TNF-α, IL-4, IFN-γ), and selective lung biodistribution after pulmonary delivery… | [8] |
PEGylated Liposomes | Afatinib Di maleate | Size: 181.2 ± 5.0 nm ZP: +9.65 ± 0.32 mV MMAD: 2.83 µm FPF: 63.65% | Polyethylene glycol (PEG)-modified unilamellar liposomal dry powder showed high lung deposition (>85% emitted dose), MMAD 2.83 µm, FPF 63.65%, sustained release across pH 5.5–7.4 (zero-order kinetics), enhanced cytotoxicity, and improved cellular uptake in A549 cells | [88] |
Liposomes | Curcumin | Size: 94.65 ± 22.01 nm ZP: N/A MMAD: 5.81 µm FPF: 46.71% | Liposomal dry powder with an MMAD of 5.81 µm and an FPF of 46.71% showed efficient lung deposition. In A549 cells, it outperformed free curcumin and gemcitabine in cytotoxicity, indicating strong potential for lung cancer treatment. | [89] |
PEGylated Liposomes | siRNA | Size: 276.9 ± 4.8 nm ZP: −10.6 ± 0.8 mV MMAD: N/A FPF: N/A | PLGA-based hybrid nanoparticles enhanced mucus penetration, Bronchoalveolar Lavage Fluid BALF stability, and A549 cell uptake. Showed 84.83% transfection and superio r gene silencing in 3D spheroids and improved cellular uptake A549-3T3 | [90] |
Liposomes | Erlotinib + Genistein | Size: 200 nm ZP: ~0 mV Neutral MMAD: N/A FPF: N/A | Pulmonary delivery for NSCLC; tested on H3255, H1650, and H1781 cell lines; local inhalation enhances lung deposition and reduces systemic toxicity | [91] |
Liposomes | Gefitinib | Size: 69.82 ± 2.60 nm ZP: −9.67 ± 0.73 mV MMAD: 7.837 µm; FPF: 33.81 | Inhalable liposomamV MMADr primary lung cancer demonstrated high lung distribution, rapid absorption, 2.36-fold higher bioavailability vs. oral, significant tumor reduction, apoptosis induction (Caspase-3, TUNEL), P-Akt suppression, inflammation attenuation (↓ TNF-α, W/D ratio); tested in primary lung cancer rat model. | [92] |
Liposomes | Rolapitant (RP) FDA- approved drug | Size: 25.1 ± 7.3 nm ZP: −24.5 ± 1.4 mV MMAD: N/A FPF: N/A | Inhalable nanocarrier formulations for lung cancer tested on A549 lung cancer cells showed enhanced cytotoxicity, improved permeability, high cellular uptake, NK-1 receptor inhibition, and favorable biodistribution to lungs after intratracheal administration. | [93] |
Liposomes | Vincristine (VCR) | Size: 112.6 ± 3.7 nm ZP: −21.56 ± 2.53 mV MMAD: N/A FPF: 14.99 ± 0.27% | Inhalable liposomal spray-dried powder for lung cancer; sustained release (65% over 96 h), enhanced cytotoxicity against MCF-7 and A549 cells (IC50: 24.4 nM & 55.3 nM), improved lung targeting, lower hepatic metabolism (due to CYP3A4 deficiency), higher AUC and Cmax, prolonged t1/2, and reduced clearance in rat model. | [94] |
SLNs | Paclitaxel (PTX) | Size: 249 ± 36 nm ZP: +32 ± 1 mV MMAD: N/A FPF: N/A | Targeted delivery to folate receptor (FR)-overexpressing lung tumors via folate-mediated endocytosis using solid lipid nanoparticles (SLNs) loaded with paclitaxel (PTX) achieved 32× higher lung retention, undetectable systemic exposure, sustained PTX release (50% over 72 h), and enhanced anti-proliferative efficacy in M109-HiFR cells. | [96] |
SLNs | Curcumin | Size:14.7 nm ZP: −22.5mV MMAD: N/A FPF: N/A | Enhanced curcumin solubility and dissolution rate in lung tissue; high encapsulation (90.2%) and drug loading (8.56%); maintained aerodynamic diameter (~4.03 μm) for deep lung deposition; sustained-release in simulated lung fluid; reduced cytotoxicity in BEAS-2B cells—indicating a safe, effective dry-powder inhalation system | [100] |
SLNs | TNF-α siRNA | Size:164.5 ± 28.3 nm ZP: −29.1 ± 8.6 mV Mv MMAD: 3.96 µm FPF: 37% | Thin-film freeze-drying yields a porous, brittle dry powder that preserves SLN size and charge, retains siRNA function (effective TNF-α knockdown in macrophages), and exhibits excellent aerosol performance (fine particle fraction 37%, MMAD 3.96 µm) for deep-lung delivery, plus demonstrated mucus-layer penetration. | [101] |
SLNs | Favipiravir | Size:: 693.1 ± 40.3 nm ZP: −13.3 ± 0.3 MMAD:3.0 ± 0.4 µm FPF: 60.2 ± 1.7% | Favipiravir-loaded SLNs (~693 nm; −13.3 mV) prepared via hot-evaporation nebulized into a respirable aerosol (FPF 60.2%, MMAD 3.0 µm, GSD 2.33). They were biocompatible up to 322.6 µg/mL in A549 cells, inducing cell-cycle arrest, necrosis, and autophagy inhibition, as well as a 1.23-fold increase in macrophage uptake, for effective pulmonary anticancer delivery. | [103] |
Liposomes | sorafenib tosylate (ST) | Size: 111.15 ± 1.03 nm ZP: −29.87 ± 0.56 mV MAD: 3.15 ± 0.42 µm FPF: 83.71 ± 2.09% | Iµm.lable liposomal DPI for NSCLC demonstrated improved lung deposition (MMAD 3.15 µm, FPF 83.71%), sustained release up to 72 h, potentially enhanced bioavailability inferred from improved lung deposition and dissolution, and reduced systemic toxicity. | [104] |
4.4. Polymeric Nanocarriers for Inhalation
4.5. Polymeric Nanoparticles
4.6. Micelles
4.7. Nanostructured Microparticles
Engineered Nanoparticles | Drugs | Physical Parameters | Performance | Ref. |
---|---|---|---|---|
PLGA NPs | Afatinib | Size: 180.2 ± 15.6 nm ZP: −23.1 ± 0.2 mV MMAD: 4.7 ± 0.1 µm FPF: 77.8 ± 4.3% | Afatinib-loaded PLGA nanoparticles achieved 34.4 ± 2.3% entrapment with sustained release (56.8 ± 6.4% over 48 h) and excellent inhalable properties (MMAD 4.7 ± 0.1 µm; FPF 77.8 ± 4.3%). They outperformed free afatinib in KRAS-mutant A549 and H460 cells by enhancing cytotoxicity, cellular uptake, and penetration–growth inhibition in 3D tumor spheroids. | [108] |
PLGA NPs | Afatinib-loaded PLGA nanoparticles dry powder inhaler | Size: 198.1 ± 3.5 nm ZP: −0.519 ± 0.197 mV MMAD: N/A FPF: N/A | The inhalable dry powder of afatinib-loaded PLGA nanoparticles achieved high entrapment (78.2 ± 2.2%) and drug loading (3.90 ± 0.11%), formed a respirable powder (~6.9 µm) with good flow and >85 % deep-lung deposition, provided sustained release (>80% over 18–34 h across pH 5.5–7.4), and markedly improved cytotoxicity and cellular uptake in A549 cells versus the free drug. | [110] |
Polymeric–Lipid Hybrid Nanocarriers | Docetaxel + ABCB1 shRNA pDNA | Size: 124.1 ± 1.9 nm ZP: +26.5 ± 1.8 mV Mv MMAD: N/A FPF: N/A | High Docetaxel encapsulation (85.6 ± 2.8%) and shRNA complexation (97.4 ± 1.6%). Nanoscale size (<200 nm) and positive surface charge enhance cellular uptake and avoid rapid clearance. Processed into a respirable dry powder (MMAD 3.56 ± 0.21 μm; FPF 68.3 ± 2.5%) for deep-lung delivery, demonstrating potential to reverse multidrug resistance in NSCLC | [111] |
Polymeric micelles | Doxorubicin + Curcumin | Size: 17.02 ± 2.58 nm ZP: 0.37 ± 0.014 mV MMAD: N/A FPF: N/A | Synergistically reversed doxorubicin resistance in A549/cells (IC50 3.95 µg/mL) via energy-dependent, caveolae-mediated uptake; Provided sustained release and prolonged systemic circulation with elevated plasma levels over six h. Significantly inhibited tumor growth in Lewis lung carcinoma–bearing mice | [123] |
Microparticles | DocetaxelVenza | Size: 222.1 nm ZP: −34.8 mV MMAD: 3.74 µm FPF: 42.96% | Docetaxel-loaded PLGA-PLX-188 nanoparticles (~222 nm; −34.8 mV) were successfully spray-dried into nano-embedded microparticles that aerosolized into a DPI with an MMAD of 3.74 µm and FPF of 42.96%. Upon deposition, the microparticles released ~47.8% of the redispersed NPs, retaining their size and polydispersity index (PDI), which provided sustained drug release over 144 h. The microparticles remained stable for at least three months and delivered significantly greater cytotoxicity in A549 cells due to improved nanoparticle uptake, demonstrating strong potential for targeted inhalation therapy in non-small cell lung cancer (NSCLC). | [130] |
4.8. Dendrimers
4.9. Lipid vs. Polymeric Nanocarriers: Tailoring Pulmonary Drug Delivery Systems
5. Challenges
5.1. Clearance of Nanoparticles
5.2. Mucociliary Clearance
5.3. Influence of Surface Hydrophobicity
5.4. Alveolar Macrophage Clearance
5.5. Clearance by Degradation
5.6. Challenges and Obstacles to Clinical Implementation
Scaling up Inhalable Nanoparticle Production: Challenges Ahead
5.7. Obstacles in Screening, Quality Management, and Characterization
5.8. Challenges in Multistage Delivery and Deep Tumor Penetration of Nanocarriers
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Recillas-Targa, F. Cancer Epigenetics: An Overview. Arch. Med. Res. 2022, 53, 732–740. [Google Scholar] [CrossRef]
- Thai, A.A.; Solomon, B.J.; Sequist, L.V.; Gainor, J.F.; Heist, R.S. Lung cancer. Lancet 2021, 398, 535–554. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Diaz Sanchís, M.; García Martínez, M.; Vidal Lancis, M.C.; Santiago, A.; Gnutti, G.; Gómez Guillén, D.; Trapero Bertran, M.; Fu Balboa, M. Health and economic impact at a population level of both primary and secondary preventive lung cancer interventions: A model-based cost-effectiveness analysis. Lung Cancer 2021, 159, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Mittal, V.; El Rayes, T.; Narula, N.; McGraw, T.E.; Altorki, N.K.; Barcellos-Hoff, M.H. The Microenvironment of Lung Cancer and Therapeutic Implications. In Lung Cancer and Personalized Medicine: Novel Therapies and Clinical Management; Ahmad, A., Gadgeel, S.M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 75–110. [Google Scholar]
- van der Meel, R.; Sulheim, E.; Shi, Y.; Kiessling, F.; Mulder, W.J.M.; Lammers, T. Smart cancer nanomedicine. Nat. Nanotechnol. 2019, 14, 1007–1017. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, M.; Du, L.; Zeng, J.; Yao, T.; Jin, Y. Paclitaxel-in-liposome-in-bacteria for inhalation treatment of primary lung cancer. Int. J. Pharm. 2020, 578, 119177. [Google Scholar] [CrossRef]
- Zhao, J.; Qin, L.; Song, R.; Su, J.; Yuan, Y.; Zhang, X.; Mao, S. Elucidating inhaled liposome surface charge on its interaction with biological barriers in the lung. Eur. J. Pharm. Biopharm. 2022, 172, 101–111. [Google Scholar] [CrossRef]
- Guo, X.; Yang, L.; Deng, C.; Ren, L.; Li, S.; Zhang, X.; Zhao, J.; Yue, T. Nanoparticles traversing the extracellular matrix induce biophysical perturbation of fibronectin depicted by surface chemistry. Nanoscale 2024, 16, 6199–6214. [Google Scholar] [CrossRef]
- Burgstaller, G.; Oehrle, B.; Gerckens, M.; White, E.S.; Schiller, H.B.; Eickelberg, O. The instructive extracellular matrix of the lung: Basic composition and alterations in chronic lung disease. Eur. Respir. J. 2017, 50, 1601805. [Google Scholar] [CrossRef]
- Narciso, M.; Díaz-Valdivia, N.; Junior, C.; Otero, J.; Alcaraz, J.; Navajas, D.; Farre, R.; Lopez, I.A.; Gavara, N. Changes in Structure and Stiffness of the Lung Extracellular Matrix in Lung Cancer. Eur. Respir. J. 2022, 60 (Suppl. S66), 3617. [Google Scholar] [CrossRef]
- Cassani, M.; Fernandes, S.; Pagliari, S.; Cavalieri, F.; Caruso, F.; Forte, G. Unraveling the Role of the Tumor Extracellular Matrix to Inform Nanoparticle Design for Nanomedicine. Adv. Sci. 2025, 12, 2409898. [Google Scholar] [CrossRef]
- Ruge, C.A.; Kirch, J.; Cañadas, O.; Schneider, M.; Perez-Gil, J.; Schaefer, U.F.; Casals, C.; Lehr, C.-M. Uptake of nanoparticles by alveolar macrophages is triggered by surfactant protein A. Nanomed. Nanotechnol. Biol. Med. 2011, 7, 690–693. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Tang, Q.; Yin, D.; Tang, C.; He, E.; Zou, L.; Peng, Q. The protein corona and its effects on nanoparticle-based drug delivery systems. Acta Biomater. 2021, 129, 57–72. [Google Scholar] [CrossRef] [PubMed]
- Raesch, S.S.; Tenzer, S.; Storck, W.; Rurainski, A.; Selzer, D.; Ruge, C.A.; Perez-Gil, J.; Schaefer, U.F.; Lehr, C.M. Proteomic and Lipidomic Analysis of Nanoparticle Corona upon Contact with Lung Surfactant Reveals Differences in Protein, but Not Lipid Composition. ACS Nano 2015, 9, 11872–11885. [Google Scholar] [CrossRef]
- Cojocaru, E.; Petriș, O.R.; Cojocaru, C. Nanoparticle-Based Drug Delivery Systems in Inhaled Therapy: Improving Respiratory Medicine. Pharmaceuticals 2024, 17, 1059. [Google Scholar] [CrossRef]
- Gupta, C.; Jaipuria, A.; Gupta, N. Inhalable Formulations to Treat Non-Small Cell Lung Cancer (NSCLC): Recent Therapies and Developments. Pharmaceutics 2022, 15, 139. [Google Scholar] [CrossRef] [PubMed]
- Ajith, S.; Almomani, F.; Elhissi, A.M.A.; Husseini, G.A. Nanoparticle-based materials in anticancer drug delivery: Current and future prospects. Heliyon 2023, 9, e21227. [Google Scholar] [CrossRef]
- Large, D.E.; Abdelmessih, R.G.; Fink, E.A.; Auguste, D.T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv. Drug Deliv. Rev. 2021, 176, 113851. [Google Scholar] [CrossRef] [PubMed]
- Miwata, K.; Okamoto, H.; Nakashima, T.; Ihara, D.; Horimasu, Y.; Masuda, T.; Miyamoto, S.; Iwamoto, H.; Fujitaka, K.; Hamada, H. Intratracheal administration of siRNA dry powder targeting vascular endothelial growth factor inhibits lung tumor growth in mice. Mol. Ther. Nucleic Acids 2018, 12, 698–706. [Google Scholar] [CrossRef]
- Amararathna, M.; Goralski, K.; Hoskin, D.W.; Rupasinghe, H.V. Pulmonary nano-drug delivery systems for lung cancer: Current knowledge and prospects. J. Lung Health Dis. 2019, 3, 11–28. [Google Scholar] [CrossRef]
- Mangal, S.; Gao, W.; Li, T.; Zhou, Q.T. Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: Challenges and opportunities. Acta pharmacologica sinica 2017, 38, 782–797. [Google Scholar] [CrossRef] [PubMed]
- Amreddy, N.; Babu, A.; Muralidharan, R.; Munshi, A.; Ramesh, R. Polymeric nanoparticle-mediated gene delivery for lung cancer treatment. In Polymeric Gene Delivery Systems; Springer: Cham, Switzerland, 2017; pp. 233–255. [Google Scholar]
- Zarogoulidis, P.; Chatzaki, E.; Porpodis, K.; Domvri, K.; Hohenforst-Schmidt, W.; Goldberg, E.P.; Karamanos, N.; Zarogoulidis, K. Inhaled chemotherapy in lung cancer: Future concept of nanomedicine. Int. J. Nanomed. 2012, 7, 1551–1572. [Google Scholar] [CrossRef]
- Lee, W.-H.; Loo, C.-Y.; Traini, D.; Young, P.M. Inhalation of nanoparticle-based drug for lung cancer treatment: Advantages and challenges. Asian J. Pharm. Sci. 2015, 10, 481–489. [Google Scholar] [CrossRef]
- Respaud, R.; Vecellio, L.; Diot, P.; Heuzé-Vourc’h, N. Nebulization as a delivery method for mAbs in respiratory diseases. Expert Opin. Drug Deliv. 2015, 12, 1027–1039. [Google Scholar] [CrossRef]
- Peng, S.; Wang, W.; Zhang, R.; Wu, C.; Pan, X.; Huang, Z. Nano-formulations for pulmonary delivery: Past, present, and future perspectives. Pharmaceutics 2024, 16, 161. [Google Scholar] [CrossRef] [PubMed]
- Brunaugh, A.D.; Smyth, H.D. Formulation techniques for high dose dry powders. Int. J. Pharm. 2018, 547, 489–498. [Google Scholar] [CrossRef]
- Li, H.-Y. Alginate-based inhalable particles for controlled pulmonary drug delivery. In Alginate Biomaterial: Drug Delivery Strategies and Biomedical Engineering; Springer: New York, NY, USA, 2023; pp. 207–240. [Google Scholar]
- Muralidharan, P.; Hayes Jr, D.; Mansour, H.M. Dry powder inhalers in COPD, lung inflammation and pulmonary infections. Expert Opin. Drug Deliv. 2015, 12, 947–962. [Google Scholar] [CrossRef]
- Lee, H.-J.; Lee, H.-G.; Kwon, Y.-B.; Kim, J.-Y.; Rhee, Y.-S.; Chon, J.; Park, E.-S.; Kim, D.-W.; Park, C.-W. The role of lactose carrier on the powder behavior and aerodynamic performance of bosentan microparticles for dry powder inhalation. Eur. J. Pharm. Sci. 2018, 117, 279–289. [Google Scholar] [CrossRef]
- Malamatari, M.; Malamataris, S.; Buckton, G.; Taylor, K. Microcomposite particles for drug delivery to the lungs: Can they be administered as dry powders or is blending with a carrier still needed? J. Pharm. Pharmacol. 2017, 69, 10–11. [Google Scholar]
- Chaugule, V.; dos Reis, L.G.; Fletcher, D.F.; Young, P.M.; Traini, D.; Soria, J. Particle image velocimetry measurements of a dry powder inhaler flow. In Proceedings of the 14th international symposium on particle image velocimetry, Chicago, IL, USA, 1–4 August 2021. [Google Scholar]
- Emeryk, A.; Janeczek, K. Feedback systems in multi-dose dry powder inhalers. Adv. Dermatol. Allergol. Postępy Dermatol. Alergol. 2023, 40, 16–21. [Google Scholar] [CrossRef]
- Lechanteur, A.; Evrard, B. Influence of composition and spray-drying process parameters on carrier-free DPI properties and behaviors in the lung: A review. Pharmaceutics 2020, 12, 55. [Google Scholar] [CrossRef]
- Weers, J.G. Design of dry powder inhalers to improve patient outcomes: It’s not just about the device. Expert Opin. Drug Deliv. 2024, 21, 365–380. [Google Scholar] [CrossRef]
- Yang, M.Y.; Verschuer, J.; Shi, Y.; Song, Y.; Katsifis, A.; Eberl, S.; Wong, K.; Brannan, J.D.; Cai, W.; Finlay, W.H. The effect of device resistance and inhalation flow rate on the lung deposition of orally inhaled mannitol dry powder. Int. J. Pharm. 2016, 513, 294–301. [Google Scholar] [CrossRef]
- Dońka, K.; Paździor, V.; Brodowicz-Król, M.; Zarzycka, D. Drug Inhalation Methods and Therapy Effectiveness. Emerg. Med. Serv. 2017, 4, 7–13. [Google Scholar]
- Li, W.; Daoud, S.Z.; Trivedi, R.; Lukka, P.B.; Jimenez, E.; Molins, E.; Stewart, C.; Bharali, P.; Garcia-Gil, E. The Pharmacokinetics, Safety and Tolerability of Aclidinium Bromide 400 μg Administered by Inhalation as Single and Multiple (Twice Daily) Doses in Healthy Chinese Participants. Int. J. Chronic Obstr. Pulm. Dis. 2023, 18, 2725–2735. [Google Scholar] [CrossRef] [PubMed]
- Kappeler, D.; Sommerer, K.; Kietzig, C.; Huber, B.; Woodward, J.; Lomax, M.; Dalvi, P. Pulmonary deposition of fluticasone propionate/formoterol in healthy volunteers, asthmatics and COPD patients with a novel breath-triggered inhaler. Respir. Med. 2018, 138, 107–114. [Google Scholar] [CrossRef]
- Ahookhosh, K.; Yaqoubi, S.; Mohammadpourfard, M.; Hamishehkar, H.; Aminfar, H. Experimental investigation of aerosol deposition through a realistic respiratory airway replica: An evaluation for MDI and DPI performance. Int. J. Pharm. 2019, 566, 157–172. [Google Scholar] [CrossRef]
- Stein, S.W.; Thiel, C.G. The History of Therapeutic Aerosols: A Chronological Review. J. Aerosol Med. Pulm. Drug Deliv. 2017, 30, 20–41. [Google Scholar] [CrossRef] [PubMed]
- Lavorini, F.; Buttini, F.; Usmani, O.S. 100 Years of Drug Delivery to the Lungs. In Handbook of Experimental Pharmacology; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Ohnishi, H.; Okazaki, M.; Anabuki, K.; Akita, S.; Kawase, S.; Tsuji, K.S.; Miyamura, M.; Yokoyama, A. An Investigation into the Factors Associated with Incorrect Use of a Pressurized Metered-Dose Inhaler in Japanese Patients. J. Aerosol Med. Pulm. Drug Deliv. 2022, 36, 12–19. [Google Scholar] [CrossRef]
- Kotak, R.K.; Pandya, D.C.V. Basic Understanding of Pressurized Metered Dose Inhalers and Its Aerodynamic Particle Size Testing: A Review. Int. J. Tech. Innov. Mod. Eng. Sci. 2018, 4, 2455–2585. [Google Scholar]
- Party, P.; Bartos, C.; Farkas, Á.; Szabó-Révész, P.; Ambrus, R. Formulation and in vitro and in silico characterization of “nano-in-micro” dry powder inhalers containing meloxicam. Pharmaceutics 2021, 13, 211. [Google Scholar] [CrossRef] [PubMed]
- Sellers, W.F.S. Asthma pressurised metered dose inhaler performance: Propellant effect studies in delivery systems. Allergy Asthma Clin. Immunol. Off. J. Can. Soc. Allergy Clin. Immunol. 2017, 13, 30. [Google Scholar] [CrossRef] [PubMed]
- Mason-Smith, N.; Duke, D.J.; Kastengren, A.L.; Traini, D.; Young, P.M.; Chen, Y.; Lewis, D.A.; Edgington-Mitchell, D.M.; Honnery, D.R. Revealing pMDI Spray Initial Conditions: Flashing, Atomisation and the Effect of Ethanol. Pharm. Res. 2017, 34, 718–729. [Google Scholar] [CrossRef]
- Bezuglaya, E.; Lyapunov, N.; Bovtenko, V.; Zinchenko, I.A.; Stolper, Y.M. Study of pressurised metered dose inhalers for the purpose of standardization of quality attributes characterizing uniformity of dosing. Sci. Pharm. Sci. 2021, 32, 11–23. [Google Scholar] [CrossRef]
- Schroeter, J.D.; Sheth, P.; Hickey, A.J.; Asgharian, B.; Price, O.T.; Holt, J.T.; Conti, D.S.; Saluja, B. Effects of Formulation Variables on Lung Dosimetry of Albuterol Sulfate Suspension and Beclomethasone Dipropionate Solution Metered Dose Inhalers. AAPS Pharm. Sci. Tech. 2018, 19, 2335–2345. [Google Scholar] [CrossRef]
- Зайцев, А.; Харитoнoв, М.; Чернецoв, В.; Крюкoв, Е. Сoвременные вoзмoжнoсти небулайзернoй терапии. Медицинский Сoвет 2019, 98–103. [Google Scholar] [CrossRef]
- Sosnowski, T.R.; Janeczek, K.; Grzywna, K.; Emeryk, A. Mass and volume balances of nebulization processes for the determination of the expected dose of liquid medicines delivered by inhalation. Chem. Process Eng. 2021, 42, 253–261. [Google Scholar]
- Ashraf, S.; McPeck, M.; Cuccia, A.D.; Smaldone, G.C. Comparison of vibrating mesh, jet, and breath-enhanced nebulizers during mechanical ventilation. Respir. Care 2020, 65, 1419–1426. [Google Scholar] [CrossRef]
- Song, Y.-L.; Cheng, C.-H.; Reddy, M.K.; Islam, M.S. Simulation of onset of the capillary surface wave in the ultrasonic atomizer. Micromachines 2021, 12, 1146. [Google Scholar] [CrossRef]
- Longest, W.; Spence, B.M.; Hindle, M. Devices for Improved Delivery of Nebulized Pharmaceutical Aerosols to the Lungs. J. Aerosol Med. Pulm. Drug Deliv. 2019, 32, 317–339. [Google Scholar] [CrossRef]
- Arnott, A.; Watson, M.; Sim, M. Nebuliser therapy in critical care: The past, present and future. J. Intensive Care Soc. 2023, 25, 78–88. [Google Scholar] [CrossRef]
- Hatley, R.; Hardaker, L. Mesh nebulizer capabilities in aerosolizing a wide range of novel pharmaceutical formulations. Eur. Respir. J. 2016, 48 (Suppl. S60), PA967. [Google Scholar]
- Beck-Broichsitter, M. Aerosol production by vibrating membrane technology: Analysis of the electrolyte effect on generated droplet size and nebulizer output rate. J. Pharm. Sci. 2017, 106, 2168–2172. [Google Scholar] [CrossRef]
- Le, N.H.A.; Brenker, J.; Shenoda, A.; Sheikh, Z.; Gum, J.; Ong, H.X.; Traini, D.; Alan, T. Oscillating high aspect ratio micro-channels can effectively atomize liquids into uniform aerosol droplets and dial their size on-demand. Lab Chip 2024, 24, 1676–1684. [Google Scholar] [CrossRef]
- Khmelev, V.; Shalunov, A.; Nesterov, V. High-frequency vibration system for liquid atomization. Rom. J. Acoust. Vib. 2018, 15, 136–142. [Google Scholar]
- Ignatova, G.; Antonov, V. Nebulizer therapy for lung diseases. Meditsinskiy Sov. Med. Counc. 2021, 11, 102–106. [Google Scholar] [CrossRef]
- Zaytsev, A.A.; Kharitonov, M.A.; Chernetsov, V.A.; Kryukov, E.V. Current possibilities for nebulizer therapy. Meditsinskiy Sov. Med. Counc. 2019, 15, 106–111. [Google Scholar] [CrossRef]
- Kwok, P.C.L.; McDonnell, A.G.; Tang, P.; Knight, C.; McKay, E.; Butler, S.P.; Sivarajah, A.; Quinn, R.; Fincher, L.; Browne, E.; et al. In vivo deposition study of a new generation nebuliser utilising hybrid resonant acoustic (HYDRA) technology. Int. J. Pharm. 2020, 580, 119196. [Google Scholar] [CrossRef] [PubMed]
- Hirlekar, R.S.; Ayare, P.; Kadam, M.; Dhawal, S. Nebulizers: Scope and Application in Pulmonary Drug Delivery System. Indian J. Pharm. Sci. 2024, 86, 1–8. [Google Scholar] [CrossRef]
- Iwanaga, T.; Tohda, Y.; Nakamura, S.; Suga, Y. The Respimat® Soft Mist Inhaler: Implications of Drug Delivery Characteristics for Patients. Clin. Drug Investig. 2019, 39, 1021–1030. [Google Scholar] [CrossRef]
- Dhand, R.; Eicher, J.; Hänsel, M.; Jost, I.; Meisenheimer, M.; Wachtel, H. Improving usability and maintaining performance: Human-factor and aerosol-performance studies evaluating the new reusable Respimat inhaler. Int. J. Chronic Obstr. Pulm. Dis. 2019, 14, 509–523. [Google Scholar] [CrossRef]
- Turpeinen, A.; Eriksson, P.; Happonen, A.; Husman-Piirainen, J.; Haikarainen, J. Consistent Dosing Through the Salmeterol–Fluticasone Propionate Easyhaler for the Management of Asthma and Chronic Obstructive Pulmonary Disease: Robustness Analysis Across the Easyhaler Lifetime. J. Aerosol Med. Pulm. Drug Deliv. 2020, 34, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Verschraegen, C.F.; Gilbert, B.E.; Loyer, E.; Huaringa, A.; Walsh, G.; Newman, R.A.; Knight, V. Clinical evaluation of the delivery and safety of aerosolized liposomal 9-nitro-20 (s)-camptothecin in patients with advanced pulmonary malignancies. Clin. Cancer Res. 2004, 10, 2319–2326. [Google Scholar] [CrossRef]
- Abdulbaqi, I.M.; Assi, R.A.; Yaghmur, A.; Darwis, Y.; Mohtar, N.; Parumasivam, T.; Saqallah, F.G.; Wahab, H.A. Pulmonary delivery of anticancer drugs via lipid-based nanocarriers for the treatment of lung cancer: An update. Pharmaceuticals 2021, 14, 725. [Google Scholar] [CrossRef]
- Elhissi, A.M.A. Liposomes for Pulmonary Drug Delivery: The Role of Formulation and Inhalation Device Design. Curr. Pharm. Des. 2017, 23, 362–372. [Google Scholar] [CrossRef]
- Skubitz, K.M.; Anderson, P.M. Inhalational interleukin-2 liposomes for pulmonary metastases: A phase I clinical trial. Anti-Cancer Drugs 2000, 11, 555–563. [Google Scholar] [CrossRef]
- Wittgen, B.P.H.; Kunst, P.W.A.; Van Der Born, K.; Van Wijk, A.W.; Perkins, W.; Pilkiewicz, F.G.; Perez-Soler, R.; Nicholson, S.; Peters, G.J.; Postmus, P.E. Phase I study of aerosolized SLIT cisplatin in the treatment of patients with carcinoma of the lung. Clin. Cancer Res. 2007, 13, 2414–2421. [Google Scholar] [CrossRef] [PubMed]
- Ara, N.; Hafeez, A. Nanocarrier-mediated drug delivery via inhalational route for lung cancer therapy: A systematic and updated review. AAPS Pharm. Sci. Tech. 2024, 25, 47. [Google Scholar] [CrossRef] [PubMed]
- Shirley, M. Amikacin liposome inhalation suspension: A review in Mycobacterium avium complex lung disease. Drugs 2019, 79, 555–562. [Google Scholar] [CrossRef]
- Chou, A.J.; Gupta, R.; Bell, M.D.; Riewe, K.O.D.; Meyers, P.A.; Gorlick, R. Inhaled lipid cisplatin (ILC) in the treatment of patients with relapsed/progressive osteosarcoma metastatic to the lung. Pediatr. Blood Cancer 2013, 60, 580–586. [Google Scholar] [CrossRef]
- Lemarie, E.; Vecellio, L.; Hureaux, J.; Prunier, C.; Valat, C.; Grimbert, D.; Boidron-Celle, M.; Giraudeau, B.; le Pape, A.; Pichon, E.; et al. Aerosolized Gemcitabine in Patients with Carcinoma of the Lung: Feasibility and Safety Study. J. Aerosol Med. Pulm. Drug Deliv. 2011, 24, 261–270. [Google Scholar] [CrossRef]
- Otterson, G.A.; Villalona-Calero, M.A.; Sharma, S.; Kris, M.G.; Imondi, A.; Gerber, M.; White, D.A.; Ratain, M.J.; Schiller, J.H.; Sandler, A.; et al. Phase I study of inhaled doxorubicin for patients with metastatic tumors to the lungs. Clin. Cancer Res. 2007, 13, 1246–1252. [Google Scholar] [CrossRef]
- Liu, P.; Chen, G.; Zhang, J. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives. Molecules 2022, 27, 1372. [Google Scholar] [CrossRef]
- Filipczak, N.; Pan, J.; Yalamarty, S.S.K.; Torchilin, V.P. Recent advancements in liposome technology. Adv. Drug Deliv. Rev. 2020, 156, 4–22. [Google Scholar] [CrossRef]
- Alavi, M.; Karimi, N.; Safaei, M. Application of various types of liposomes in drug delivery systems. Adv. Pharm. Bull. 2017, 7, 3–9. [Google Scholar] [CrossRef]
- Bujan, A.; del Valle Alonso, S.; Chiaramoni, N.S. Lipopolymers and lipids from lung surfactants in association with N-acetyl-l-cysteine: Characterization and cytotoxicity. Chem. Phys. Lipids 2020, 231, 104936. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Bravo, K.M.C.; Liu, J. Targeted liposomal drug delivery: A nanoscience and biophysical perspective. Nanoscale Horiz. 2021, 6, 78–94. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-J.; Yang, S.-C.; Liu, X.-L.; Gao, Y.; Dong, X.; Lai, X.; Zhu, M.-H.; Feng, H.-Y.; Zhu, X.-D.; Lu, Q. Nanobowl-supported liposomes improve drug loading and delivery. Nano Lett. 2020, 20, 4177–4187. [Google Scholar] [CrossRef]
- Allahou, L.W.; Madani, S.Y.; Seifalian, A. Investigating the application of liposomes as drug delivery systems for the diagnosis and treatment of cancer. Int. J. Biomater. 2021, 2021, 3041969. [Google Scholar] [CrossRef] [PubMed]
- Rosch, J.G.; Winter, H.; DuRoss, A.N.; Sahay, G.; Sun, C. Inverse-micelle synthesis of doxorubicin-loaded alginate/chitosan nanoparticles and in vitro assessment of breast cancer cytotoxicity. Colloid Interface Sci. Commun. 2019, 28, 69–74. [Google Scholar] [CrossRef]
- Liu, C.; Shi, J.; Dai, Q.; Yin, X.; Zhang, X.; Zheng, A. In-vitro and in-vivo evaluation of ciprofloxacin liposomes for pulmonary administration. Drug Dev. Ind. Pharm. 2015, 41, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Vanza, J.D.; Shah, D.M.; Patel, R.B.; Patel, M.R. Afatinib liposomal dry powder inhaler: Targeted pulmonary delivery of EGFR inhibitor for the management of lung cancer. J. Drug Deliv. Sci. Technol. 2022, 74, 103506. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, Y.; Ge, Y.; Hu, Y.; Li, M.; Jin, Y. Inhalation treatment of primary lung cancer using liposomal curcumin dry powder inhalers. Acta Pharm. Sin. B 2018, 8, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yuan, Y.; Qin, L.; Yue, M.; Xue, J.; Cui, Z.; Zhan, X.; Gai, J.; Zhang, X.; Guan, J. Tunable rigidity of PLGA shell-lipid core nanoparticles for enhanced pulmonary siRNA delivery in 2D and 3D lung cancer cell models. J. Control. Release 2024, 366, 746–760. [Google Scholar] [CrossRef]
- Nimmano, N.; Somavarapu, S.; Taylor, K.M. Aerosol characterisation of nebulised liposomes co-loaded with erlotinib and genistein using an abbreviated cascade impactor method. Int. J. Pharm. 2018, 542, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wang, R.; Li, M.; Bao, J.; Chen, Y.; Ge, Y.; Jin, Y. Comparative study of intratracheal and oral gefitinib for the treatment of primary lung cancer. Eur. J. Pharm. Sci. 2020, 149, 105352. [Google Scholar] [CrossRef]
- Kabil, M.F.; Nasr, M.; Ibrahim, I.T.; Hassan, Y.A.; El-Sherbiny, I.M. New repurposed rolapitant in nanovesicular systems for lung cancer treatment: Development, in-vitro assessment and in-vivo biodistribution study. Eur. J. Pharm. Sci. 2022, 171, 106119. [Google Scholar] [CrossRef]
- Xu, J.; Lu, X.; Zhu, X.; Yang, Y.; Liu, Q.; Zhao, D.; Lu, Y.; Wen, J.; Chen, X.; Li, N. Formulation and characterization of spray-dried powders containing vincristine-liposomes for pulmonary delivery and its pharmacokinetic evaluation from in vitro and in vivo. J. Pharm. Sci. 2019, 108, 3348–3358. [Google Scholar] [CrossRef]
- Weber, S.; Zimmer, A.; Pardeike, J. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: A review of the state of the art. Eur. J. Pharm. Biopharm. 2014, 86, 7–22. [Google Scholar] [CrossRef]
- Rosiere, R.; Van Woensel, M.; Gelbcke, M.; Mathieu, V.; Hecq, J.; Mathivet, T.; Vermeersch, M.; Van Antwerpen, P.; Amighi, K.; Wauthoz, N. New folate-grafted chitosan derivative to improve delivery of paclitaxel-loaded solid lipid nanoparticles for lung tumor therapy by inhalation. Mol. Pharm. 2018, 15, 899–910. [Google Scholar] [CrossRef]
- Shirodkar, R.K.; Kumar, L.; Mutalik, S.; Lewis, S. Solid lipid nanoparticles and nanostructured lipid carriers: Emerging lipid based drug delivery systems. Pharm. Chem. J. 2019, 53, 440–453. [Google Scholar] [CrossRef]
- Sanchez-Vazquez, B.; Lee, J.B.; Strimaite, M.; Buanz, A.; Bailey, R.; Gershkovich, P.; Pasparakis, G.; Williams, G.R. Solid lipid nanoparticles self-assembled from spray dried microparticles. Int. J. Pharm. 2019, 572, 118784. [Google Scholar] [CrossRef]
- Duan, Y.; Dhar, A.; Patel, C.; Khimani, M.; Neogi, S.; Sharma, P.; Kumar, N.S.; Vekariya, R.L. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems. RSC Adv. 2020, 10, 26777–26791. [Google Scholar] [CrossRef]
- Patel, P.; Raval, M.; Airao, V.; Bhatt, V.; Shah, P. Silibinin loaded inhalable solid lipid nanoparticles for lung targeting. J. Microencapsul. 2022, 39, 1–24. [Google Scholar] [CrossRef]
- Wang, J.L.; Hanafy, M.S.; Xu, H.; Leal, J.; Zhai, Y.; Ghosh, D.; Williams Iii, R.O.; David Charles Smyth, H.; Cui, Z. Aerosolizable siRNA-encapsulated solid lipid nanoparticles prepared by thin-film freeze-drying for potential pulmonary delivery. Int. J. Pharm. 2021, 596, 120215. [Google Scholar] [CrossRef]
- Tulbah, A.S. In vitro bio-characterization of solid lipid nanoparticles of favipiravir in A549 human lung epithelial cancer cells. J. Taibah. Univ. Med. Sci. 2023, 18, 1076–1086. [Google Scholar] [CrossRef] [PubMed]
- Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Structure, Preparation and Application. Adv. Pharm. Bull. 2015, 5, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Bothiraja, C.; Mali, A.; Kamble, R. Investigation of sorafenib tosylate loaded liposomal dry powder inhaler for the treatment of non-small cell lung cancer. Part. Sci. Technol. 2021, 39, 990–999. [Google Scholar] [CrossRef]
- Alexis, F.; Pridgen, E.; Molnar, L.K.; Farokhzad, O.C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 2008, 5, 505–515. [Google Scholar] [CrossRef]
- Lima, A.F.; Amado, I.R.; Pires, L.R. Poly (d, l-lactide-co-glycolide)(PLGA) nanoparticles Loaded with proteolipid protein (PLP)—Exploring a new administration route. Polymers 2020, 12, 3063. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Liu, L.; Wang, J.; Zhang, H.; Zhang, Z.; Xing, G.; Wang, X.; Liu, M. Drug-loaded PEG-PLGA nanoparticles for cancer treatment. Front. Pharmacol. 2022, 13, 990505. [Google Scholar] [CrossRef] [PubMed]
- Elbatanony, R.S.; Parvathaneni, V.; Kulkarni, N.S.; Shukla, S.K.; Chauhan, G.; Kunda, N.K.; Gupta, V. Afatinib-loaded inhalable PLGA nanoparticles for localized therapy of non-small cell lung cancer (NSCLC)—Development and in-vitro efficacy. Drug Deliv. Transl. Res. 2021, 11, 927–943. [Google Scholar] [CrossRef]
- Madni, A.; Batool, A.; Noreen, S.; Maqbool, I.; Rehman, F.; Kashif, P.M.; Tahir, N.; Raza, A. Novel nanoparticulate systems for lung cancer therapy: An updated review. J. Drug Target. 2017, 25, 499–512. [Google Scholar] [CrossRef]
- Vanza, J.D.; Lalani, J.R.; Patel, R.B.; Patel, M.R. DOE supported optimization of biodegradable polymeric nanoparticles based dry powder inhaler for targeted delivery of afatinib in non-small cell lung cancer. J. Drug Deliv. Sci. Technol. 2023, 84, 104554. [Google Scholar] [CrossRef]
- Bardoliwala, D.; Patel, V.; Misra, A.; Sawant, K. Systematic development and characterization of inhalable dry powder containing Polymeric Lipid Hybrid Nanocarriers co-loaded with ABCB1 shRNA and docetaxel using QbD approach. J. Drug Deliv. Sci. Technol. 2021, 66, 102903. [Google Scholar] [CrossRef]
- Shamarekh, K.S.; Gad, H.A.; Soliman, M.E.; Sammour, O.A. Development and evaluation of protamine-coated PLGA nanoparticles for nose-to-brain delivery of tacrine: In-vitro and in-vivo assessment. J. Drug Deliv. Sci. Technol. 2020, 57, 101724. [Google Scholar] [CrossRef]
- Patel, P.; Raval, M.; Manvar, A.; Airao, V.; Bhatt, V.; Shah, P. Lung cancer targeting efficiency of Silibinin loaded Poly Caprolactone/Pluronic F68 Inhalable nanoparticles: In vitro and In vivo study. PLoS ONE 2022, 17, e0267257. [Google Scholar] [CrossRef]
- Vishwa, B.; Moin, A.; Gowda, D.; Rizvi, S.M.; Hegazy, W.A.; Abu Lila, A.S.; Khafagy, E.-S.; Allam, A.N. Pulmonary targeting of inhalable moxifloxacin microspheres for effective management of tuberculosis. Pharmaceutics 2021, 13, 79. [Google Scholar] [CrossRef]
- Thapa, B.; Remant, K.; Uludağ, H. TRAIL therapy and prospective developments for cancer treatment. J. Control. Release 2020, 326, 335–349. [Google Scholar] [CrossRef] [PubMed]
- Kretz, A.-L.; Trauzold, A.; Hillenbrand, A.; Knippschild, U.; Henne-Bruns, D.; von Karstedt, S.; Lemke, J. TRAILblazing Strategies for Cancer Treatment. Cancers 2019, 11, 456. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Shah, M.R. Amphiphilic block copolymers–based micelles for drug delivery. In Design and Development of New Nanocarriers; Elsevier: New York, NY, USA, 2018; pp. 365–400. [Google Scholar]
- Breitenbach, B.B.; Schmid, I.; Wich, P.R. Amphiphilic polysaccharide block copolymers for pH-responsive micellar nanoparticles. Biomacromolecules 2017, 18, 2839–2848. [Google Scholar] [CrossRef]
- Ghezzi, M.; Pescina, S.; Padula, C.; Santi, P.; Del Favero, E.; Cantù, L.; Nicoli, S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J. Control. Release 2021, 332, 312–336. [Google Scholar] [CrossRef]
- Hussein, Y.H.; Youssry, M. Polymeric micelles of biodegradable diblock copolymers: Enhanced encapsulation of hydrophobic drugs. Materials 2018, 11, 688. [Google Scholar] [CrossRef]
- Hwang, D.; Ramsey, J.D.; Kabanov, A.V. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval. Adv. Drug Deliv. Rev. 2020, 156, 80–118. [Google Scholar] [CrossRef]
- Farhangi, M.; Mahboubi, A.; Kobarfard, F.; Vatanara, A.; Mortazavi, S.A. Optimization of a dry powder inhaler of ciprofloxacin-loaded polymeric nanomicelles by spray drying process. Pharm. Dev. Technol. 2019, 24, 584–592. [Google Scholar] [CrossRef]
- Liatsi-Douvitsa, E. Polyester-Based Micelles and Vesicles for Pulmonary Administration. Ph.D. Thesis, UCL (University College London), London, UK, 2019. [Google Scholar]
- Gu, Y.; Li, J.; Li, Y.; Song, L.; Li, D.; Peng, L.; Wan, Y.; Hua, S. Nanomicelles loaded with doxorubicin and curcumin for alleviating multidrug resistance in lung cancer. Int. J. Nanomed. 2016, 11, 5757–5770. [Google Scholar] [CrossRef] [PubMed]
- Vasyukov, G.Y.; Sukhodolo, I.; Mil’to, I.; Mitrofanova, I. Structure of rat lungs after administration of magnetomicelles based on the carbon-coated iron nanoparticles. Bull. Exp. Biol. Med. 2017, 163, 99–104. [Google Scholar] [CrossRef]
- Koenneke, A.; Pourasghar, M.; Schneider, M. Nano-structured microparticles for inhalation. In Delivery of Drugs; Elsevier: New York, NY, USA, 2020; pp. 119–160. [Google Scholar]
- Tatsumura, T.; Koyama, S.; Tsujimoto, M.; Kitagawa, M.; Kagamimori, S. Further study of nebulisation chemotherapy, a new chemotherapeutic method in the treatment of lung carcinomas: Fundamental and clinical. Br. J. Cancer 1993, 68, 1146–1149. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.S.; Xu, Q.; Boylan, N.J.; Chisholm, J.; Tang, B.C.; Schuster, B.S.; Henning, A.; Ensign, L.M.; Lee, E.; Adstamongkonkul, P. Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation. Sci. Adv. 2017, 3, e1601556. [Google Scholar] [CrossRef]
- Nishimura, S.; Takami, T.; Murakami, Y. Porous PLGA microparticles formed by “one-step” emulsification for pulmonary drug delivery: The surface morphology and the aerodynamic properties. Colloids Surf. B Biointerfaces 2017, 159, 318–326. [Google Scholar] [CrossRef]
- Mahar, R.; Chakraborty, A.; Nainwal, N.; Bahuguna, R.; Sajwan, M.; Jakhmola, V. Application of PLGA as a biodegradable and biocompatible polymer for pulmonary delivery of drugs. AAPS Pharm. Sci. Tech. 2023, 24, 39. [Google Scholar] [CrossRef]
- Chishti, N.; Dehghan, M.H. Nano-embedded microparticles based dry powder inhaler for lung cancer treatment. J. Res. Pharm. 2020, 24, 425–435. [Google Scholar] [CrossRef]
- Salvi, L.; Dubey, C.K.; Sharma, K.; Nagar, D.; Meghani, M.; Goyal, S.; Nagar, J.C.; Sharma, A. A synthesis, properties and application as a possible drug delivery systems dendrimers–A review. Asian J. Pharm. Res. Dev. 2020, 8, 107–113. [Google Scholar] [CrossRef]
- Dias, A.P.; da Silva Santos, S.; da Silva, J.V.; Parise-Filho, R.; Ferreira, E.I.; El Seoud, O.; Giarolla, J. Dendrimers in the context of nanomedicine. Int. J. Pharm. 2020, 573, 118814. [Google Scholar] [CrossRef]
- Kesharwani, P.; Jain, K.; Jain, N.K. Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci. 2014, 39, 268–307. [Google Scholar] [CrossRef]
- Bielski, E.; Zhong, Q.; Mirza, H.; Brown, M.; Molla, A.; Carvajal, T.; da Rocha, S.R.P. TPP-dendrimer nanocarriers for siRNA delivery to the pulmonary epithelium and their dry powder and metered-dose inhaler formulations. Int. J. Pharm. 2017, 527, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Lin, X.; Valle, R.P.; Zuo, Y.Y.; Gu, N. Poly(amidoamine) Dendrimer as a Respiratory Nanocarrier: Insights from Experiments and Molecular Dynamics Simulations. Langmuir 2019, 35, 5364–5371. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, A.S. Dendrimers for Drug Delivery. Molecules 2018, 23, 938. [Google Scholar] [CrossRef]
- Altube, M.J.; Perez, N.; Romero, E.L.; Morilla, M.J.; Higa, L.H.; Perez, A.P. Inhaled lipid nanocarriers for pulmonary delivery of glucocorticoids: Previous strategies, recent advances and key factors description. Int. J. Pharm. 2023, 642, 123146. [Google Scholar] [CrossRef]
- Priya, S.; Desai, V.M.; Singhvi, G. Surface modification of lipid-based nanocarriers: A potential approach to enhance targeted drug delivery. ACS Omega 2022, 8, 74–86. [Google Scholar] [CrossRef]
- Costabile, G.; Conte, G.; Brusco, S.; Savadi, P.; Miro, A.; Quaglia, F.; d’Angelo, I.; Ungaro, F. State-of-the-art review on inhalable lipid and polymer nanocarriers: Design and development perspectives. Pharmaceutics 2024, 16, 347. [Google Scholar] [CrossRef]
- Garbuzenko, O.B.; Mainelis, G.; Taratula, O.; Minko, T. Inhalation treatment of lung cancer: The influence of composition, size and shape of nanocarriers on their lung accumulation and retention. Cancer Biol. Med. 2014, 11, 44–55. [Google Scholar]
- Ezhilarasan, D.; Lakshmi, T.; Mallineni, S.K. Nano-based targeted drug delivery for lung cancer: Therapeutic avenues and challenges. Nanomedicine 2022, 17, 1855–1869. [Google Scholar] [CrossRef] [PubMed]
- Sturm, R. Modeling tracheobronchial clearance of nanoparticles with variable size and geometry. J. Public Health Emerg. 2021, 5, 12. [Google Scholar] [CrossRef]
- Khadanga, V.; Mishra, P.C. A review on toxicity mechanism and risk factors of nanoparticles in respiratory tract. Toxicology 2024, 504, 153781. [Google Scholar] [CrossRef]
- Mapanao, A.K.; Giannone, G.; Summa, M.; Ermini, M.L.; Zamborlin, A.; Santi, M.; Cassano, D.; Bertorelli, R.; Voliani, V. Biokinetics and clearance of inhaled gold ultrasmall-in-nano architectures. Nanoscale Adv. 2020, 2, 3815–3820. [Google Scholar] [CrossRef] [PubMed]
- Benam, K.H.; Vladar, E.K.; Janssen, W.J.; Evans, C.M. Mucociliary Defense: Emerging Cellular, Molecular, and Animal Models. Ann. Am. Thorac. Soc. 2018, 15, S210–S215. [Google Scholar] [CrossRef]
- Gizurarson, S. The effect of cilia and the mucociliary clearance on successful drug delivery. Biol. Pharm. Bull. 2015, 38, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.L.; Ng, C.T.; Zou, L.; Lu, Y.; Chen, J.; Bay, B.H.; Shen, H.-M.; Ong, C.N. Targeted metabolomics reveals differential biological effects of nanoplastics and nanoZnO in human lung cells. Nanotoxicology 2019, 13, 1117–1132. [Google Scholar] [CrossRef]
- Chen, D.; Liu, J.; Wu, J.; Suk, J.S. Enhancing nanoparticle penetration through airway mucus to improve drug delivery efficacy in the lung. Expert Opin. Drug Deliv. 2021, 18, 595–606. [Google Scholar] [CrossRef]
- Kreyling, W.G.; Holzwarth, U.; Haberl, N.; Kozempel, J.; Wenk, A.; Hirn, S.; Schleh, C.; Schäffler, M.; Lipka, J.; Semmler-Behnke, M. Quantitative biokinetics of titanium dioxide nanoparticles after intratracheal instillation in rats: Part 3. Nanotoxicology 2017, 11, 454–464. [Google Scholar] [CrossRef]
- Murgia, X.; Loretz, B.; Hartwig, O.; Hittinger, M.; Lehr, C.-M. The role of mucus on drug transport and its potential to affect therapeutic outcomes. Adv. Drug Deliv. Rev. 2018, 124, 82–97. [Google Scholar] [CrossRef]
- Huckaby, J.T.; Lai, S.K. PEGylation for enhancing nanoparticle diffusion in mucus. Adv. Drug Deliv. Rev. 2018, 124, 125–139. [Google Scholar] [CrossRef]
- Khutoryanskiy, V.V. Beyond PEGylation: Alternative surface-modification of nanoparticles with mucus-inert biomaterials. Adv. Drug Deliv. Rev. 2018, 124, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Shan, W.; Zhu, X.; Tao, W.; Cui, Y.; Liu, M.; Wu, L.; Li, L.; Zheng, Y.; Huang, Y. Enhanced oral delivery of protein drugs using zwitterion-functionalized nanoparticles to overcome both the diffusion and absorption barriers. ACS Appl. Mater. Interfaces 2016, 8, 25444–25453. [Google Scholar] [CrossRef]
- Liu, C.; Jiang, X.-f.; Gan, Y.; Yu, M. Engineering nanoparticles to overcome the mucus barrier for drug delivery: Design, evaluation and state-of-the-art. Med. Drug Discov. 2021, 12, 100110. [Google Scholar] [CrossRef]
- Araujo, F.; Martins, C.; Azevedo, C.; Sarmento, B. Chemical modification of drug molecules as strategy to reduce interactions with mucus. Adv. Drug Deliv. Rev. 2018, 124, 98–106. [Google Scholar] [CrossRef]
- Maisel, K.; Reddy, M.; Xu, Q.; Chattopadhyay, S.; Cone, R.; Ensign, L.M.; Hanes, J. Nanoparticles coated with high molecular weight PEG penetrate mucus and provide uniform vaginal and colorectal distribution in vivo. Nanomedicine 2016, 11, 1337–1343. [Google Scholar] [CrossRef]
- Guo, Y.; Ma, Y.; Chen, X.; Li, M.; Ma, X.; Cheng, G.; Xue, C.; Zuo, Y.Y.; Sun, B. Mucus penetration of surface-engineered nanoparticles in various pH microenvironments. ACS Nano 2023, 17, 2813–2828. [Google Scholar] [CrossRef] [PubMed]
- Pasut, G.; Paolino, D.; Celia, C.; Mero, A.; Joseph, A.S.; Wolfram, J.; Cosco, D.; Schiavon, O.; Shen, H.; Fresta, M. Polyethylene glycol (PEG)-dendron phospholipids as innovative constructs for the preparation of super stealth liposomes for anticancer therapy. J. Control. Release 2015, 199, 106–113. [Google Scholar] [CrossRef]
- Haque, S.; McLeod, V.M.; Jones, S.; Fung, S.; Whittaker, M.; McIntosh, M.; Pouton, C.; Owen, D.J.; Porter, C.J.; Kaminskas, L.M. Effect of increased surface hydrophobicity via drug conjugation on the clearance of inhaled PEGylated polylysine dendrimers. Eur. J. Pharm. Biopharm. 2017, 119, 408–418. [Google Scholar] [CrossRef]
- Sharma, P.; Vijaykumar, A.; Raghavan, J.V.; Rananaware, S.R.; Alakesh, A.; Bodele, J.; Rehman, J.U.; Shukla, S.; Wagde, V.; Nadig, S. Particle uptake driven phagocytosis in macrophages and neutrophils enhances bacterial clearance. J. Control. Release 2022, 343, 131–141. [Google Scholar] [CrossRef]
- Ni, R.; Zhao, J.; Liu, Q.; Liang, Z.; Muenster, U.; Mao, S. Nanocrystals embedded in chitosan-based respirable swellable microparticles as dry powder for sustained pulmonary drug delivery. Eur. J. Pharm. Sci. 2017, 99, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Vanbever, R.; Loira-Pastoriza, C.; Dauguet, N.; Hérin, C.; Ibouraadaten, S.; Vanvarenberg, K.; Ucakar, B.; Tyteca, D.; Huaux, F. Cationic nanoliposomes are efficiently taken up by alveolar macrophages but have little access to dendritic cells and interstitial macrophages in the normal and CpG-stimulated lungs. Mol. Pharm. 2019, 16, 2048–2059. [Google Scholar] [CrossRef] [PubMed]
- Ruge, C.A.; Bohr, A.; Beck-Broichsitter, M.; Nicolas, V.; Tsapis, N.; Fattal, E. Disintegration of nano-embedded microparticles after deposition on mucus: A mechanistic study. Colloids Surf. B Biointerfaces 2016, 139, 219–227. [Google Scholar] [CrossRef]
- Liu, Q.; Guan, J.; Sun, Z.; Shen, X.; Li, L.; Jin, L.; Mao, S. Influence of stabilizer type and concentration on the lung deposition and retention of resveratrol nanosuspension-in-microparticles. Int. J. Pharm. 2019, 569, 118562. [Google Scholar] [CrossRef] [PubMed]
- Seydoux, E.; Rodriguez-Lorenzo, L.; Blom, R.A.; Stumbles, P.A.; Petri-Fink, A.; Rothen-Rutishauser, B.M.; Blank, F.; Von Garnier, C. Pulmonary delivery of cationic gold nanoparticles boost antigen-specific CD4+ T cell proliferation. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 1815–1826. [Google Scholar] [CrossRef]
- Japiassu, K.B.; Fay, F.; Marengo, A.; Louaguenouni, Y.; Cailleau, C.; Denis, S.; Chapron, D.; Tsapis, N.; Nascimento, T.L.; Lima, E.M.; et al. Interplay between mucus mobility and alveolar macrophage targeting of surface-modified liposomes. J. Control. Release 2022, 352, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Haque, S.; Whittaker, M.R.; McIntosh, M.P.; Pouton, C.W.; Kaminskas, L.M. Disposition and safety of inhaled biodegradable nanomedicines: Opportunities and challenges. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 1703–1724. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Williams, G.; Walles, M.; Manevski, N.; Krähenbühl, S.; Camenisch, G. Comparison of rat and human pulmonary metabolism using precision-cut lung slices (PCLS). Drug Metab. Lett. 2019, 13, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Oesch, F.; Fabian, E.; Landsiedel, R. Xenobiotica-metabolizing enzymes in the lung of experimental animals, man and in human lung models. Arch. Toxicol. 2019, 93, 3419–3489. [Google Scholar] [CrossRef]
- Rubin, K.; Ewing, P.; Bäckström, E.; Abrahamsson, A.; Bonn, B.; Kamata, S.; Grime, K. Pulmonary metabolism of substrates for key drug-metabolizing enzymes by human alveolar type II cells, human and rat lung microsomes, and the isolated perfused rat lung model. Pharmaceutics 2020, 12, 117. [Google Scholar] [CrossRef]
- Cullen, L.; McClean, S. Bacterial adaptation during chronic respiratory infections. Pathogens 2015, 4, 66–89. [Google Scholar] [CrossRef] [PubMed]
- Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51. [Google Scholar] [CrossRef]
- Sarode, A.; Patel, P.; Vargas-Montoya, N.; Allawzi, A.; Zhilin-Roth, A.; Karmakar, S.; Boeglin, L.; Deng, H.; Karve, S.; DeRosa, F. Inhalable dry powder product (DPP) of mRNA lipid nanoparticles (LNPs) for pulmonary delivery. Drug Deliv. Transl. Res. 2024, 14, 360–372. [Google Scholar] [CrossRef]
- Csóka, I.; Ismail, R.; Jójárt-Laczkovich, O.; Pallagi, E. Regulatory considerations, challenges and risk-based approach in nanomedicine development. Curr. Med. Chem. 2021, 28, 7461–7476. [Google Scholar] [CrossRef]
- Operti, M.C.; Bernhardt, A.; Grimm, S.; Engel, A.; Figdor, C.G.; Tagit, O. PLGA-based nanomedicines manufacturing: Technologies overview and challenges in industrial scale-up. Int. J. Pharm. 2021, 605, 120807. [Google Scholar] [CrossRef]
- Anastasiadis, S.H.; Chrissopoulou, K.; Stratakis, E.; Kavatzikidou, P.; Kaklamani, G.; Ranella, A. How the physicochemical properties of manufactured nanomaterials affect their performance in dispersion and their applications in biomedicine: A review. Nanomaterials 2022, 12, 552. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Wang, J.; Wang, Y.; Zhang, F.; Dong, X.; Jiang, L.; Tang, Y.; Zhang, H.; Li, W. Promoting inter-/intra-cellular process of nanomedicine through its physicochemical properties optimization. Curr. Drug Metab. 2018, 19, 75–82. [Google Scholar] [CrossRef]
- Feng, J.; Markwalter, C.E.; Tian, C.; Armstrong, M.; Prud’homme, R.K. Translational formulation of nanoparticle therapeutics from laboratory discovery to clinical scale. J. Transl. Med. 2019, 17, 200. [Google Scholar] [CrossRef]
- Liu, X.; Meng, H. Consideration for the scale-up manufacture of nanotherapeutics—A critical step for technology transfer. View 2021, 2, 20200190. [Google Scholar] [CrossRef]
- Saleh, N.; Yousaf, Z. Tools and techniques for the optimized synthesis, reproducibility and scale up of desired nanoparticles from plant derived material and their role in pharmaceutical properties. In Nanoscale Fabrication, Optimization, Scale-Up and Biological Aspects of Pharmaceutical Nanotechnology; Elsevier: New York, NY, USA, 2018; pp. 85–131. [Google Scholar]
- Taifouris, M.; Martín, M.; Martínez, A.; Esquejo, N. Challenges in the design of formulated products: Multiscale process and product design. Curr. Opin. Chem. Eng. 2020, 27, 1–9. [Google Scholar] [CrossRef]
- Đorđević, S.; Gonzalez, M.M.; Conejos-Sánchez, I.; Carreira, B.; Pozzi, S.; Acúrcio, R.C.; Satchi-Fainaro, R.; Florindo, H.F.; Vicent, M.J. Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv. Transl. Res. 2022, 12, 500–525. [Google Scholar] [CrossRef] [PubMed]
- Jain, K.; Shukla, R.; Yadav, A.; Ujjwal, R.R.; Flora, S.J.S. 3D printing in development of nanomedicines. Nanomaterials 2021, 11, 420. [Google Scholar] [CrossRef]
- Grasso, G.; Zane, D.; Dragone, R. Microbial nanotechnology: Challenges and prospects for green biocatalytic synthesis of nanoscale materials for sensoristic and biomedical applications. Nanomaterials 2019, 10, 11. [Google Scholar] [CrossRef] [PubMed]
- Grossman, J.H.; Crist, R.M.; Clogston, J.D. Early development challenges for drug products containing nanomaterials. AAPS J. 2017, 19, 92–102. [Google Scholar] [CrossRef]
- Ragelle, H.; Danhier, F.; Préat, V.; Langer, R.; Anderson, D.G. Nanoparticle-based drug delivery systems: A commercial and regulatory outlook as the field matures. Expert Opin. Drug Deliv. 2017, 14, 851–864. [Google Scholar] [CrossRef]
- Landesman-Milo, D.; Peer, D. Transforming nanomedicines from lab scale production to novel clinical modality. Bioconjugate Chem. 2016, 27, 855–862. [Google Scholar] [CrossRef]
- Fornaguera, C.; Solans, C. Methods for the in vitro characterization of nanomedicines—Biological component interaction. J. Pers. Med. 2017, 7, 2. [Google Scholar] [CrossRef]
- Bahru, T.B.; Ajebe, E.G. A review on nanotechnology: Analytical techniques use and applications. Int. Res. J. Pure Appl. Chem. 2019, 19, 1–10. [Google Scholar] [CrossRef]
- Mahmood, S.; Mandal, U.K.; Chatterjee, B.; Taher, M. Advanced characterizations of nanoparticles for drug delivery: Investigating their properties through the techniques used in their evaluations. Nanotechnol. Rev. 2017, 6, 355–372. [Google Scholar] [CrossRef]
- Jindal, A.B. The effect of particle shape on cellular interaction and drug delivery applications of micro-and nanoparticles. Int. J. Pharm. 2017, 532, 450–465. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, H.; Fontana, F.; Hirvonen, J.T.; Santos, H.A. Current developments and applications of microfluidic technology toward clinical translation of nanomedicines. Adv. Drug Deliv. Rev. 2018, 128, 54–83. [Google Scholar] [CrossRef]
- Siegrist, S.; Cörek, E.; Detampel, P.; Sandström, J.; Wick, P.; Huwyler, J. Preclinical hazard evaluation strategy for nanomedicines. Nanotoxicology 2019, 13, 73–99. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Li, X.; Lu, X.; Zhang, Z.; Zhang, Y.; Wu, W.; Wang, C. Inhaled multilevel size-tunable, charge-reversible and mucus-traversing composite microspheres as trojan horse: Enhancing lung deposition and tumor penetration. Chin. Chem. Lett. 2024, 35, 109384. [Google Scholar] [CrossRef]
- Fernández-García, R.; Fraguas-Sánchez, A.I. Nanomedicines for Pulmonary Drug Delivery: Overcoming Barriers in the Treatment of Respiratory Infections and Lung Cancer. Pharmaceutics 2024, 16, 1584. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Huang, Z.; Huang, Y.; Zhang, X.; Huang, J.; Cui, Y.; Yue, X.; Ma, C.; Fu, F.; Wang, W. Pulmonary delivery nanomedicines towards circumventing physiological barriers: Strategies and characterization approaches. Adv. Drug Deliv. Rev. 2022, 185, 114309. [Google Scholar] [CrossRef] [PubMed]
Device Type | Advantages | Limitations |
---|---|---|
Dry Powder Inhalers (DPIs) | Propellant-free and environmentally friendly Portable with reusable or disposable options No coordination is needed between inhalation and actuation. High inhalation efficiency | Performance is highly dependent on the patient’s inhalation force and breathing pattern Not suitable for the unconscious, severely ill patients with poor inspiratory flow High formulation and device cost Challenges in maintaining nanostructure during drying and redispersion |
Pressurized Metered-Dose Inhalers (pMDIs) | Compact, portable, and easy to use Inexpensive and widely available Capable of rapid drug release | Requires good coordination between inhalation and actuation Low lung deposition efficiency (~10–20%) Contains propellants that may disrupt nanostructures Limited dose capacity per actuation Solvent and shear stress may affect nanoparticle stability |
Nebulizers (Jet, Ultrasonic, Vibrating Mesh) | Do not require patient coordination suitable for pediatric, geriatric, and unconscious patients Capable of delivering large doses over extended periods Compatible with a wide range of nano-formulations (solutions and suspensions) Preserve the [11] structural integrity of sensitive nanocarriers | Jet: bulky, noisy, low aerosol output, significant drug residue, poor portability Ultrasonic: not suitable for proteins, suspensions, or heat-sensitive drugs Mesh: expensive and requires maintenance/cleaning -Generally slower administration time than inhalers |
Nanoformulations | Type of Cancer | Inhalation Delivery Modality | Ref. |
---|---|---|---|
Liposomal 9-Nitrocamptothecin | PC/MC | AeroMist nebulizer | [69] |
Liposomal cisplatin | NSCLC/SCLC | Jet nebulizer | [73] |
Liposomal cisplatin | MC (osteosarcoma) | Nebulizer | [76] |
Gemcitabine | NSCLC | Mesh nebulizer | [77] |
Liposomal Doxorubicin | NSCLC/MC | Nebulizer | [78] |
* Amikacin Liposome Inhalation Suspension (Arikayce®) | Mycobacterium avium Complex (MAC) lung disease (not cancer, but lung application | Nebulizer (Lamira® Nebulizer System) | [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safdar, I.; Mahmood, S.; Abdulwahab, M.K.; Mohd Noor, S.; Ge, Y.; Mohamed Sofian, Z. Inhalable Nanomaterial Discoveries for Lung Cancer Therapy: A Review. Pharmaceutics 2025, 17, 996. https://doi.org/10.3390/pharmaceutics17080996
Safdar I, Mahmood S, Abdulwahab MK, Mohd Noor S, Ge Y, Mohamed Sofian Z. Inhalable Nanomaterial Discoveries for Lung Cancer Therapy: A Review. Pharmaceutics. 2025; 17(8):996. https://doi.org/10.3390/pharmaceutics17080996
Chicago/Turabian StyleSafdar, Iqra, Syed Mahmood, Muhammad Kumayl Abdulwahab, Suzita Mohd Noor, Yi Ge, and Zarif Mohamed Sofian. 2025. "Inhalable Nanomaterial Discoveries for Lung Cancer Therapy: A Review" Pharmaceutics 17, no. 8: 996. https://doi.org/10.3390/pharmaceutics17080996
APA StyleSafdar, I., Mahmood, S., Abdulwahab, M. K., Mohd Noor, S., Ge, Y., & Mohamed Sofian, Z. (2025). Inhalable Nanomaterial Discoveries for Lung Cancer Therapy: A Review. Pharmaceutics, 17(8), 996. https://doi.org/10.3390/pharmaceutics17080996