Nanostructured Lipid Carriers for Sustained Release and Enhanced Delivery of Vanda coerulea Protocorm Extract
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemical Materials
2.2. V. coerulea Protocorm Methanolic Extract
2.3. Phytochemical Analysis of V. coerulea Extract Using High-Performance Liquid Chromatography (HPLC) with Photodiode Array (PDA) Detection
2.4. Fourier Transform Infrared (FT-IR) Spectroscopic Analysis of V. coerulea Extract
2.5. Development of Blank NLCs
2.6. Characterization of Blank NLCs
2.7. Stability Test of Blank NLCs
2.8. Development of NLC Containing V. coerulea Extract
2.9. Determination of Entrapment Efficiency and Loading Capacity of V. coerulea Extract in NLCs
2.10. Investigation of Release Behavior of V. coerulea Extract from NLCs
2.11. Investigation of the Skin Retention of V. coerulea Extract from NLCs
2.12. Irritation Evaluation Using Hen’s Egg Test Chorioallantoic Membrane (HET-CAM) Assay
2.13. Statistical Analysis
3. Results and Discussion
3.1. V. coerulea Extract and Its Phytochemical Constituents
3.2. Blank NLCs
3.3. NLC Containing V. coerulea Extract
3.4. Entrapment Efficiency and Loading Capacity of NLC Containing V. coerulea Extract
3.5. Release Behavior of V. coerulea Extract from NLCs
3.6. Skin Retention of V. coerulea Extract from NLCs
3.7. Irritation Properties of NLC Containing V. coerulea Extract
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis Of Variance |
BSA | Bovine Serum Albumin |
CAM | Chorioallantoic Membrane |
GMS | Glyceryl Monostearate |
HPLC | High-Performance Liquid Chromatography |
HET-CAM | Hen’s Egg Test on Ahorioallantoic Membrane |
IS | Irritation Score |
NaCl | Sodium Chloride |
NLC | Nanostructured Lipid Carrier |
NSS | Normal Saline Solution |
PBS | Phosphate-Buffered Saline |
PDI | Polydispersity Index |
KCl | Potassium Chloride |
SD | Standard Deviation |
SLNs | Solid Lipid Nanoparticles |
TDZ | Thidiazuron |
References
- Hadi, H.; Razali, S.N.S.; Awadh, A.I. A comprehensive review of the cosmeceutical benefits of Vanda species (Orchidaceae). Nat. Prod. Commun. 2015, 10, 1395–1400. [Google Scholar] [CrossRef]
- Khan, H.; Belwal, T.; Tariq, M.; Atanasov, A.G.; Devkota, H.P. Genus Vanda: A review on traditional uses, bioactive chemical constituents and pharmacological activities. J. Ethnopharmacol. 2019, 229, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Amnuaykan, P.; Juntrapirom, S.; Kanjanakawinkul, W.; Chaiyana, W. Enhanced antioxidant, anti-aging, anti-tyrosinase, and anti-inflammatory properties of Vanda coerulea Griff. ex Lindl. protocorm through elicitations with chitosan. Plants 2024, 13, 1770. [Google Scholar] [CrossRef] [PubMed]
- Kalasariya, H.S.; Maya-Ramírez, C.E.; Shah, U.A.; Yadav, V. Introduction to cosmeceuticals. In Thalassotherapy and Cosmeceuticals; CRC Press, Taylor & Francis Group: London, UK, 2021; Volume 2, pp. 167–176. [Google Scholar]
- Clares, B.; Calpena, A.C.; Parra, A.; Abrego, G.; Alvarado, H.; Fangueiro, J.F.; Souto, E.B. Nanoemulsions (NEs), liposomes (LPs) and solid lipid nanoparticles (SLNs) for retinyl palmitate: Effect on skin permeation. Int. J. Pharm. 2014, 473, 591–598. [Google Scholar] [CrossRef]
- Aljuffali, I.A.; Lin, C.H.; Yang, S.C.; Alalaiwe, A.; Fang, J.Y. Nanoencapsulation of tea catechins for enhancing skin absorption and therapeutic efficacy. AAPS PharmSciTech 2022, 23, 187. [Google Scholar] [CrossRef]
- Sguizzato, M.; Esposito, E.; Cortesi, R. Lipid-based nanosystems as a tool to overcome skin barrier. Int. J. Mol. Sci. 2021, 22, 8319. [Google Scholar] [CrossRef]
- Müller, R.H.; Mäder, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery—A review of the state of the art. Eur. J. Pharm. Biopharm. 2000, 50, 161–177. [Google Scholar] [CrossRef]
- Liu, M.; Wen, J.; Sharma, M. Solid lipid nanoparticles for topical drug delivery: Mechanisms, dosage form perspectives, and translational status. Curr. Pharm. Des. 2020, 26, 3203–3217. [Google Scholar] [CrossRef]
- Salvi, V.R.; Pawar, P. Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier. J. Drug Deliv. Sci. Technol. 2019, 51, 255–267. [Google Scholar] [CrossRef]
- Yoon, G.; Park, J.W.; Yoon, I.S. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs): Recent advances in drug delivery. J. Pharm. Investig. 2013, 43, 353–362. [Google Scholar] [CrossRef]
- da Silva Santos, V.; Ribeiro, A.P.B.; Santana, M.H.A. Solid lipid nanoparticles as carriers for lipophilic compounds for applications in foods. Food Res. Int. 2019, 122, 610–626. [Google Scholar] [CrossRef]
- Eygeris, Y.; Gupta, M.; Kim, J.; Sahay, G. Chemistry of lipid nanoparticles for RNA delivery. Acc. Chem. Res. 2021, 55, 2–12. [Google Scholar] [CrossRef]
- Mirchandani, Y.; Patravale, V.B.; Brijesh, S. Solid lipid nanoparticles for hydrophilic drugs. J. Control. Release 2021, 335, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Punu, G.F.; Harahap, Y.; Anjani, Q.K.; Hartrianti, P.; Donnelly, R.F.; Ramadon, D. Solid lipid nanoparticles (SLN): Formulation and fabrication. Pharm. Sci. Res. 2023, 10, 55–66. [Google Scholar] [CrossRef]
- Assali, M.; Zaid, A.N. Features, applications, and sustainability of lipid nanoparticles in cosmeceuticals. Saudi Pharm. J. 2022, 30, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Eroğlu, C.; Sinani, G.; Ülker, Z. Current state of lipid nanoparticles (SLN and NLC) for skin applications. Curr. Pharm. Des. 2023, 29, 1632–1644. [Google Scholar] [CrossRef] [PubMed]
- Frias, I.; Neves, A.R.; Pinheiro, M.; Reis, S. Design, development, and characterization of lipid nanocarriers-based epigallocatechin gallate delivery system for preventive and therapeutic supplementation. Drug Des. Devel. Ther. 2016, 10, 3519–3528. [Google Scholar] [CrossRef]
- Ghasemiyeh, P.; Mohammadi-Samani, S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res. Pharm. Sci. 2018, 13, 288–303. [Google Scholar] [CrossRef]
- Felippim, E.C.; Marcato, P.D.; Maia Campos, P.M.B.G. Development of photoprotective formulations containing nanostructured lipid carriers: Sun protection factor, physical-mechanical and sensorial properties. AAPS PharmSciTech 2020, 21, 311. [Google Scholar] [CrossRef]
- Pawbake, G.R.; Shirolkar, S.V. Formulation, development and evaluation of nanostructured lipid carrier (NLC) based gel for topical delivery of diacerein. Syst. Rev. Pharm. 2020, 11, 794–802. [Google Scholar] [CrossRef]
- Chaiyana, W.; Inthorn, J.; Somwongin, S.; Anantaworasakul, P.; Sopharadee, S.; Yanpanya, P.; Konaka, M.; Wongwilai, W.; Dhumtanom, P.; Juntrapirom, S.; et al. The fatty acid compositions, irritation properties, and potential applications of Teleogryllus mitratus oil in nanoemulsion development. Nanomaterials 2024, 14, 184. [Google Scholar] [CrossRef] [PubMed]
- Chuesomboon, P.; Rades, T.; Chaiyana, W. Potential of encapsulated bovine colostrum in powder-based formulations for facial clay, peel-off gel, and sleeping gel masks. Gels 2025, 11, 111. [Google Scholar] [CrossRef] [PubMed]
- Chaiyana, W.; Anuchapreeda, S.; Somwongin, S.; Marsup, P.; Lee, K.H.; Lin, W.C.; Lue, S.C. Dermal delivery enhancement of natural anti-ageing compounds from Ocimum sanctum Linn. extract by nanostructured lipid carriers. Pharmaceutics 2020, 12, 309. [Google Scholar] [CrossRef] [PubMed]
- Faig, J.J.; Moretti, A.; Joseph, L.B.; Zhang, Y.; Nova, M.J.; Smith, K.; Uhrich, K.E. Biodegradable kojic acid-based polymers: Controlled delivery of bioactives for melanogenesis inhibition. Biomacromolecules 2017, 18, 363–373. [Google Scholar] [CrossRef]
- Jatana, S.; Callahan, L.M.; Pentland, A.P.; DeLouise, L.A. Impact of cosmetic lotions on nanoparticle penetration through ex vivo C57BL/6 hairless mouse and human skin: A comparison study. Cosmetics 2016, 3, 6. [Google Scholar] [CrossRef]
- Cilurzo, F.; Minghetti, P.; Sinico, C. Newborn pig skin as model membrane in in vitro drug permeation studies: A technical note. AAPS PharmSciTech 2007, 8, 97–100. [Google Scholar] [CrossRef]
- Somwongin, S.; Chaiyana, W. Clinical efficacy in skin hydration and reducing wrinkles of nanoemulsions containing Macadamia integrifolia seed oil. Nanomaterials 2024, 14, 724. [Google Scholar] [CrossRef]
- Fischer, K. Animal testing and marketing bans of the EU cosmetics legislation. Eur. J. Risk Regul. 2015, 6, 613–621. [Google Scholar] [CrossRef]
- Sreedhar, D.; Manjula, N.; Pise, A.; Pise, S. Ban of cosmetic testing on animals: A brief overview. Int. J. Curr. Res. Rev. 2020, 12, 113–116. [Google Scholar] [CrossRef]
- Natta, S.; Mondol, M.S.A.; Pal, K.; Mandal, S.; Sahana, N.; Pal, R.; Pandit, G.K.; Alam, B.K.; Das, S.S.; Biswas, S.S.; et al. Chemical composition, antioxidant activity and bioactive constituents of six native endangered medicinal orchid species from north-eastern Himalayan region of India. S. Afr. J. Bot. 2022, 150, 248–259. [Google Scholar] [CrossRef]
- Robb, C.S.; Geldart, S.E.; Seelenbinder, J.A.; Brown, P.R. Analysis of green tea constituents by HPLC-FTIR. J. Liq. Chromatogr. Relat. Technol. 2002, 25, 787–801. [Google Scholar] [CrossRef]
- Navarro-Pérez, Y.M.; Cedeño-Linares, E.; Norman-Montenegro, O.; Ruz-Sanjuan, V.; Mondeja-Rivera, Y.; Hernández-Monzón, A.M.; González-Bedia, M.M. Prediction of the physical stability and quality of O/W cosmetic emulsions using full factorial design. J. Pharm. Pharmacogn. Res. 2021, 9, 98–112. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Stability Testing of Pharmaceutical Products Containing Well Established Drug Substances in Conventional Dosage Forms; WHO Expert Committee on Specifications for Pharmaceutical Preparations: Geneva, Switzerland, 1996; pp. 65–80. [Google Scholar]
- Ma, Q.H.; Wang, Y.W.; Lin, X.F.; Luo, D.; Gu, N. Preparation, characterization and photoprotection of tocopherol loaded nanostructured lipid carriers. In Proceedings of the 2007 IEEE/ICME International Conference on Complex Medical Engineering, Beijing, China, 23–27 May 2007; pp. 203–208. [Google Scholar] [CrossRef]
- Saez, V.; Souza, I.D.L.; Mansur, C.R.E. Lipid nanoparticles (SLN & NLC) for delivery of vitamin E: A comprehensive review. Int. J. Cosmet. Sci. 2018, 40, 103–116. [Google Scholar] [CrossRef]
- Müller, R.H.; Petersen, R.D.; Hommoss, A.; Pardeike, J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv. Drug Deliv. Rev. 2007, 59, 522–530. [Google Scholar] [CrossRef]
- Tamjidi, F.; Shahedi, M.; Varshosaz, J.; Nasirpour, A. Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innov. Food Sci. Emerg. Technol. 2013, 19, 29–43. [Google Scholar] [CrossRef]
- Danaei, M.R.M.M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, X.; Liu, Y.; Yang, G.; Falconer, R.J.; Zhao, C.X. Lipid nanoparticles for drug delivery. Adv. NanoBiomed Res. 2022, 2, 2100109. [Google Scholar] [CrossRef]
- Nerli, G.; Gonçalves, L.M.; Cirri, M.; Almeida, A.J.; Maestrelli, F.; Mennini, N.; Mura, P.A. Design, evaluation and comparison of nanostructured lipid carriers and chitosan nanoparticles as carriers of poorly soluble drugs to develop oral liquid formulations suitable for pediatric use. Pharmaceutics 2023, 15, 1305. [Google Scholar] [CrossRef]
- Andonova, V.; Peneva, P. Characterization methods for solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC). Curr. Pharm. Des. 2017, 23, 6630–6642. [Google Scholar] [CrossRef]
- Ortiz, A.C.; Yañez, O.; Salas-Huenuleo, E.; Morales, J.O. Development of a nanostructured lipid carrier (NLC) by a low-energy method, comparison of release kinetics and molecular dynamics simulation. Pharmaceutics 2021, 13, 531. [Google Scholar] [CrossRef]
- Yajima, T.; Itai, S.; Takeuchi, H.; Kawashima, Y. Determination of optimum processing temperature for transformation of glyceryl monostearate. Chem. Pharm. Bull. 2002, 50, 1430–1433. [Google Scholar] [CrossRef]
- Li, Y.; Xiang, D.; Wang, B.; Gong, X. Oil-in-water emulsions stabilized by ultrasonic degraded polysaccharide complex. Molecules 2019, 24, 1097. [Google Scholar] [CrossRef] [PubMed]
- Ateiro, M.; Gómez, B.; Munekata, P.E.; Barba, F.J.; Putnik, P.; Kovačević, D.B.; Lorenzo, J.M. Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products. Molecules 2021, 26, 1547. [Google Scholar] [CrossRef] [PubMed]
- Pachuau, L.; Laldinchhana, L.; Roy, P.K.; Zothantluanga, J.H.; Ray, S.; Das, S. Encapsulation of bioactive compound and its therapeutic potential. In Bioactive Natural Products for Pharmaceutical Applications; Springer: Cham, Switzerland, 2021; pp. 687–714. [Google Scholar] [CrossRef]
- Rabima, R.; Sari, M.P. Entrapment efficiency and drug loading of curcumin nanostructured lipid carrier (NLC) formula. Pharmaciana 2019, 9, 299–306. [Google Scholar] [CrossRef]
- Pimentel-Moral, S.; Teixeira, M.C.; Fernandes, A.R.; Borrás-Linares, I.; Arráez-Román, D.; Martínez-Férez, A.; Carretero, A.S.; Souto, E.B. Polyphenols-enriched Hibiscus sabdariffa extract-loaded nanostructured lipid carriers (NLC): Optimization by multi-response surface methodology. J. Drug Deliv. Sci. Technol. 2019, 49, 660–667. [Google Scholar] [CrossRef]
- Simao, D.O.; Honorato, T.D.; Gobo, G.G.; Piva, H.L.; Goto, P.L.; Rolim, L.A.; Turrin, C.O.; Blanzat, M.; Tedesco, A.C.; Siqueira-Moura, M.P. Preparation and cytotoxicity of lipid nanocarriers containing a hydrophobic flavanone. Colloids Surf. A Physicochem. Eng. Asp. 2020, 601, 124982. [Google Scholar] [CrossRef]
- Talegaonkar, S.; Bhattacharyya, A. Potential of lipid nanoparticles (SLNs and NLCs) in enhancing oral bioavailability of drugs with poor intestinal permeability. AAPS PharmSciTech 2019, 20, 121. [Google Scholar] [CrossRef]
- Lacatusu, I.; Badea, N.; Stan, R.; Meghea, A. Novel bio-active lipid nanocarriers for the stabilization and sustained release of sitosterol. Nanotechnology 2012, 23, 455702. [Google Scholar] [CrossRef]
- Nwagwu, C.S.; Onugwu, A.L.; Echezona, A.C.; Uzondu, S.W.; Agbo, C.P.; Kenechukwu, F.; Ogbonna, J.; Ugorji, L.; Nwobi, L.; Nwobi, O.; et al. Biopolymeric and lipid-based nanotechnological strategies in the design and development of novel mosquito repellent systems: Recent advances. Nanoscale Adv. 2024, 6, 4751–4780. [Google Scholar] [CrossRef]
- Müller, R.H.; Radtke, M.; Wissing, S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev. 2002, 54, S131–S155. [Google Scholar] [CrossRef]
- Souto, E.B.; Wissing, S.A.; Barbosa, C.M.; Müller, R.H. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int. J. Pharm. 2004, 278, 71–77. [Google Scholar] [CrossRef]
- Yuann, J.M.P.; Lee, S.Y.; Yang, M.J.; Huang, S.T.; Cheng, C.W.; Liang, J.Y. A study of catechin photostability using photolytic processing. Processes 2021, 9, 293. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Md, S.; Sahni, J.K.; Baboota, S.; Dang, S.; Ali, J. Nanostructured lipid carriers system: Recent advances in drug delivery. J. Drug Target. 2012, 20, 813–830. [Google Scholar] [CrossRef]
- Haider, M.; Abdin, S.M.; Kamal, L.; Orive, G. Nanostructured lipid carriers for delivery of chemotherapeutics: A review. Pharmaceutics 2020, 12, 288. [Google Scholar] [CrossRef]
- López-García, R.; Ganem-Rondero, A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): Occlusive effect and penetration enhancement ability. J. Cosmet. Dermatol. Sci. Appl. 2015, 5, 62. [Google Scholar] [CrossRef]
- Fiume, M.M.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Amended safety assessment of triglycerides as used in cosmetics. Int. J. Toxicol. 2022, 41, 22–68. [Google Scholar] [CrossRef]
Band Assignment | Wavenumber (cm−1) | ||
---|---|---|---|
V. coerulea Extract | Catechin | ||
Standard | Literature [32] | ||
O–H wags | Overlapping region | 823 | 900–750 |
–C–O strech | 1045 | 1045 | 1015 |
–C–O aromatic alcohol | 1150 | 1150 | 1190 |
–C–O alcohol | 1447 | 1447 | 1280 |
C=C aromatic ring | 1514 | 1514 | 1520 |
C=C aromatic ring | 1615 | 1605 | 1618 |
Asymmetric aliphatic C–H bonds | 2853 | 2853 | – |
Symmetric aliphatic C–H bonds | 2918 | 2918 | – |
O–H stretching | 3373 | 3373 | 3350 |
Samples | Irritation Score | Severity |
---|---|---|
Positive control | 9.1 ± 1.8 a | Severe irritation |
Negative control | 0.0 ± 0.0 b | No irritation |
SOL | 0.0 ± 0.0 b | No irritation |
Blank NLC | 0.0 ± 0.0 b | No irritation |
NLC | 0.0 ± 0.0 b | No irritation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amnuaykan, P.; Anantaworasakul, P.; Lueadnakrob, K.; Kunkul, P.; Chokrungsarid, W.; Thummanuwong, A.; Juntrapirom, S.; Kanjanakawinkul, W.; Chaiyana, W. Nanostructured Lipid Carriers for Sustained Release and Enhanced Delivery of Vanda coerulea Protocorm Extract. Pharmaceutics 2025, 17, 1076. https://doi.org/10.3390/pharmaceutics17081076
Amnuaykan P, Anantaworasakul P, Lueadnakrob K, Kunkul P, Chokrungsarid W, Thummanuwong A, Juntrapirom S, Kanjanakawinkul W, Chaiyana W. Nanostructured Lipid Carriers for Sustained Release and Enhanced Delivery of Vanda coerulea Protocorm Extract. Pharmaceutics. 2025; 17(8):1076. https://doi.org/10.3390/pharmaceutics17081076
Chicago/Turabian StyleAmnuaykan, Piyatida, Pimporn Anantaworasakul, Kodpaka Lueadnakrob, Pongsagon Kunkul, Wilasinee Chokrungsarid, Aiya Thummanuwong, Saranya Juntrapirom, Watchara Kanjanakawinkul, and Wantida Chaiyana. 2025. "Nanostructured Lipid Carriers for Sustained Release and Enhanced Delivery of Vanda coerulea Protocorm Extract" Pharmaceutics 17, no. 8: 1076. https://doi.org/10.3390/pharmaceutics17081076
APA StyleAmnuaykan, P., Anantaworasakul, P., Lueadnakrob, K., Kunkul, P., Chokrungsarid, W., Thummanuwong, A., Juntrapirom, S., Kanjanakawinkul, W., & Chaiyana, W. (2025). Nanostructured Lipid Carriers for Sustained Release and Enhanced Delivery of Vanda coerulea Protocorm Extract. Pharmaceutics, 17(8), 1076. https://doi.org/10.3390/pharmaceutics17081076